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Introduction Bias and Variance Reduction How to do conduct inference?

Motivation

Setting: Binary treatment with sharp timing

I Observe outcome yit for units i = 1, . . . ,N (large), periods

t = 1, . . . ,T � 3 (small),

I Two groups of units: Di =

(
0 never treated

1 treated in t = T0 + 1, . . . ,T

Problem: Di↵-in-di↵ (DID) estimation biased in presence of interactive

fixed e↵ects.

Solution: Equip the DID estimator with time weights.
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Introduction Bias and Variance Reduction How to do conduct inference?

Empirical example: Deschenes et al. (2017) AER
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I yit : county/year level NOx emissions

I N = 2539 counties, of which ca. 50% are treated

I T0 = 6 pre-treatment periods
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Introduction Bias and Variance Reduction How to do conduct inference?

Idea: use time weights
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[ATT = �̄post � �̂
(0), �t = ȳ

(1)

t � ȳ
(0)

t

Benchmark: �̂
(0)

did =
1

T0

P
tT0

�t

This paper: �̂
(0)

(v) =
P

tT0
vt�t , with

P
t vt = 1, vt � 0
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Introduction Bias and Variance Reduction How to do conduct inference?

Related work

Synthetic Control & Synthetic DID
Abadie et al. (2015), Ferman and Pinto (2016), Arkhangelsky et al. (2021)

I SC: unit weights, no time weights; small N, large T

I SDID: unit weights and time weights; large N, large T

Panel Data with Interactive Fixed E↵ects (IFE)
Pesaran (2006), Bai (2009), Moon and Weidner (2015), Gobillon and Magnac
(2016)

I large N, large T

Treatment E↵ects with IFE
Callaway and Karami, (2022)

I large N, small T

I requires time-invariant covariate Zi with constant e↵ect on yit

This paper: only time weights, no covariate Zi ; large N, small T
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Introduction Bias and Variance Reduction How to do conduct inference?

Potential outcomes framework

I Potential outcomes yit(0), yit(1)

I Observed outcome yit = yit(1)Di + yit(0)(1� Di ),

I Object of interest:

⌧ :=
1

T1

X

t>T0

ATT (t), ATT (t) = E[yit(1)� yit(0)|Di = 1]

No anticipation: yit(1) = yit(0) for all t  T0.
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Introduction Bias and Variance Reduction How to do conduct inference?

Interactive fixed e↵ects model

yit(0) = �i + �0
i ft + "it

I ft : unobserved common factors with loadings �i

I Var[�i |Di ] = ⌃� > 0: variation in how units are a↵ected by ft
I E[�i |Di = 1]� E[�i |Di = 0] = ⇠�:

treated and untreated units di↵er in how they are (on average)

a↵ected by ft .
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Introduction Bias and Variance Reduction How to do conduct inference?

Balancing common shocks with time weights

Time weighted DID estimator for given weights v :

⌧̂(v) = �̄post �
X

tT0

vt�t

Problem: factor imbalance ⇠f (v) = f̄post �
P

tT0
vtft . . .

I . . . causes bias:

E[⌧̂(v)� ⌧ ] = ⇠0�⇠f (v)

I . . . amplifies the variance:

Var[⌧̂(v)] = ⇠f (v)0⌃�⇠f (v) + Vz(v)

Goal: find time weights v̂ which minimize ⇠f (v)
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Introduction Bias and Variance Reduction How to do conduct inference?

Estimating the weights from control units

Which weighted average of pre-treatment outcomes predicts best the

(average) post-treatment outcome?

Estimate

ȳi,post = ↵+

X

tT0

vtyit + ⌘i , i 2 N0 (control units)

s.t.
P

tT0
vt = 1 and vt � 0 by restricted least-squares.
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Introduction Bias and Variance Reduction How to do conduct inference?

Properties of the estimated time weights

Does v̂ converge to something desireable?

Theorem

v̂ p�! v⇤
:= argmin

v2V
{⇠f (v)0⌃�⇠f (v) + Vz(v)}| {z }

Var[⌧̂(v)]

and p
N(v̂ � v⇤

)
d�! N


0,

⌃v̂



�

Take-away

I The weights minimize the limiting variance of the [ATT ,

I . . . but may not balance the factors perfectly (⇠f (v⇤
) 6= 0)

I . . . so some bias b(v⇤
) = ⇠0�⇠f (v⇤

) remains
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Introduction Bias and Variance Reduction How to do conduct inference?

DID vs. TWDID: Bias and Variance
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I DGP: yit = �i ft + "it , ft ⇠ N[0,�2

f ], �i |Di ⇠ N[1 + 0.2Di , 1],
"it ⇠ N[0, 1].

I Sample size: N = 100, N0 = 50, T = 7, T0 = 6.
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Introduction Bias and Variance Reduction How to do conduct inference?

Inference

Asymptotic normality

p
N(⌧̂(v̂)�⌧�b(v⇤

))
d�! N[0,V⌧̂ ]; V⌧̂ = var[⌧̂(v⇤

)]+
1


⇠0�F 0

pre⌃v̂Fpre⇠�

Standard errors accounting for weight estimation uncertainty:

bV⌧̂ = bVccm +
1


�̇0

pre
b⌃v̂�̇pre

I bVccm weighted cluster covariance matrix (CCM) estimator

I b⌃v̂ the estimated time weight covariance matrix

I �̇pre the demeaned pre-treatment di↵erences in outcomes
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Introduction Bias and Variance Reduction How to do conduct inference?

DID vs. TWDID: Coverage and length of CI
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Introduction Bias and Variance Reduction How to do conduct inference?

What di↵erence does time weighting make?
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I TWDID standard error 10% smaller, point estimate similar.
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Summary

Problem: Di↵-in-di↵ (DID) estimation biased in presence of interactive

fixed e↵ects.

Solution: Equip the DID estimator with time weights!

I Substantial bias and variance reduction

I Standard errors need to be adjusted for weight estimation

uncertainty

I NOx application: TWDID yields similar point estimates but 10%

smaller standard errors



Thank you!

B t.d.schenk@uva.nl
m timoschenk.github.io



Appendix

Time weight estimation
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Figure:
P

tT0
vtyit (0) vs. ȳi,post (1) for control unit i 2 N0. Left: equal

weights vt = 1

T0
, Right: estimated weights v̂t .
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Appendix

DID vs. TWDID: Coverage and length of CI
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Appendix

Evidence of the factor structure
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�t = �̄(1) � �̄(0)
+ ⇠0�ft + ⌧ I(t > T0) + Op(

1p
N
)

with loading imbalance ⇠� = �̄(1) � �̄(0)
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Additional Simulations
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Additional Simulations
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Appendix

Convergence of the time weights
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Appendix

Di↵erence-in-Di↵erences in Environmental Economics
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Figure: Papers contain the phrase “di↵erence-in-di↵erences”, manually
obtained from https://www.nber.org/.
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