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ABSTRACT

I show that time-varying risk aversion can generate a term structure of equity
risk premia that is upward sloping in bad times and downward sloping in good
times. I derive three conditions that jointly generate this result. First, risk
aversion is negatively correlated with consumption growth. Second, risk aversion
is mean reverting and, third, preferences can become risk seeking in good
states. Moreover, I propose a highly parsimonious model with one single state
variable and a representative agent with utility over both consumption and wealth
fluctuations that allows for states of risk-seeking preferences in equilibrium and,
hence, can match the recent empirical findings on the equity term structure. In my
model, the unconditional term structure of equity risk premia can be increasing,
flat, or decreasing depending on the relative frequency of good and bad times. I
show that time-varying risk aversion provides the first simultaneous explanation
for the cyclicality of the equity term premia, the positive equity term risks, and,
the predictability of stock returns without needing to assume predictability in
cashflows. More broadly, my results show the relevance of time-varying risk
aversion for explaining maturity-dependent risk premia.
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1. INTRODUCTION

In nearly all models of aggregate stock market behavior investors are assumed to always be

averse to risks. Yet the experimental economics literature demonstrates that decision makers

can also act in a risk-seeking manner.1 Such behavior may have important consequences as

risk-seeking preferences invert the effects risks have on equilibrium prices relative to risk-averse

preferences. Therefore, allowing investors to become risk-seeking in certain scenarios may

explain more of the variability in aggregate stock prices and thereby may yield new insights in

the cyclicality of financial markets. These insights are desirable given the puzzling empirical

findings about the shape of the term structure of equity risk premia—the decomposition of the

equity premium by maturity—and its cyclicality.

Recently, the literature on financial economics has provided new results that are informative

about the cyclicality of the aggregate stock market. Namely, the results of ? indicate that the

term structure of equity risk premia is countercyclical.2 More specifically, it is upward sloping

in bad times and downward sloping in good times.3 These findings are puzzling, as they are

not supported by the predictions of both classical and more recent asset pricing models which

generate either always upward sloping term structures of equity risk premia (??) or always

downward sloping term structures of equity risk premia (?).

In this paper, I show that a model with time-varying risk aversion is able to generate

the empirically observed state-dependent slope of the equity term structure if it meets three

conditions. First, risk aversion needs to be negatively correlated with consumption growth

shocks, and second, it needs to be mean reverting over time. These two assumptions are not new,

on the contrary, they are already commonly satisfied in models of time-varying risk aversion

(??). As I will explain in more detail below, these two assumptions jointly generate positive

equity term risks without relying on any maturity-specific dividend risk.4 Then, mind that

a risk averse agent will demand a positive premium to hold any type of risk. Therefore, a

model that only allows states of risk averse preferences will always translate such positive term

risks into increasing term structures of equity risk premia. However, in case there exist states

1See ? and ? for a discussion of the literature.
2In the literature there is an ongoing debate on the shape of the unconditional term structure of equity risk

premia (???). The findings of ? are helpful as they suggest that the shape of the unconditional term structure is a
result of the relative weighting of good and bad times in a specific time period.

3I follow the definition of ?, who defines bad times as times where the ex-ante price-dividend ratio is in the
historical bottom quintile, and good times as all other points in time.

4A detailed explanation of the mechanism is given in section ??.
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where risk-seeking preferences are allowed, in such states the positive term risks translate to a

decreasing term structure of equity risk premia. Therefore, the third condition of models with

time-varying risk aversion to fully match the state-dependent slope of the equity term structure

is that investors can become risk-seeking in good times.

The key driver of the results is the inclusion of states of risk-seeking preferences. Even

though models of aggregate stock market behavior tend to neglect the possibility of such

preferences, risk-seeking preferences are supported by a wide range of papers in the experimental

economics literature. In their seminal paper, ? report that a significant part of their participants

make decisions in a risk-seeking manner. They give individuals the choice between ten paired

lotteries where the probabilities of the lotteries change while going down the list. These lotteries

differ in expected payoff and riskiness. The expected payoff is first larger for lottery A, but at

some point it is larger for lottery B. However, B is always the riskier lottery. This method allows

to infer the level of risk aversion of the participants by analyzing their switching behavior. Their

results show that some participants display risk-seeking behavior.5

In the experiments of ? and in follow-up work by the literature, it remains difficult to assess

where this type of behavior may originate from. One explanation for risk-seeking behavior is the

house money effect (?). According to the house money effect, individuals tend to be risk-seeking

after prior gains. In the context of financial markets, prices are high in good times such that

on average investors are likely to have had prior gains. Therefore, the house money effect

may imply that some investors become risk seeking in good times. However, incorporating the

micro-foundation of risk preferences would add an additional layer of complexity to the model

that is not of interest to the current analysis. For the ease of the analysis, risk preferences are

thus chosen to be modeled directly.

The model I propose extends the general equilibrium model that was originally proposed

by ? and has been shown to explain aggregate stock market behavior (?), investor behavior

(?), option pricing (?) and the cross-section of stocks (?). The innovation of their model is an

alternative preference structure that separates consumption utility from utility of financial gains

and losses. My model builds on this preference separation as it allows for domain specific risk

preferences (?).6 For instance, a person can be risk averse when making decisions about health

5? revise the experimental design used in ? to solve problems raised in the literature concerning the menu of
lotteries (??) and find even stronger support for the existence of risk-seeking behavior.

6I follow the literature in experimental economics and use the term domain-specific for differentiating decisions
related to for instance health from those related to finances. The literature useses the closely related term context-
dependent to differentiate between decisions to specific payoffs like gains and losses.
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care, whereas at the same time having a different risk tolerance for purely financial decisions

(?). It turns out that this finding is also very useful for incorporating states of risk-seeking

preferences over financial decisions in an equilibrium model. The intuition is as follows. By

separating consumption utility from utility obtained by financial wealth fluctuations, in specific

states the representative agent can be risk-seeking for financial decisions and at the same time

still imply market clearance. The equilibrium is assured by the degree of risk aversion over

consumption decisions that counteracts the risk-seeking preferences over financial gains and

losses. Including both utility sources generates a high degree of return volatility and a large

expected return on equity. Moreover, the separation of preferences allows the model to be

the first general equilibrium model to include states of risk-seeking preferences over financial

decisions.

An important contribution of the analysis is the mechanism of how time-varying risk

preferences induce equity risks and equity risk premia. The mechanism is the same as in other

models of time-varying risk aversion (like, ??), though a detailed explanation of the mechanism

has not yet been provided. It works as follows. First consider the effect of the mean reversion

of risk aversion. Mean reversion of risk aversion induces an agent to expect her future risk

aversion to move towards its unconditional mean. The magnitude of this future change in risk

aversion depends on the distance of the current level of risk aversion relative to its unconditional

mean. Consider you currently have some level of risk aversion and suppose an economic growth

shock materializes that increases your risk aversion. In case you started and stayed below

your unconditional level of risk aversion, your risk aversion moves closer to the unconditional

mean and thus its degree of mean reversion decreases. Considering that a higher level of risk

aversion is a worse state of the world, your expectation on the future change of states is now less

bad, i.e., the difference between the current state and the expected future state is now smaller

compared to before the shock. Similarly, in case you started above your unconditional level

of risk aversion, the shock moves your risk aversion away from its unconditional level, such

that the mean reversion of risk aversion becomes stronger. This implies that in expectation, the

future change of states has become better.

Summarizing, in both cases your expectations about future state changes improved. Now,

consider the second condition: risk aversion is negatively correlated with consumption growth.

In that case, the shock in the example before was actually a bad shock. Combined this implies

that after a bad shock expectations about the future improve. Therefore, under the first two
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conditions, time variation in risk aversion causes expectations about the future to counteract

current economic risks. Hence, as mean reversion creates a stronger force in the short-run, this

counteracting effect is stronger for short maturity assets. This causes short maturity assets to be

less risky compared to long maturity assets, i.e., an increasing term structure of equity risk.7

Finally, in a model that only allows risk-averse preferences, investors always demand a positive

premium for risks so that the positive term risks translate to an upward sloping term structure of

equity risk premia. However, as I do in this paper, when introducing the possibility of states

with risk-seeking preferences, the model is able to match the cyclicality that is found empirically.

Risk-seeking preferences reverse the premia such that the term structure of equity risk premia

becomes downward sloping in these states.

The approach of this paper gives an alternative insight in addition to recent work in the

literature. Instead of analyzing the preference channel, ?, ? and ? analyze the implications of

alternative beliefs. One drawback of these adaptions to the belief process is that the economy in

these models is no longer independent and identically distributed (IID) over time. The economy

thus contains predictability in cashflows. This contradicts empirical results which show that

even though there is predictability in returns, this does not come from predictability in cashflows

(?). Another drawback is that these models will, by construction, generate time variation in

the equity term risks, which is not supported by empirical work (?). On the contrary, the

model below does satisfy these empirical findings as it generates predictability in returns by

time-varying preferences whereas the economy is assumed to be a standard IID endowment

economy. Furthermore, ? states that models of alternative beliefs need at least two state variables

to match the state-dependent slopes of the equity term structure. This is not the case for the

model time-varying risk aversion which is parsimonious in the sense that it only uses a single

state variable, namely risk aversion.

This paper makes several contributes to the literature. First, I explain the mechanism of

how models with time-varying risk preferences generate the equity term risks. Additionally,

I show that there are three conditions for such models to generate the empirically observed

state-dependent slopes of the term structure of equity risk premia. Moreover, I provide the

first simultaneous explanation for the shape of the equity term premia, the shape of the equity

term risks and the existence of return predictability without needing to assume predictability

7The empirical literature investigating the dividend strips find that the betas of these assets are increasing with
maturity (?). This increase of betas with maturity is also found by ? who do not use the dividend strip assets
to analyze the equity term structure, instead they estimate the term structure cross-sectionally using a principal
component analysis. My model thus complies with the empirical increasing term risks.
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in cashflows (?). Furthermore, I propose the first general equilibrium model that contains

states of risk-seeking preferences over the full payoff space of the financial asset.8 To do so, I

show the relevance of domain-specific risk preferences. Additionally, this model is potentially

helpful for an empirical estimation of risk-seeking preferences in the aggregate stock market as

previous studies excluded risk-averse preferences ex-ante (?). Finally, the analysis derives the

stochastic discount factor (SDF) explicitly. This is a helpful result as it may help us understand

the mechanisms behind recently proposed models within this literature that use an exogenously

specified SDF (???).

The paper is organized as follows. Section ?? introduces the model of time-varying risk

preferences. Section ?? discusses some results for the experimental economics and empirical

finance literature that support the assumptions of the model. The implications of the model are

shown in ?? and section ?? concludes.

2. THE MODEL

In this section I propose a model of time-varying risk aversion that is able to generate the

empirically observed state-dependent slope of the term structure of equity risk premia. The term

structure results are driven by the following three conditions,

(i) risk aversion is negatively correlated with consumption growth,

(ii) risk aversion is mean reverting,

(iii) states of risk-seeking preferences are allowed.

The novelty of the model comes from the fact that it allows states of risk-seeking preferences.

The model I propose follows that of ? by assuming the representative agent obtains utility from

wealth fluctuations in addition to consumption utility, which is based on the findings of ?. This

additional source for utility is helpful for the model to include risk-seeking preferences. I follow

the general framework first proposed by ?, though the model that I propose below is simplified

along several lines. I simplify the dynamics of risk aversion over gain-loss utility and I simplify

the functional form of the gain-loss utility itself. Moreover, I impose one extension, namely, I

allow for states of risk-seeking preferences such that the model also fulfills condition ??.
8The model that I propose is the first to allow for domain-specific risk-seeking preferences such that in certain

states the investor is risk-seeking over the full payoff space of the financial asset. In contrast, ? incorporate
context-dependent risk-seeking preferences in an equilibrium model, where the preference of the agent depends on
whether the payoff is a gain or a loss. Their model therefore does not generate the empirical cyclicality of the term
structure of equity risk premia.
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2.1. BELIEFS AND PREFERENCES

I assume a standard ?-type endowment economy with I.I.D. log-normal consumption and

dividend growth,

log
(

C̄t+1

C̄t

)
= gc +σcεc,t+1, log

(
Dt+1

Dt

)
= gd +σdεd,t+1, (1)

where the error terms of both growth processes are I.I.D. and standard normally distributed with

positive correlation ω . There are two assets in the economy, the risk-free asset that pays the

guaranteed return of R f ,t and the risky asset that pays the risky return, Rt+1.

The preferences of the agent are enriched relative to the regular consumption utility models

by adding utility obtained from fluctuations in financial wealth. More specifically, the investor

obtains positive utility from gains and negative utility from losses. The gain-loss utility is

v
(
Rt+1,zt

)
=

 (1−κ1zt)(Rt+1 −R f ,t) for Rt+1 ≥ R f ,t

(λ +κ2zt)(Rt+1 −R f ,t) for Rt+1 < R f ,t

, κ1,κ2 ≥ 0, (2)

which is motivated by the results of ?.9 The reference point is assumed to be the risk-free interest

rate, R f ,t , such that the investor considers the return on the risky investments, Rt+1, as a gain or

a loss if the realized return is larger or smaller than R f ,t . The unconditional level of risk aversion

over gain-loss utility is denoted by λ and zt denotes the zero-mean time-varying part. Figure ??

illustrates the gain-loss utility function for several levels of risk aversion and thereby shows how

the risk preference changes as a function of zt .

The figure shows that the level of risk aversion over the gain-loss utility depends on the

slopes of the utility function in the gain and the loss region. The variation in the slope causes

the utility function to be either concave, linear or convex utility function such that the investor

is respectively, risk averse, risk neutral or risk seeking. I set κ2 = 0 and thereby vary the level

of risk aversion by varying the slope in the gain domain.10 For negative values of zt the utility

9The original characterization of ? assumes investors are risk-averse over gains and risk-seeking over losses.
However, most implications are caused by the kink at the reference point (R f ,t ) such that risk neutrality is assumed
within both regions to simplify the analysis.

10Intuitively one may expect that only the curvature of the function matters, not the individual slopes. However,
which of the two “legs” of the function changes over time does matter for the equilibrium asset prices. Namely, in a
?-tree endowment economy, the return distribution of the risky asset is generally asymmetric around the risk-free
interest rate, which implies that the two parts of the gain-loss utility function differ in their importance for the asset
prices in equilibrium. The results on the equity term structure are qualitatively unaffected when setting κ1 = 0
instead.
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FIGURE 1:
GAIN-LOSS UTILITY FUNCTION

A static representation of the monthly gain-loss utility function for parameter
values; gc = 0.0015, σc = 0.0078, λ = 1, κ1 = 1 and κ2 = 0.

function is concave and for positive values of zt it is convex, such that the level of risk aversion

of the gain-loss utility is increasing in zt .

The time variation in risk aversion is assumed to be mean reverting and negatively correlated

with the economic growth shocks. A general dynamics that fulfills both these conditions is the

following AR(1) process

zt+1 = ρzzt −σzεd,t+1, (3)

where conditions ?? and ?? are satisfied for 0 ≤ ρz ≤ 1 and σz > 0. The dynamics imply that

the level of risk aversion over gain-loss utility decreases (increases) after positive (negative)

shocks to dividend growth. The specification in (??) is very similar to letting the dynamics

of risk aversion be a direct function of returns, which one might consider more intuitive.11

However, the latter specification yields a relation between risk aversion and dividend growth

shocks that is not straightforward as it is non-linear and state-dependent. Such a structure makes

11This is the case for the model of ?. The motivation for the dynamics of risk aversion in (??) is however similar
to that of ? as the returns highly comove with the dividend growth shocks.
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it rather complex to interpret the mechanism driving the results of the equity term structures.

Introducing the dividend growth shocks directly into (??) yields a more simple structure which

is very convenient for the analysis. Moreover, as dividend shocks highly correlate with returns

the intuition that risk aversion drops after good returns and vice versa is largely satisfied.

2.2. EQUILIBRIUM

The representative agent maximizes the expected discounted lifetime utility by optimally

choosing consumption (Ct) and the proportion of wealth that he or she invests in the risky

asset (αt). Based on the beliefs and preferences specified above, the agent faces the following

maximization problem:

max
{Ct ,αt}

E
[

∞

∑
t=0

(
β

tu(Ct)+αt(Wt −Ct)β
t+1u′(C̄t)v(Rt+1,zt)

)]
(4)

Wt+1 = (Wt −Ct)
{

R f ,t +αt(Rt+1 −R f ,t)
}

(5)

zt+1 = ρzzt −σzεd,t+1, (6)

where β is the parameter of time discounting, u(Ct) is the CRRA-utility function over consumption,

αt is the proportion of wealth invested in the risky asset, Wt −Ct is the wealth of the representative

investor after consumption and v(Rt+1,zt) is the gain-loss utility function as specified in (??),

where the dynamics of risk aversion of the gain-loss utility are specified by (??). I follow ? and

scale the gain-loss utility by u′(C̄t), which ensures that the gain-loss utility is stationary even

though wealth increases over time. Note that C̄t is aggregate consumption, which is therefore

not a choice variable for the investor. The utility over gains and losses materializes in the

subsequent period after observing the return realization, such that the corresponding utility is

time-discounted for one additional period. The budget equation of the agent is specified in (??).

The central topic of the analysis is the relation between time variation in risk preferences over

gain-loss utility and the shape of the term structure of equity risk premia. It is thus convenient

to let the other elements of the model follow the baseline assumptions in the literature. I thus

assume consumption utility, u(Ct), to be CRRA with (static) risk aversion γ. The equilibrium

risk-free interest rate and risky return are obtained by solving the Euler equations that correspond

to the model setup shown in (??) through (??). Proposition ?? formalizes these results.

Proposition 1. Let there be a representative agent who wants to maximize his or her expected
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lifetime utility in (??) subject to the budget constraint in (??) with CRRA(γ)-utility over

consumption and gain-loss utility over financial wealth fluctuations as in (??) and where

the dynamics of risk aversion of gain-loss utility follows (??). The risk-free interest rate then

equals

R f =
1
β

eγgc− 1
2γ

2σ2
c , (7)

where the subscript t is dropped as the risk-free interest rate does not depend on state zt . Then,

the SDF equals

Mt,t+1 =

(Ct+1
Ct

)−γ
+ v(Rt+1,zt)

Rt+1−R f

E
[(Ct+1

Ct

)−γ
+ v(Rt+1,zt)

Rt+1−R f

]
R f

. (8)

Lastly, the equilibrium price-dividend ratio function (and thereby the distribution of the risky

return) follows from

βegd−γgc+
1
2γ

2σ2
c (1−ω2)Et

[
1+ f (zt+1)

f (zt)
e(σd−γσcω)εd,t+1 + v(Rt+1,zt)

]
= 1, (9)

which needs to be solved numerically for the price-dividend ratio function f (zt) when replacing

the returns by,

Rt+1 =
1+ f (zt+1)

f (zt)
egd+σdεd,t+1. (10)

Proof. See Appendix ??.

Proposition ?? shows that the equilibrium risk-free interest rate is solely determined by the

utility the agent obtains from consumption. Therefore, the risk-free interest rate is the same as

for a standard CRRA consumption utility model without gain-loss utility. The Euler equation for

the risky asset in (??) cannot be solved in closed form and needs to be solved numerically. The

solution is obtained using the collocation projection method (?) as proposed by ? for solving

asset pricing models. The assumed economy is I.I.D. such that the equilibrium price-dividend

ratio function is solely a function of zt . The price-dividend ratio that solves (??) is thus a function

of the level of risk aversion over gain-loss utility.
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2.3. EQUITY TERM STRUCTURE

The term structure of equity risk premia is defined as the premia on one-period holding returns

of dividend strips (??). A dividend strip is an asset that pays a one-time dividend, namely, the

dividend in n periods from time t and its price is P(n)
t . Readers unfamiliar with the equity term

structure may want to read the derivation in Appendix ?? which follows the procedure first

introduced in ?. The return an investors obtains from holding a dividend strip with maturity n

from period t to period t +1 equals

R(n)
t+1 =

P(n−1)
t+1

P(n)
t

. (11)

The term structure of equity risk and the term structure of equity risk premia are respectively

defined as √
Var
(

R(n)
t+1

)
(12)

and,

Et

[
R(n)

t+1

]
−R f ,t =−R f ,tCovt

(
Mt,t+1,

P(n−1)
t+1

P(n)
t

)
. (13)

The shape of these term structures is a result of the three main assumptions listed above.

Their influence is best explained visually by comparing the term structures when changing the

parameters corresponding to the assumptions. Figure ?? shows the term structure of equity risk

when adapting the parameters corresponding to the assumption ?? and ??. The top left graph

shows the term structure of equity risk for parameter values that satisfy the assumptions first

two assumptions and the other graphs show the results when either ?? violated (bottom-right),

?? is violated (top-left), or both (bottom-right).

The upper left graph shows the results when risk aversion has a negative correlation with

consumption growth (σz > 0), and is mean reverting (0 < ρz < 1). The results illustrate that

when conditions ?? and ?? are satisfied, the term structure of equity risk is upward sloping for

all three domains of risk aversion. In contrast, when we assume the opposite of ??, namely risk

aversion is positively correlated with consumption growth shocks (σz < 0), the term structure

is downward sloping as is illustrated in the top right graph. The intuition for these results will
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FIGURE 2:
CONDITIONAL TERM STRUCTURES OF EQUITY RISK

be discussed in detail in the next section. Finally, the lower two graphs show results when

risk aversion is negatively autocorrelated (ρz < 0). This specification is included for the sake

of completeness though it is rather counter-intuitive as it implies that the agent is alternating

between risk-averse and risk-seeking preferences every period. This alternating behavior also

causes alternating pricing effects as can be seen from the thickness of the graphs.

The term structure of equity risk premia is a result of applying the risk preference to the

term risks. Namely, a risk-seeking agent likes to hold risks and thus implies lower premia for

higher risks, whereas a risk-averse agent dislikes risks and demands higher premia for holding

larger risks. Applying the states of risk preference to the top graphs of Figure ?? gives the term

structures of equity risk premia that are shown in Figure ??.

The term structures of equity risk premia in the left graph are the result of an increasing

term structure of equity risk. Under risk-averse preferences we observe that indeed the positive
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FIGURE 3:
CONDITIONAL TERM STRUCTURES OF EQUITY RISK PREMIA

term risks are translated to positive term premia. However, for the case of risk neutrality there is

no premium for term risks and in the case of risk-seeking preferences the positive term risks

translate to negative term premia.12 The graph on the right are the result of a decreasing term

structure of equity risk. These negative term risks are the opposite of the risks underlying the left

graph. The risk-averse agent thus demands a negative term risk premium as risks are lower for

long maturities. The risk-seeking agent demands a positive term premium due to the negative

term risks and, similar to the results for the left graph, the risk-neutral agent demands no term

premium.

The results in Figure ?? and Figure ?? illustrate the implications of assumptions ??, ?? and

??. Empirically we observe that the term structure of equity risk premia is decreasing in good

times and increasing in bad times. The figures above show that these results are qualitatively

obtained when the dynamics of risk aversion are positively autocorrelated, negatively correlated

with consumption growth shocks and in good times states of risk-seeking preferences are

possible.

2.4. MECHANISM

The mechanism driving the results of the previous section is best understood when first addressing

the term structure of equity risk. I provide the intuition for the class of models that allow time-

varying risk aversion. Models of time-varying risk aversion always generate an upward sloping

12The agent is assumed to always be risk averse over consumption. For the case of risk-neutral gain-loss utility
this results in a pricing effect on the first period which causes the shape to deviate slightly from a flat line.
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term structure of equity risk and I find that this is because they generally assume that

(i) risk aversion is negatively correlated with consumption growth,

(ii) risk aversion is mean reverting.

For risk-averse preferences these positive term risks translate to an increasing term structure of

equity risk premia, though, when allowing states of risk-seeking preferences, the agent likes

risks such that the positive term risks imply negative term premia.

Let me now provide a general framework to explain the intuition. Consider a model of time-

varying risk aversion that excludes states of risk-seeking preferences. For ease of discussion, let

γ denote the unconditional level of risk aversion and let zt denote its zero-mean time-varying part.

Consider the case where zt is larger than zero. The intuition for zt below zero directly follows.

Assume that there is a negative shock to consumption growth. This shock causes an increase

in risk aversion due to their assumed negative correlation (σz > 0). The left graph of Figure

?? illustrates the general result that prices decrease relative to dividends when risk aversion

increases (see for instance, ?). At this larger value of zt , the mean reversion (ρz > 0) causes an

increase of the expected future change of risk aversion compared to the lower mean reversion

of the previous period. This is shown in the middle graph of Figure ??, where the absolute

future change of risk aversion increases when moving further away from the unconditional

mean. In response to the negative shock to consumption growth, the expected future decrease in

risk aversion becomes larger. Such a strong expected future decrease in risk aversion implies

an immediate increase in prices. The mean reversion of risk aversion (ρz) combined with the

negative correlation assumption (σz > 0) therefore imply a counteracting (hedging) effect of the

economic growth shock, which reduces the riskiness of equity.

This counteracting effect is not the same for all maturities. More precisely, it is stronger

for short maturities. The reason for this is that mean reversion implies a larger absolute value

change at short horizons. The role that mean-reversion plays here is not straightforward.

Intuitively one might expect that mean reversion has stronger implications for long-horizons, as

for long-horizons risk aversion is expected to equal its unconditional mean. However, the crucial

determinant here are expected changes in risk aversion and not the level of risk aversion. Any

shift of risk aversion away from its unconditional mean implies, by means of mean reversion,

a strong change in absolute value for short maturities, though this change today barely effects

the expected changes far into the future. The right graph of Figure ?? provides an illustration
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FIGURE 4:
GENERAL ILLUSTRATIONS IN SUPPORT OF MAIN MECHANISM

of this effect. The graph shows the expected changes per maturity for a state that is close to

the unconditional mean and for a state that is far away from the unconditional mean. It follows

that, when moving from a state close to the unconditional mean to a state far away from the

unconditional mean, the one-period expected change in risk aversion increases more for short

maturities than for long maturities. The counteracting effect described above is thus stronger for

short maturities compared to long maturities.

We established that a negative shock to consumption growth is counteracted by an increase

in expected returns. Similarly, a positive shock to consumption growth is counteracted by a

decrease in expected returns. This is because when the currently value of zt is larger than zero, a

good consumption growth shock brings the level of risk aversion (zt) closer to the unconditional

mean. The absolute change of risk aversion induced by mean-reversion after the shock therefore

drops, which implies the expected future price increase to become smaller.

Combining the implications of the positive and the negative shock implies that economic

growth shocks are counteracted by future expected returns through the time-varying risk aversion.

This causes the riskiness of equity to decrease. Lastly, mean reversion implies a larger one-period

absolute value change for short maturities, therefore equity risk is lowest for short maturities

and increases by maturity. Overall this results in the upward sloping term structure of equity

risk. This finding is formalized in Proposition ??.

For zt smaller than zero the intuition is similar. After a negative shock to consumption

growth, the absolute value change of risk aversion decreases, and after a positive consumption

growth shock the future change in absolute value increases. This is the exact opposite of the case

where zt is larger than zero. However, the effect of mean reversion on prices also reverses. In this
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case mean reversion of zt implies that zt is expected to increase, which means prices are expected

to decrease. In sum the effect is similar as for the case where zt is above the unconditional mean

(zero), namely, equity risks increase by maturity.

Finally, the equity term risks are translated to equity term premia depending on the state of

risk preferences. The positive term risks are translated to positive term premia for risk-averse

preferences and to negative term premia for risk-seeking preferences. Models of time-varying

risk aversion generally do impose the first two assumptions on the dynamics, but do not allow

for states of risk-seeking preferences (see for instance, ??). In those models the term risks are

positive, though the term premia are also always positive. Proposition ?? formalizes the results

discussed above.

Proposition 2. Let the economy follow a standard ?-type endowment economy,

log
(

Ct+1

Ct

)
= gc +σcεc,t+1, log

(
Dt+1

Dt

)
= gd +σdεd,t+1, (14)

where εc,t+1 and εd,t+1 are positively correlated and are both I.I.D. and standard normally

distributed. Assume there exists an equilibrium (prices are finite) and let the bond term structure

be flat. Moreover, let risk aversion be time varying as indicated by state variable zt . High

values of zt imply states of risk-averse behavior and low values of zt imply risk-seeking behavior.

Finally, risk aversion is negatively correlated with consumption growth and is mean reverting

over time. This implies that

(i) the term structure of equity risk,
√

Var
(

R(n)
t+1

)
, is upward sloping for all values of zt ,

(ii) the term structure of equity risk premia, Et

[
R(n)

t+1

]
−R f ,t , is upward sloping in states of

risk-averse preferences and downward sloping in states of risk-seeking preferences.

Proof. See Appendix ??

3. SUPPORTING EVIDENCE

The asset pricing model proposed Section ?? incorporates two insights of experimental economics

that have not received a lot of attention in financial economics. The first addition, which is the

main driver of the cyclicality results of the model, is to allow states of risk-seeking preferences. In

such states, these risk-seeking preferences cause the premia of risks to reverse and thereby better

match the empirical findings on the cyclicality of the term structure of equity risk premia. In the
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section below, I provide a more detailed review of the experimental economics literature that

finds support for the existence of risk-seeking preferences.13 The second insight of experimental

economics that is incorporated in the model is that of domain-specific risk preferences. In other

words, the risk preference of an individual tends to be specific to the domain that can for instance

be in the domain of personal health, consumption or finances. This finding suggests that when

modeling investor behavior, we should separate the risk preferences concerning consumption

decisions from those concerning financial decisions. The previous section illustrated how this

finding helps to improve our theoretical models of investor behavior. Below I provide more

details on the findings supporting these assumptions.

3.1. RISK-SEEKING PREFERENCES

In financial economics, individuals are predominantly assumed to be averse to risks. This seems

intuitive given the size of the insurance market14 and the positive unconditional equity premium

for holding equity risks (?). However, there are also indications that individuals (at times) like

to hold risks. For instance, the results of ? are also suggestive of periods of a negative risk

premium and, more generally, there is a large interest in gambling,15 there is excessive risk

taking in tournaments (??), and there are many individuals active in the very volatility asset

class of cryptocurrencies (??). Regardless of the motivation behind the behavior of each of these

individuals, these observations suggestive of individuals being risk seeking in their decision

making.

The experimental economics literature has taken up the task to improve our understanding

of risk preferences by producing several risk elicitation methods. One of the most familiar

methods is the multiple price lists method by ?. Their work is a cornerstone in the literature one

of the reasons for this being that they were able to give participants relatively large monetary

payouts.16 These large monetary payouts allowed them to tackle the critique that small stake

decisions in experiments are not representative of real-world decisions (?).

In the experiments of ?, each participant chooses between two binary lotteries with different

13? find that preferences elicited from experiments with monetary payments are reliable for natural choices
when there is minimal background risk. However, in case the risks of the experiment correlate with other risks, the
elicited risk preferences are overstated (biased towards higher risk aversion).

14? report that, according to the Board of Governors of the Federal Reserve System, the market of life insurance
in the US alone was already worth $4068 billion in 2012.

15? reports that, according to the American Gambling Association, in 2007 in the US a total of 55 million people
made 376 million visits to the casinos.

16After the experiment, one of the gambles in the list was chosen at random and the participants received the
outcome of the gamble that they chose. In the high payoff experiments, the payoffs were multiplied by 90.
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payoffs and equal probabilities (10% chance to obtain the high payoff and 90% chance to obtain

the low payoff). Then, the participant chooses between two bets that are similar to the first

round where only the payoffs probabilities are adjusted by 10%. This sequence of choice tasks

goes on until the first payoff is guaranteed. By changing the probabilities of the payoffs, the

difference of the expected payoff of both lotteries changes, however, the second lottery is always

the more riskier choice. An overview of this choice experiment is given in Table ??, which is an

augmented version of Table 1 from ?.

TABLE 1:
MULTIPLE PRICE LISTS METHOD

Option A Option B
Expected payoff

difference
Volatility
Option A

Volatility
Option B

1/10 of $2.00, 9/10 of $1.60 1/10 of $3.85, 9/10 of $0.10 $1.17 $0.12 $1.13
2/10 of $2.00, 8/10 of $1.60 2/10 of $3.85, 8/10 of $0.10 $0.83 $0.16 $1.50
3/10 of $2.00, 7/10 of $1.60 3/10 of $3.85, 7/10 of $0.10 $0.50 $0.18 $1.72
4/10 of $2.00, 6/10 of $1.60 4/10 of $3.85, 6/10 of $0.10 $0.16 $0.20 $1.84
5/10 of $2.00, 5/10 of $1.60 5/10 of $3.85, 5/10 of $0.10 -$0.18 $0.20 $1.88
6/10 of $2.00, 4/10 of $1.60 6/10 of $3.85, 4/10 of $0.10 -$0.51 $0.20 $1.84
7/10 of $2.00, 3/10 of $1.60 7/10 of $3.85, 3/10 of $0.10 -$0.85 $0.18 $1.72
8/10 of $2.00, 2/10 of $1.60 8/10 of $3.85, 2/10 of $0.10 -$1.18 $0.16 $1.50
9/10 of $2.00, 1/10 of $1.60 9/10 of $3.85, 1/10 of $0.10 -$1.52 $0.12 $1.13
10/10 of $2.00, 0/10 of $1.60 10/10 of $3.85, 0/10 of $0.10 -$1.85 $0.00 $0.00

For each participant, the risk preference can be computed based on their preferred lotteries.

Specifically, the level of risk aversion is computed based on whether and when the participant

switches from option A to B. A risk-neutral individual would choose option A for the first

four lotteries and B for lottery 5 up to 10. In the extreme, an infinitely risk-averse person

would choose option A in the first task and at least for the last choice switch over to option

B. The switching behavior is therefore insightful about the risk preferences of the decision

maker. Individuals that make an early switch to option B (before the 5th decision) fall in the

domain of risk-seeking preferences.17 The analysis does not distinguish between the origins for

such risk-seeking behavior, but merely establishes that some individuals prefer a more risky bet

(higher volatility) even if it has a lower expected payoff.

The work of ? popularized the multiple price lists method, which lead others to perform

similar experiments (???). In addition to the multiple price lists method, also other approaches

have been performed to elicit risk preferences. Some of the most familiar methods are: the

balloon analogue risk task (?), the ?? method, the ? method, the adaptive lottery method (?), the

17The results excluded a few participants who switched more than once.
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marbles task method (?) and the Columbia card task (?).18 All methods excluding the BART

method have identified a substantial proportion of their participants as risk seeking (?).

Following these findings of risk-seeking preferences by the experimental literature, one may

wonder why such preferences have been rarely analyzed in asset pricing models. There can be

multiple reasons. First, models used to analyze asset prices have predominantly targeted the

equity premium puzzle of ? for which they need a substantial level of risk aversion. Consider

for example the optimal investment fraction of ?

E[Rt+1]−R f

γVar(Rt+1)
, (15)

where γ denotes the level of risk aversion. In the case where the representative agent invests

according to this fraction, it directly follows that risk-seeking preferences imply negative risk

premia. It is thus clear that considering risk-seeking preferences would not help a model to solve

the equity premium puzzle of ?.

Another reason may be the difficulty of incorporating risk-seeking preferences in an

equilibrium asset pricing model. Consider for instance CRRA-preferences over consumption.

These preferences come with the restriction that the level of risk aversion needs to be strictly

larger than one which excludes states of risk-seeking preferences. A problem that arises with

risk-seeking preferences is that for commonly used parameter values, there does not exist a

positive price that solves the pricing equation of the risky asset. To illustrate this, consider a

?-tree endowment economy, where for simplicity consumption and dividends are identical both

with growth gc and volatility σc, and where the representative agent has constant CRRA(γ)-

preferences and a subjective time discount factor, β . The equilibrium return on the risky asset

then follows from the following equilibrium price-dividend ratio19

Pt

Dt
=

1
1
β

e−(1−γ)gc− 1
2 σ2

c (1−γ)2 −1
. (16)

Positive prices are thus obtained if the denominator on the right of (??) is positive. The empirical

estimates of the consumption growth imply an annual growth of about 1.8% with an annualized

volatility of 2.7% (?). Assuming risk neutrality (γ= 0) the parameter of time discounting, β ,

can be at most 98.18% in order for the price dividend ratio to remain positive.20 Values of γ
18See ? or ? for an overview.
19For a derivation see Appendix ??.
20The results become stronger when separating dividends and consumption. Following the literature and assuming
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that imply risk-seeking preferences (γ < 0) rapidly reduce this upper-bound on the value of

time-discounting. Since the finance literature commonly assumes time discounting to equal 98%

annually, the model cannot have positive prices for risks seeking preferences under commonly

used parameters.

Combining the above, there seems to have been little incentive to incorporate the experimental

findings in asset-pricing models. This subsequently also carries over to the empirical literature

in finance that attempts to estimate risk preferences. Compared to the controlled setting of

experiments, it is difficult to estimate risk preferences empirically (?). Moreover, as there has

been little interest in risk-seeking preferences and it complicates financial models, risk-seeking

preferences have been excluded ex-ante from the estimation analysis. For instance, ? finds strong

dispersion in risk aversion among analysts, though, the findings are truncated to non-negative

risk aversion such that risk-seeking preferences are prohibited ex-ante.

3.2. DOMAIN-SPECIFIC RISK PREFERENCES

The findings in experimental economics illustrate the existence of risk-seeking preferences.

However, even if one wants to analyze such preferences in an asset pricing model, the previous

section showed that it is non-trivial to implement.

It turns out that another finding of experimental economics is particularly helpful for this

problem. Namely, the finding that risk preferences are not universal but are domain-specific

(?). The domains that have been shown to yield different risk taking behavior are: financial,

health/safety, recreational, ethical and social decisions (?). The differences in behavior per

domain seem to originate from differences in perceived riskiness. Even for similar risks,

individuals tend to perceive risks concerning their health to be a lot larger compared to financial

decisions.

The model in Section ?? is similar to the model of ? and ? that was originally proposed in ?.

The important aspect of the original model is that it enforces domain-specific risk preferences by

separating the preferences for financial decisions from those for consumption decisions.21 This

separation is done by assuming the investor obtains utility both from consumption and from

a dividend growth equal to consumption growth, increasing dividend volatility by five times and a correlation of 15%
with consumption growth, yields an upper-bound for time discounting of 97.33% for a risk-neutral representative
agent.

21The micro-foundation of this behavior is left out as it goes into a level of detail that is not appropriate for
the target of the analysis, which is the shape and cyclicality of the equity term structures. One could introduce
perceived riskiness through a preference probability distortion similar to probability weighting. By letting this be
domain-specific one would also obtain the domain-specific risk taking behavior.
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financial gains and losses. This separation is key for the model to have an equilibrium when

allowing states where the agent is risk seeking for financial decisions. Namely, by simultaneously

allowing a sufficient degree of risk aversion for consumption decisions, the agent is always

overall risk averse even in those states where he or she is risk-seeking for financial decisions.22

Adding gain-loss utility leads to a separation of the SDF into two terms, which is formally

stated in Proposition ??. This is convenient as it creates the opportunity to explain the equity

premium and the conditional equity term structures simultaneously. The intuition for this result

is as follows. The SDF is separated into two terms, one of which is linked to consumption utility

and the other is linked to gain-loss utility, Mt,t+1 = M(c)
t,t+1 +M(gl)

t,t+1. Now consider the common

result that the risk premium of an asset is equal to the covariance of the return with the SDF

multiplied with minus the risk-free interest rate. This implies for the excess return on the stock

and on a dividend strip with maturity n:

Et [Rt+1 −R f ,t ] =−R f ,t

{
Cov

(
M(c)

t,t+1,Rt+1
)
+Cov

(
M(gl)

t,t+1,Rt+1
)}

(17)

Et [R
(n)
t+1 −R f ,t ] =−R f ,t

{
Cov

(
M(c)

t,t+1,R
(n)
t+1
)
+Cov

(
M(gl)

t,t+1,R
(n)
t+1
)}

. (18)

The equations directly show that the separation of the stochastic discount factor yields one more

degree of freedom to fit the n+ 1 equations. A positive equity premium is generated when

the SDF has a negative correlation with consumption (and dividends), which is the case for

risk-averse preferences. Though for obtaining the downward sloping term structure of equity

risk premia, the SDF needs to have a positive correlation with dividends. By seperating the

SDF into two terms, both effects can hold simultaneously. Following the model of ?, the time

variation in risk preferences comes from gain-loss utility such that M(gl)
t,t+1 takes the role of the

SDF that generates the term premia. At the same time, M(c)
t,t+1 is time-invariant and can thus be

calibrated to match the equity premium. More specifically, the agent can become risk-seeking

over his or her gain-loss utility, while at the same time being risk-averse over consumption utility.

States where the investor is risk-seeking over gain-loss utility then induce a downward sloping

term structure of equity risk premia, whereas the unconditional risk aversion over consumption

utility induces a positive equity premium. The risk aversion over consumption utility counteracts

states where the investor is risk-seeking over his or her gain-loss utility, such that it needs to

22The proposed model is unique as it allows states where the representative agent is risk-seeking for all financial
payoffs. The model thereby differs from models that incorporate contect-dependent risk preferences that imply
risk-seeking solely over losses (and risk aversion over gains) as in prospect theory (?).
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be sufficiently large to be able to counteract states of risk-seeking gain-loss utility and thereby

allow for markets to clear.

4. EMPIRICAL IMPLICATIONS

4.1. MODEL CALIBRATION

In line with the literature I specify the model on a monthly frequency and use parameter values

of consumption and dividend growth that have been calibrated to match the US post-war data

as in ?. Both economic growth processes have the same expected growth, gc = gd = 0.0015

and dividend growth is substantially more volatile than consumption growth, σc = 0.0078 and

σd = 5σc. The shocks to consumption growth and dividend growth are positively correlated

ω = 0.15. Table ?? shows the annualized moments of economic growth compared to the

empirical estimates (?).23.

TABLE 2:
ANNUALIZED SIMULATED MOMENTS

Moments Data Model
E(∆c) 1.93 1.80
σ(∆c) 2.16 2.18
AC1(∆c) 0.45 0.23
E(∆d) 1.15 1.80
σ(∆d) 11.05 10.89
AC1(∆d) 0.21 0.23

The preference structure of the model consists of both consumption utility and gain-loss

utility. I use a standard calibration for the risk aversion over consumption by assuming γ= 5 as

well as the subjective time discount factor β = 0.998. For the sake of simplicity of the model,

I have chosen consumption utility to be CRRA, which is commonly used in ?-tree models.

This assumption does come at a cost. Namely, the model will face difficulty matching the

common moments of both the risky and the risk-free asset (?).24 The level of risk aversion over

consumption plays an important role in the model, as its value needs to be sufficiently high to

counteract states where the investor is risk seeking over gain-loss utility.

23In Table ??, lowercase letters describe logs
24Under the simplifying assumptions of the model, the model has difficulty to match the risk-free interest rate

and the level of equity premium, for common parameter values. These moments can potentially be matched by
adding features to the model that have shown to match these moments, like for adding example disaster risks (??),
long-run risks (?) or ?-preferences.
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In addition to the utility over consumption, I also introduced the utility over financial wealth

fluctuation or gain-loss utility. I follow ? and set the monthly autocorrelation of risk aversion to

99.13%, which equals 90% on an annual basis. Then, I choose to vary the risk aversion over

gain-loss utility through the gain domain such that κ1 = 1 and κ2 = 0. Appendix ?? shows the

results when choosing the loss domain instead, where the results for the equity term structure are

qualitatively unaffected. Furthermore, I choose σz and λ to match the empirical findings on the

equity term structure. For the baseline results I therefore use λ = 1 and σz =
0.12√

12
. This implies

that the agent is unconditionally risk neutral over gain-loss utility. Additionally the value of σz

implies that the unconditional distribution of zt is normal with mean zero and standard deviation

of 0.26. This implies moderate values of concavity and convexity of the gain-loss utility function

such that the model uses relatively conservative values of risk-seeking preferences to obtain the

main results. Table ?? provides an overview of the baseline parameters for a monthly frequency.

TABLE 3:
MODEL PARAMETERS

Fundamentals Symbol Value
Expected log-consumption growth gc 0.0015
Volatility of log-consumption growth σc 0.0078
Expected log-dividend growth gd 0.0015
Volatility of log-dividend growth σd 5σc
Correlation of log-consumption and log-dividend growth ω 0.15

Preferences Symbol Value
Time discount factor β 0.998
Risk aversion (consumption-utility) γ 5
Time-variation valuation of gains κ1 1
Time-variation valuation of losses κ2 0
Unconditional level of risk aversion (gain-loss utility) λ 1
Autocorrelation of risk aversion (gain-loss utility) ρz 0.9(1/12)

Variability of risk aversion (gain-loss utility) σz
0.12√

12

4.2. PRICING IMPLICATIONS FOR THE EQUITY TERM STRUCTURE

The numerical solution to the price-dividend ratio is shown in Figure ??, where the interval of

state variable zt covers +/- three standard deviations.

The price-dividend ratio decreases with zt , that is, it decreases with the degree of risk

aversion. This is in line with previous results that show for higher risk aversion the price-

dividend ratio is lower ??. Furthermore, the graph illustrates the importance of gain-loss utility

as can be observed from the significant changes in the price dividend ratio when varying the level
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FIGURE 5:
EQUILIBRIUM PRICE-DIVIDEND RATIO

of risk aversion. Considering the general pricing implications in the next section, it shows that

this variation in the price-dividend ratio translates to a large level of excess volatility on financial

markets, which is an empirical findings that is generally difficult for consumption-based asset

pricing models to produce.

Using the equilibrium price-dividend ratio function, the individual price-dividend ratios

of the dividend strips can be computed for all maturities. With the price-dividend ratios of

the dividend strips we can then compute the one-period holdings returns to construct the term

structure of equity risk premia. These term structures of equity risk premia conditional on

current state zt are shown in left graph of Figure ??.

The graph shows the premia demanded by the investor for different maturities for states of

risk-seeking preferences (zt < 0), risk-neutral preferences (zt = 0) and risk-averse preferences

(zt > 0). The shapes illustrate that the model predicts term premia to be changing up to a maturity

of about 60 years. Due to data limitations, empirically the long-maturity claim is commonly

proxied by the stock. As the average duration of the stock in the model is about 27 year, the

empirical analysis focuses on the relative short-end of the term structure. Moreover, the duration
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FIGURE 6:
SIMULATED EQUITY TERM RISKS AND TERM RISK PREMIA

of the stock is state-dependent and varies from 14 years to 38 years for respectively +/- three

standard deviations of the unconditional mean. The variation of the stocks duration across states

illustrates a problem for using the stock as long maturity claim in the definition of term premia

as is done in the empirical literature (??). Therefore, in the quantitative analysis below, I also

show the results when using long maturity dividend strips instead.

The differences between the slope of the equity term risk premia in the left graph of Figure

?? are best explained from the term structure of equity risk in the right graph. Namely, as

explained in Section ??, the term structure of equity risk is upward sloping for any value of

zt as the mechanism that drives the riskiness of short versus long maturity claims depends on

the dynamics of zt . However, when translating the term structure of equity risk to that of risk

premia, it is crucial whether the current state of zt implies risk-averse, risk-neutral or risk-seeking

preferences. In case of risk aversion, the agent dislikes risks and demands a larger premium

for the long maturity claims. Alternatively, a risk-neutral agent does not demand any premium

and a risk-seeking agent is willing to pay a premium, even more so for the risky long maturity

claims. Even though we are mostly interested in their slope, the level of the graphs is related to

the equity premium and will be discussed in more detail in the next section.

The results reported in the empirical literature are annualized ex post premia, hence, for a

direct comparison I simulate the model and compute the annualized ex post premia. To obtain

accurate estimates of the moments I perform monthly simulations of 1000 years and take the

average of these moments over 10 of such simulations. Figure ?? provides an overview of the
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simulated state variable zt . Which confirms that the state variable zt is normally distributed with

mean zero and variance σ2
x

1−ρ2
z

. Subsequently, I follow ? and define bad times as states where the

FIGURE 7:
SIMULATED STATE VARIABLE

price-dividend ratio is in the bottom quintile of its historical distribution. I perform ten monthly

simulations of 1000 years and take the average to obtain robust estimates of the term structures.

The resulting estimates of the unconditional and conditional term structure of equity risk premia

are shown in Figure ??.

The graphs in Figure ?? show the equity premia for various maturities and how these differ

between good and bad times. During bad times the agent is likely to be risk averse and thus

translates the upward sloping term structure of equity risk to an upward sloping term structure of

equity risk premia. Also, because bad times contain relatively many extreme realizations relative

to good times, the term premia are a lot larger in magnitude. In good times the preferences of

the agent are a mixture of risk-averse and risk-seeking preferences. Their relative frequency

determines the slope of the equity term structure in good times. ? compares the average return

of the short horizon claims (dividend strips from maturities of 1 up to 7 years) with that of the

stock and finds an upward slope in bad times of roughly 5% and a downward slope in good times

of roughly 4%. The equivalent values for the model are an upward slope of 6.49% in bad times
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FIGURE 8:
SIMULATED ANNUALIZED EQUITY TERM RISK PREMIA

and a downward slope of 1.29% in good times. Figure ?? also illustrates that the empirically

induced metric used by ? does not reveal the strong term premia and the cyclicality therein

that the model predicts. For the quantitative analysis below I therefore also consider maturities

beyond that of the stock.

? raise an important concern on the empirical findings of cyclicality found by ? as the main

findings are based on only 16 years of data. They argue that this relatively short time period

may provide biased results as the frequency of good and bad times during this specific time

period potentially deviates from the historical average. Although ? shows robustness of his

results using both option data and performing a cross-sectional analysis that allows him to use a

longer time period, I illustrate the concern raised by ?. To do so, I use the common procedure of

simulating the model on a time period equivalent to the data and comparing the data with the

outer percentiles of the simulations (???). Figure ?? in Appendix ?? illustrates that indeed such
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a time period may give very different results then the actual moments shown in Figure ??.25

The results up to now show the model is able match the qualitative empirical results on the

cyclicality of the equity term structure. Next, I analyze whether the predictions of the model are

also quantitatively in line with the empirical findings. For this quantitative comparison I perform

the following regressions,

Rlong
t,t+12 −Rshort

t,t+12 = α1 +β1(pt −dt)+ εt,t+12, (19)

sgn
(
Rlong

t,t+12 −Rshort
t,t+12

)
= α2 +β2(pt −dt)+ εt,t+12, (20)

where a significant negative value of β1 in (??) shows the countercyclicality of the term premium.

This regression does however not distinguish between upward and downward slopes. For a

quantitative analysis of the inversion of the slope, I also perform the regression in (??), where a

negative value of β2 implies the inversion of the slope of the equity term structure.

? shows the empirical results for (??) when approximating the term premium by the

difference of the stock and the two year dividend strip. However, as the model shows, the equity

term structure can be substantially upward sloping beyond the maturity of the stock. In such

a case the term premium is more accurately estimated using longer maturity equity claims. I

therefore consider the specification used in ? but also analyze the results when using either the

10 year or the 20 year dividend strip as the long maturity claim. The results of both regressions

are in Table ??.

TABLE 4:
REGRESSION ESTIMATES

Data - β1 Model - β1 Model - β2

Stock -0.50 -0.01 -0.09
(-3.28) (-1.79) (-3.22)

10-years - -0.05 -0.43
(-17.43) (-13.97)

20-years - -0.10 -0.42
(-16.62) (-13.32)

Results show the estimated value of β1 of (??) and β2 of (??)
where the short maturity asset is the two-year dividend strip
and the long maturity asset is denoted in the first column. The
t-statistics are within parentheses. The empirical estimates
are taken from ?, who does not report the empirical values
of (??). The model is simulated 100 times at a monthly
frequency for 10.000 years.

25Figure ?? in Appendix ?? shows the outer percentiles of simulations of 1000 years instead and illustrates that
the estimated term premia shown in Figure ?? are sizable and different from zero.
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The results show that for long maturity claims, the term premium is significantly countercyclical.

However, when using the stock as the long maturity claim the results are of the same sign, though,

no longer significant. This result highlights that the term premium estimated by the difference of

the stock with the two year dividend strip gives a relatively poor estimate of the term premium.

The longer maturity claims provide more power to test the cyclicality. Additionally, the estimates

of (??) show that the term premium is significantly inverting over the business cycle and thereby

show the model also quantitatively matches the empirical findings.

4.3. GENERAL PRICING IMPLICATIONS

The previous section illustrated the model implications for the equity term structures. Mind that

the value of the stock is obtained by aggregating all dividend strips and thereby the previous

results about the dividend strips carry over to that of the stock. Let us therefore now consider

the implications the model has for the general stock market moments.
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FIGURE 9:
MONTHLY EQUILIBRIUM MOMENTS

Figure ?? displays the equity premium and volatility of the stock conditional on state zt .

The left panel shows that the risk premium is increasing with risk aversion, and for low values

of zt , which imply risk-seeking preferences, the equity premium becomes negative. The equity

premium is low on average because of the CRRA consumption utility. Specifically, due to CRRA

consumption utility the risk free interest rate, R f , is relatively high which causes a relatively

small equity premium. The graph does however show that there is substantial variation of the

monthly equity premium, which again highlights the relevance of gain-loss utility in explaining

financial moments. The strong time variation of the model is also illustrated in the right graph
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of Figure ??, which shows that the monthly volatility induced by the model is relatively large.

The annualized moments obtained from simulating the model are shown in Table ??.26 The

empirical estimates are taken from ?, lower-case letters reflect logs.

TABLE 5:
ANNUALIZED SIMULATED MOMENTS

Moments Data Model
E(re) 5.47 0.63
σ(re) 20.17 30.12
AC1(re) 0.02 -0.05
E(r f ) 0.56 11.06
E(p−d) 3.36 2.91
σ(p−d) 0.45 0.29
AC1(p−d) 0.87 0.72

The results show indeed that the model with utility over financial wealth fluctuations is able

to generate a large degree of excess volatility. Also, the price-dividend ratio and its variation

are both relatively high compared to other asset pricing models (see ?). The reason why this

does not translate to a strong equity premium is because of the assumed CRRA-preferences over

consumption. A risk aversion over consumption of γ= 5 leads to an excessive risk-free interest

rate such that the equity premium is only slightly positive even-though the expected return on

equity is fairly large. This is surprising considering the risk tolerance of the gain-loss utility

function. As the target of the model is explaining the term premia, I do not aim to explain the

risk free rate. However, one could extend the model by models that have shown to match these

moments, like, disaster risks (??), long-run risks (?) or ?-preferences.27 The sensitivity analysis

will show how, for different values of for instance λ and σz, the equity premium may change.

In addition to the moments in Table ??, I analyze the predictability caused by the model.

The empirical literature finds that the log price-dividend ratio predicting excess stock returns

(??), whereas dividend growth or real interest rates do not. I therefore follow the approach of

? and analyze the predictability of excess returns with the predictability of consumption and

dividend growth. The results are obtained from simulations and shown in Table ??.28

26I follow the approach of ? and simulate time-series of 78 years, which is equivalent to that of the data. To
initialize the state space the model is pre-run for 10 years. The moments are estimated for each simulated trajectory
for 100,000 simulations. The median values of these moment estimates over all trajectories are shown in Table ??.

27?-preferences seem particularly useful in this regard as they disconnect the risk-free interest rate from the level
of risk aversion over consumption. Incorporating such preferences would strongly complicate the analysis and is
thus left for further research.

28Again, I perform simulations of 78 years and perform the regressions per trajectory. The median over 100.000
simulated trajectories are given in Table ??. Regressions are on annual frequency. The last column shows the
percentage of estimated R2’s in the simulations that are below the corresponding empirical value.
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TABLE 6:
RETURN AND CASHFLOW PREDICTABILITY

β̂ t R̂2 β̂ t R̂2 %(R̂2)
data data data model model model model

∑
J
j=1(rm,t+ j − r f ,t+ j) = α +β (pt −dt)+ εt+ j

1 year -0.093 -1.803 0.044 0.063 0.559 0.004 0.998
3 years -0.264 -3.231 0.170 -0.368 -1.913 0.048 0.980
5 years -0.413 -3.781 0.269 -0.721 -3.000 0.122 0.924

∑
J
j=1(∆ct+ j) = α +β (pt −dt)+ εt+ j

1 year 0.011 1.586 0.060 0.001 0.125 0.009 0.928
3 years 0.010 0.588 0.013 -0.001 -0.061 0.020 0.417
5 years -0.001 -0.060 0.000 -0.004 -0.147 0.030 0.000

∑
J
j=1(∆dt+ j) = α +β (pt −dt)+ εt+ j

1 year 0.074 1.977 0.092 0.039 0.803 0.010 0.985
3 years 0.107 1.330 0.059 -0.046 -0.474 0.015 0.828
5 years 0.089 1.214 0.039 -0.128 -1.017 0.029 0.566

Table ?? reveals the strong counter-cyclical nature of the model that matches the data

especially well for relatively long maturities. With respect to explaining return predictability the

model is doing well as the log price-dividend ratio predicts the excess market return on long

horizons and does this with the correct sign. The model is thus able to match the substantial

predictability that is observed empirically without assuming predictability of cash flows, which

is not satisfied by the models addressing the cyclicality of the equity term structure by adapting

the belief process (????). Overall, the model cannot be rejected based on the comparison of the

empirical R2 to the estimates of the simulations.

4.4. SENSITIVITY ANALYSIS

The baseline parameters are able to generate the empirical findings on the cyclicality of the

term structure of equity risk premia. This section investigates how the predictions of the model

depend on the preference parameters. The economic parameters (gc,gd,σc,σd) are set equal to

values commonly used to match the empirical moments of consumption and dividend growth

and are therefore not of interest for this sensitivity analysis. The interest goes to all previously

mentioned asset pricing implications. Appendix ?? provides overview tables that includes all

these results for various parameter specifications.

First consider the unconditional level of risk aversion over the gain-loss utility, which is

denoted by λ . The results are shown in Table ??. A larger value for λ , implying a higher risk

31



aversion over gain-loss utility, causes a shift in the realized levels of risk aversion. The frequency

of risk-seeking states drops such that the average slope in good times moves more towards the

states of risk-averse behavior. This effect causes the slope of the equity term structure in good

times to become less negative. Also the slope of the equity term structure in bad times drops.

This is because the volatility of zt is now lower relative to the level of risk aversion. This change

implies less relative variation in the level of risk aversion over gain-loss utility such that the term

premum drop in magnitude also in bad times. Although a larger value of λ works against the

term structure results, it does cause the equity premium and volatility of the stock to move closer

to their empirical estimates. This result is in line with that of ?, who find that adding gain-loss

utility with loss averse preferences helps to explain the equity premium puzzle.

Now consider the degree of time variation of risk aversion over gain-loss utility, controlled

by σz. Table ?? replicates the results when adapting the degree of time-variation. The results

show that a larger variability of risk aversion over gain-loss utility helps to match the magnitude

of the slopes of the equity term structures. When the dividend growth shock has a stronger effect

on changes in risk aversion, future risks increase such that for a given value of risk aversion the

term premia become larger. Additionally, increasing the variation in risk aversion also causes

the level of stock volatility to increase to a fairly large value.

In the specification of the gain-loss utility function I have chosen to vary risk preferences

through the gain domain by setting κ1 equal to one. Table ?? shows the results when κ2 is

nonzero instead. The regression results show that the baseline specification where risk aversion

of gain-loss utility changes through the gain-domain (κ2 = 0) leads to a larger cyclicality of the

equity term structure. Table ??, however, also shows that the results give the same qualitative

predictions when varying risk aversion through κ2 instead of κ1.

Lastly, I consider alternative values of risk aversion over consumption utility, γ. The level

of risk aversion relative to the dynamics of the risk preferences of gain-loss utility is important

for the existence of an equilibrium. The results for different values of γ are in Table ??. Larger

values of γ cause the overall risk aversion to increase such that, under the CRRA-specification

of consumption utility used, both the return on equity and the risk-free interest rate raise

substantially. Both effects seem to cancel eachother out when considering the equity premium.

The risk-free interest rate and the equity premium can potentially be matched adding features to

the model that have shown to match these moments, like for adding example disaster risks (??),

long-run risks (?) or ?-preferences.
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In sum, I find that the results on the term premia provide insights in the preferences

parameters used. The calibration of the model to the empirical observations of the term premia

thereby illustrate the relevant values for the parameters. Although the model is motivated

qualitatively on experimental findings, future work should estimate the parameters used to test

the calibrated values.

5. CONCLUSION

In this paper I explain the role of time variation of risk aversion on the cyclicality of the slope

of the equity term structure. I provide three conditions that collectively generate the empirical

observed cyclicality, namely, that risk aversion is negatively correlated with consumption growth

shocks; risk aversion is mean-reverting; and the agent can become risk seeking in some states of

the world. I contribute to the theoretical asset pricing literature by explaining the mechanism

behind models of time-varying risk aversion for the shape of the equity term structure.

Secondly, I contribute to the literature by proposing a parsimonious model of time-varying

risk aversion that allows for states of risk seeking preferences. By extending the equilibrium

model of ?, this model is the first equilibrium model that allows states of risk-seeking preferences

that are independent of payoff. The results of the model illustrate the importance of incorporating

findings in experimental economics to models in financial economics. Specifically, this model is

able to match the recent puzzling empirical findings on the equity term structure by allowing the

possibility of having risk seeking preferences and of having domain-specific risk preferences

(where domains refer to, for instance, health, consumption and financial decisions). The domain-

specific risk preferences allow the agent to have states of risk-seeking preferences over his

financing wealth, whereas he is always risk averse over his consumption decisions.

Thirdly, by deriving the stochastic discount factor from preferences and beliefs, this result

can potentially help to understand the exogenous SDFs that have been proposed in the literature

to generate the term structure results. Lastly, I contribute to the empirical asset pricing literature

by providing a model that can potentially be used to estimate risk-seeking preferences on the

aggregate market.
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APPENDICES

A. THE EQUITY TERM STRUCTURES

The term structure of equity risk premia is defined as the premia on one-period holding returns

of dividend strips (??). For a formal definition I follow the procedure first introduced in ?. Let

P(n)
t be the current price of a dividend strip that pays a one-time dividend, namely, the dividend

in n periods from time t. Let there exist a SDF, Mt,t+n, that determines the price at time t of an

asset with payoffs n periods from t. Then, the price at current time t of a dividend strip with

maturity n equals

P(n)
t = Et

[
Mt,t+nDt+n

]
, (A.1)

where the price follows from an conditional expectation, such that it depends on the current state

variable zt . Subsequently, we can rewrite (??) using the law of iterative expectations

P(n)
t = Et

[
Mt,t+1P(n−1)

t+1
]
, (A.2)

which in turn can be written as,

P(n)
t

Dt
= Et

[
Mt,t+1

P(n−1)
t+1

Dt+1

Dt+1

Dt

]
. (A.3)

This is a convenient way of computing the prices of dividend strips as this expression can be

solved iteratively. A dividend strip with maturity n = 0 is an asset that pays today’s dividend

and therefore its price equals the current dividend, P(0)
t = Dt . Following the iterative pricing

equation in (??), the price-dividend ratio for n = 1 equals

P(1)
t

Dt
= Et

[
Mt,t+1

P(0)
t+1

Dt+1

Dt+1

Dt

]
= Et

[
Mt,t+1

Dt+1

Dt

]
. (A.4)

For subsequent maturities one uses (??) and iterates forward using the previously found price-

dividend ratio. Following this procedure one obtains the price-dividend ratios for all maturities n,

each as a function of current state zt . Subsequently, from these price-dividend functions one can

compute the one-period holding returns of each dividend strip.29 This is the return the investor

29In the literature also hold-to-maturity returns are considered for the equity term structure (???). The risk
premia of the hold-to-maturity returns are however not the same as the one-period holding returns. The reason

34



obtains from holding a dividend strip of maturity n from period t to period t +1:

R(n)
t+1 =

P(n−1)
t+1

P(n)
t

. (A.5)

The term structure of equity risk is the variance of these holding-period returns plotted against

maturity n and is thus defined as

√
Var
(
R(n)

t+1
)
, (A.6)

and the term structure of equity risk premia is the risk premium of these one-period holding

returns plotted against maturity n:

Et
[
R(n)

t+1
]
−R f ,t =−R f ,t Covt

(
Mt,t+1,

P(n−1)
t+1

P(n)
t

)
. (A.7)

B. PROOFS

Derivation of Equation ??. Consumption and dividends are identical and follow a log normal

growth process

log
(

Dt+1

Dt

)
= log

(
Ct+1

Ct

)
= gc +σcεc,t+1. (B.1)

The representative agent has CRRA(γ) utility, her subjective time discount factor is denoted

by β and she maximizes her expected lifetime by optimally choosing consumption (Ct) and

the proportion of wealth (Wt) that she wants to invest in the risky asset (αt). She then faces the

following maximization problem:

max
{Ct ,αt}

E
[

∞

∑
t=0

β
tu(Ct)

]
(B.2)

Wt+1 = (Wt −Ct)
{

R f ,t +αt(Rt+1 −R f ,t)
}

(B.3)

for using hold-to-maturity returns is that they provide a clear link to equity yields, which is the main focus of
papers using such returns. However, hold-to-maturity returns are less convenient for determining the cyclicality of
the equity term structure, because the resulting returns are averages over different maturities and thereby mix the
maturity specific equity premia, which also complicates the interpretation of the cyclicality or risk premia. For this
reason I follow ? and use one-period holding returns.
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For this framework the SDF, Mt,t+1, is commonly known to equal

Mt,t+1 = β
u′(Ct+1)

u′(Ct)
= βe−γ(gc+σcεc,t+1) (B.4)

Then, the equilibrium return on the risky asset follows from,

1 = E
[
Mt,t+1Rt+1

]
. (B.5)

Plugging in the expression of the SDF and rewriting the return in terms of price dividend ratios,

gives

1 = E
[
e−γ(gc+σcεc,t+1)

1+Pt+1/Dt+1

Pt/Dt
egc+σcεc,t+1

]
(B.6)

Now, as there is no state variable, the model is I.I.D. over time, such that the price-dividend ratio

is constant. We can therefore rewrite (??) as

Pt

Dt
=

1
1
β

e−(1−γ)gc− 1
2 σ2

c (1−γ)2 −1
. (B.7)

This completes the derivation.

Proof of Proposition ??. It is convenient to seperate the proposition in several steps. First we

analyze the term structure of equity risk and subsequently the term structure of equity risk

premia. We do this first for the risk-averse state and subsequently for the risk-seeking state. First

consider the implications of the assumptions of the proposition.

1. The price to dividend ratio of the stock is finite in equilibrium. Therefore, the prices of

the dividend strip assets should all converge to zero when the maturity goes to infinity.

Given that P(0)
t
Dt

(zt) = 1, we have that P(n)
t
Dt

(zt) is smaller than one for all n and zt .

2. In a risk-averse state, the stochastic discount factor, Mt,t+1, has the following characteristics,

∂Mt,t+1

∂εd,t+1
< 0,

∂ 2Mt,t+1

∂εd,t+1∂ zt
< 0,

∂ 3Mt,t+1

∂εd,t+1∂ z2
t
< 0 (B.8)

3. In a risk-seeking state, the stochastic discount factor, Mt,t+1, has the following characteristics,

∂Mt,t+1

∂εd,t+1
> 0,

∂ 2Mt,t+1

∂εd,t+1∂ zt
< 0,

∂ 3Mt,t+1

∂εc,t+1∂ z2
t
< 0 (B.9)
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First we consider the states of risk-averse preferences. For n = 0 we have that P(n)
t
Dt

= 1 for all zt .

Then, for n = 1 we have,

P(1)
t

Dt
= E

[
Mt,t+1

Dt+1

Dt

]
=

1
R f ,t

egd+
1
2 σ2

d +Cov
(

Mt,t+1,
Dt+1

Dt

)
(B.10)

The first term is independent of zt . The second term is driven by the correlation with the

consumption growth shock. The dividend growth is positively correlated with εc,t+1. The

stochastic discount factor is negatively correlated with εd,t+1 and this correlation is stronger for

larger values of zt according to (??). We thus have that the second term in (??) is negative and

concave down decreasing in zt .

Next consider n = 2,

P(2)
t

Dt
= E

[
Mt,t+1

Dt+1

Dt

]
E

[
P(1)

t+1

Dt+1

]
+Cov

(
Mt,t+1

Dt+1

Dt
,

P(1)
t+1

Dt+1

)
(B.11)

First consider the product term. The first term of the product is exactly equal to (??). It is

therefore lower than 1 and a concavely decreasing function of zt . The second part of the

expectation is very similar. However, due to the dynamics of zt the expectation is rotated such

that it is less strongly decreasing in zt compared to (??). Combining both effects gives that their

product is more strongly decreasing in zt . Due to both functions being between zero and one,

there product is also lower compared to the individual functions. Then consider the covariance

term. The first part of the covariance is positively correlated with εd,t+1 for reasonable risk

aversion. Empirically the volatility of consumption growth is about 4.5 times smaller and the

correlation is 15%. Considering standard CRRA utility the first term is negatively correlated

with εd,t+1 for risk aversion up to 30. The second term of the covariance is the previous result
P(1)

t
Dt

(zt) when zt is replaced by zt+1. The price-dividend function is concave down decreasing in

zt and zt+1 is a decreasing function of εd,t+1. Combined this gives a positive correlation with

εd,t+1 that is stronger for large zt . Overall the covariance term is therefore positive and concave

down decreasing in zt . The price dividend ratio of maturity n = 2 is therefore lower than that of

n = 1 and more strongly decreasing in zt .

For larger values of n, the results of n = 2 iterate forward such that the price dividend ratio

of dividend strips with longer maturities will all be lower than the ratio of the maturity before
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that and are more strongly decreasing in zt . Now consider the term structure of equity risk,

1

P(n)
t /Dt

√√√√Var
(

P(n−1)
t+1

Dt+1

Dt+1

Dt

)
(B.12)

First consider the variance term. The price dividend ratio function is more decreasing in zt for

larger values of n. As zt+1 is decreasing in εd,t+1 we have that
P(n−1)

t+1
Dt+1

is positively correlated with

εd,t+1 and more strongly for larger n. As dividend growth is by definition positively correlated

with εd,t+1, the variance term increases with n. Then, the price dividend ratio function decreases

in level when n increases. Therefore, the fraction in front on the squareroot decreases with n

such that the term structure of equity risk increases with n.

For the result above we used that the investor has risk averse preferences. What happens in

case of risk seeking preferences? For risk-seeking preferences we have that ∂Mt,t+1
∂εd,t+1

> 0. For (??)

this implies that the covariance term is now positive instead of negative. Under the assumption

of market equilibrium, the price dividend ratio must decrease and thus be lower than one. The

conditions under which an equilibrium are obtained are however stricter than for the risk averse

states. Similar to the previous case, the covariance term is still decreasing with zt . We thus

obtain similar results as for risk-averse preferences, namely, the price dividend ratio is concavely

decreasing in zt and lower than one. It immediately follows that the results of other maturities

are also qualitatively similar and thus the term structure of equity risk in (??) is also increasing

for risk-seeking preferences.

Next we are interested in the term structure of equity risk premia

Et

[
R(n)

t+1

]
−R f ,t =−R f ,tCov

(
Mt,t+1,

P(n−1)
t+1

P(n)
t

)
. (B.13)

Decomposing the return in the price-dividend ratios and dividend growth gives,

Et
[
R(n)

t+1
]
−R f ,t =−R f ,t

1

P(n)
t /Dt

Covt

(
Mt,t+1,

P(n−1)
t+1

Dt+1

Dt+1

Dt

)
. (B.14)

First, the risk-free interest rate is positive. Then, recall that the price dividend ratio decreases

with maturity and thus the covariance is multiplied with a term that increases with maturity

n. The second term of the covariance is positively correlated with dividend risk εd,t+1. This

is by definition for dividend growth. Additionally, the price dividend ratio is decreasing in
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zt+1, though zt+1 is decreasing in εd,t+1. This term is thus also positively correlated with εd,t+1.

Overall, the second term of the covariance is positively correlated with εd,t+1 and more strongly

so for larger n. On the other hand, the SDF is negatively correlated with εd,t+1 in risk-seeking

states and positively correlated with εd,t+1 in risk-averse states. The term structure of equity risk

premia is thus downward sloping for states of risk-averse preferences and upward sloping for

states of risk-seeking preferences.

Proof of Proposition ??. We can rewrite the objective function in (??) recursively,

Bt(Rt+1,Wt)≡ max
Ct ,αt

{
u(Ct)+βEt

[
αt(Wt −Ct)u′(C̄t)v

(
Rt+1,zt

)
+Bt+1(Rt+2,Wt+1)︸ ︷︷ ︸

define this as ⋆

]}
(B.15)

By the envelope theorem we have that the derivative of next periods payoff with respect to

wealth tomorrow equals the derivative of today’s utility with respect to consumption Ct . Note

that ⋆ is next periods payoff, then, the envelope theorem implies,

∂⋆

∂Wt+1
=

∂

{
αt(Wt −Ct)u′(C̄t)v

(
Rt+1,zt

)
+Bt+1(Rt+2,Wt+1)

}
∂Wt+1

= u′(Ct+1) (B.16)

which is used in the derivations below. It is convenient to first optimize the value function in

(??) with respect to consumption αt . This gives,

βEt

[
∂⋆

∂Wt+1

∂Wt+1

∂αt
+

∂⋆

∂αt

]
= 0 (B.17)

βEt
[
u′(Ct+1)(Wt −Ct)(Rt+1 −R f )+(Wt −Ct)u′(Ct)v(Rt+1,zt)

]
= 0 (B.18)

Et

[
u′(Ct+1)

u′(Ct)
(Rt+1 −R f )+ v(Rt+1,zt)

]
= 0 (B.19)

Let us now consider the consumption choice. Optimizing (??) with respect to Ct gives,

u′(Ct)+βEt

[
∂⋆

∂Wt+1

∂Wt+1

∂Ct
+

∂⋆

∂Ct

]
= 0. (B.20)

Plugging in the results of the envelope theorem of (??) into (??) gives,

u′(Ct)−βEt
[
u′(Ct+1)

(
R f ,t +αt(Rt+1 −R f ,t)

)
+αtu′(Ct)v(Rt+1,zt)

]
= 0 (B.21)

βEt

[
u′(Ct+1)

u′(Ct)
R f ,t

]
+αtβEt

[
u′(Ct+1)

u′(Ct)
(Rt+1 −R f ,t)+ v(Rt+1,zt)

]
= 1. (B.22)

Note that the second term of (??) equals (??) and thus is equals zero. It immediately follows
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from (??) that the risk-free interest rate equals

R f ,t =
1
β

(
Et

[
u′(Ct+1)

u′(Ct)

])−1

=
1
β

eγgc− 1
2γ

2σ2
c , (B.23)

which is actually independent of the state variable at time t. Combining the results of (??) and

(??) reveals the SDF. The SDF should price this excess return as well as the risk-free interest

rate. This is achieved by the following function,

Mt,t+1 =

(Ct+1
Ct

)−γ
+ v(Rt+1,zt)

Rt+1−R f

E
[(Ct+1

Ct

)−γ
+ v(Rt+1,zt)

Rt+1−R f

]
R f

, (B.24)

which is always positive and is thus a valid SDF. Finally, using (??), the pricing equation of

excess returns in (??) can be simplified algebraically to

βegd−γgc+
1
2γ

2σ2
c (1−ω2)Et

[
1+ f (zt+1)

f (zt)
e(σd−γσcω)εd,t+1 + v(Rt+1,zt)

]
= 1 (B.25)
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C. SUPPORTING FIGURES & TABLES
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FIGURE C.1:
TERM STRUCTURES USING SIMULATIONS OF 16 YEARS.

Estimates of the conditional and unconditional term structure based on 16 years of data for 1000 simulations.
The dotted lines show the 10th and 90th percentile of the simulated trajectories. The results show that for 16 years
of data the realized conditional term structure and unconditional term structure can be very different.
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FIGURE C.2:
CONDITIONAL AND UNCONDITIONAL TERM STRUCTURES

Estimates of the conditional and unconditional term structure based on 1000 years of data for 50 simulations.
The dotted lines show the 10th and 90th percentile of the simulated trajectories.
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TABLE C.1:
SENSITIVITY ANALYSIS - λ

Stock Moments E[R−R(1:84)] Regressions
E[re] σ(re) AC1(re) E[r f ] E[p−d] σ(p−d) AC1(p−d) Bad Times Good Times Unconditional β

(long,2y)
1 β

(long,2y)
2

Data 5.47 20.17 0.02 0.56 3.36 0.45 0.87 5.00 -4.00 -0.87
λ = 1

Mean 0.63 30.35 -0.06 11.06 2.90 0.30 0.70 6.49 -1.29 0.15 Stock -0.01
(-1.79)

-0.09
(-3.35)

Median 0.56 30.21 -0.07 11.06 2.90 0.29 0.72 5.52 -1.50 -0.04 10-years -0.05
(-17.80)

-0.45
(-14.54)

p10 -1.24 26.70 -0.20 11.06 2.70 0.23 0.55 -0.87 -4.12 -2.44 20-years -0.10
(-16.89)

-0.43
(-13.77)

p90 2.62 34.17 0.08 11.06 3.10 0.37 0.83 15.06 1.70 2.96
λ = 1.2

Mean 3.96 26.54 -0.06 11.06 2.36 0.22 0.64 4.74 0.05 0.92 Stock 0.04
(12.12)

0.08
(3.00)

Median 3.91 26.46 -0.06 11.06 2.36 0.22 0.66 4.22 -0.10 0.80 10-years -0.09
(-19.87)

-0.62
(-14.70)

p10 2.38 23.53 -0.20 11.06 2.22 0.18 0.47 0.39 -1.71 -0.68 20-years -0.21
(-20.70)

-0.64
(-15.19)

p90 5.63 29.66 0.08 11.06 2.50 0.27 0.78 9.96 1.93 2.61
λ = 1.4

Mean 6.72 25.25 -0.06 11.06 2.10 0.19 0.60 4.00 0.60 1.23 Stock 0.07
(25.57)

0.07
(4.32)

Median 6.66 25.16 -0.07 11.06 2.10 0.19 0.62 3.62 0.50 1.15 10-years -0.14
(-21.54)

-0.73
(-14.79)

p10 5.23 22.44 -0.20 11.06 1.98 0.16 0.42 0.84 -0.70 0.04 20-years -0.32
(-20.06)

-0.69
(-13.53)

p90 8.27 28.16 0.08 11.06 2.22 0.24 0.75 7.82 2.01 2.45

The stock moments are derived from 1,000 simulations of 78 years, the term structure moments use 1,000 simulations of 16
years and the regression use 100 simulations of 10,000 years. The data estimates are from ? and ? respectively. R(1:84) denotes
the average of the dividend strips up to a maturity of seven years. The regression results show the estimates of (??) and (??)
with the t-statistics between brackets. The baseline results are those for λ = 1.

TABLE C.2:
SENSITIVITY ANALYSIS - σz

Stock Moments E[R−R(1:84)] Regressions
E[re] σ(re) AC1(re) E[r f ] E[p−d] σ(p−d) AC1(p−d) Bad Times Good Times Unconditional β

(long,2y)
1 β

(long,2y)
2

Data 5.47 20.17 0.02 0.56 3.36 0.45 0.87 5.00 -4.00 -0.87
σz =

0.10√
12

Mean 0.38 25.02 -0.06 11.06 2.73 0.21 0.63 3.72 -0.78 0.05 Stock 0.02
(4.79)

0.04
(0.03)

Median 0.33 24.97 -0.06 11.06 2.73 0.21 0.64 3.24 -0.85 -0.04 10-years -0.05
(-14.66)

-0.55
(-11.97)

p10 -1.41 22.21 -0.20 11.06 2.60 0.17 0.45 -0.61 -2.55 -1.53 20-years -0.09
(-14.32)

-0.53
(-11.65)

p90 2.20 27.97 0.08 11.06 2.87 0.26 0.77 8.84 1.13 1.75
σz =

0.12√
12

Mean 0.63 30.35 -0.06 11.06 2.90 0.30 0.70 6.49 -1.29 0.15 Stock -0.01
(-1.79)

-0.09
(-3.35)

Median 0.56 30.21 -0.07 11.06 2.90 0.29 0.72 5.52 -1.50 -0.04 10-years -0.05
(-17.80)

-0.45
(-14.54)

p10 -1.24 26.70 -0.20 11.06 2.70 0.23 0.55 -0.87 -4.12 -2.44 20-years -0.10
(-16.89)

-0.43
(-13.77)

p90 2.62 34.17 0.08 11.06 3.10 0.37 0.83 15.06 1.70 2.96
σz =

0.14√
12

Mean 1.72 46.86 -0.05 11.06 3.95 0.55 0.78 17.11 -2.70 0.95 Stock -0.07
(-12.76)

-0.18
(-10.93)

Median 1.60 46.48 -0.06 11.06 3.96 0.53 0.79 14.44 -2.99 0.50 10-years -0.05
(-21.99)

-0.28
(-17.93)

p10 -1.20 39.56 -0.19 11.06 3.58 0.41 0.65 -2.36 -9.13 -5.12 20-years -0.09
(-19.73)

-0.26
(-16.39)

p90 4.79 54.89 0.09 11.06 4.33 0.70 0.87 40.52 3.77 7.51

The stock moments are derived from 1,000 simulations of 78 years, the term structure moments use 1,000 simulations of 16
years and the regression use 100 simulations of 10,000 years. The data estimates are from ? and ? respectively. R(1:84) denotes
the average of the dividend strips up to a maturity of seven years. The regression results show the estimates of (??) and (??)
with the t-statistics between brackets. The baseline results are those for σz =

0.12√
12

.
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TABLE C.3:
SENSITIVITY ANALYSIS - κ1,κ2

Stock Moments E[R−R(1:84)] Regressions
E[re] σ(re) AC1(re) E[r f ] E[p−d] σ(p−d) AC1(p−d) Bad Times Good Times Unconditional β

(long,2y)
1 β

(long,2y)
2

Data 5.47 20.17 0.02 0.56 3.36 0.45 0.87 5.00 -4.00 -0.87
κ1 = 1 and κ2 = 0

Mean 0.63 30.35 -0.06 11.06 2.90 0.30 0.70 6.49 -1.29 0.15 Stock -0.01
(-1.79)

-0.09
(-3.35)

Median 0.56 30.21 -0.07 11.06 2.90 0.29 0.72 5.52 -1.50 -0.04 10-years -0.05
(-17.80)

-0.45
(-14.54)

p10 -1.24 26.70 -0.20 11.06 2.70 0.23 0.55 -0.87 -4.12 -2.44 20-years -0.10
(-16.89)

-0.43
(-13.77)

p90 2.62 34.17 0.08 11.06 3.10 0.37 0.83 15.06 1.70 2.96
κ1 = 0 and κ2 = 0.5

Mean -0.02 19.87 -0.05 11.06 2.64 0.13 0.44 1.37 -0.36 -0.04 Stock 0.04
(15.02)

0.18
(7.16)

Median -0.03 19.87 -0.05 11.06 2.64 0.13 0.44 1.07 -0.43 -0.13 10-years -0.02
(-8.43)

-0.56
(-7.08)

p10 -2.03 17.61 -0.19 11.06 2.57 0.11 0.24 -0.48 -1.21 -0.82 20-years -0.04
(-8.38)

-0.56
(-7.07)

p90 2.00 22.27 0.09 11.06 2.71 0.15 0.62 3.57 0.55 0.80

The stock moments are derived from 1,000 simulations of 78 years, the term structure moments use 1,000 simulations of 16
years and the regression use 100 simulations of 10,000 years. The data estimates are from ? and ? respectively. R(1:84) denotes
the average of the dividend strips up to a maturity of seven years. The regression results show the estimates of (??) and (??)
with the t-statistics between brackets. The baseline results are those for κ1 = 1 and κ2 = 0. The used value of κ2 differs from
κ1 as their relative impact on the kink differs.

TABLE C.4:
SENSITIVITY ANALYSIS - γ

Stock Moments E[R−R(1:84)] Regressions
E[re] σ(re) AC1(re) E[r f ] E[p−d] σ(p−d) AC1(p−d) Bad Times Good Times Unconditional β

(long,2y)
1 β

(long,2y)
2

Data 5.47 20.17 0.02 0.56 3.36 0.45 0.87 5.00 -4.00 -0.87
γ= 4

Mean 0.77 35.69 -0.06 9.44 3.59 0.39 0.74 10.01 -1.88 0.31 Stock -0.04
(-9.14)

-0.19
(-8.22)

Median 0.68 35.51 -0.06 9.44 3.59 0.38 0.76 8.42 -2.08 0.08 10-years -0.04
(-17.71)

-0.33
(-14.43)

p10 -1.48 31.07 -0.19 9.44 3.33 0.30 0.60 -1.58 -6.10 -3.57 20-years -0.07
(-16.78)

-0.31
(-13.68)

p90 3.14 40.67 0.08 9.44 3.86 0.49 0.85 23.69 2.51 4.45
γ= 5

Mean 0.63 30.35 -0.06 11.06 2.90 0.30 0.70 6.49 -1.29 0.15 Stock -0.01
(-1.79)

-0.09
(-3.35)

Median 0.56 30.21 -0.07 11.06 2.90 0.29 0.72 5.52 -1.50 -0.04 10-years -0.05
(-17.80)

-0.45
(-14.54)

p10 -1.24 26.70 -0.20 11.06 2.70 0.23 0.55 -0.87 -4.12 -2.44 20-years -0.10
(-16.89)

-0.43
(-13.77)

p90 2.62 34.17 0.08 11.06 3.10 0.37 0.83 15.06 1.70 2.96
γ= 10

Mean 0.77 24.50 -0.06 18.24 2.01 0.18 0.57 2.32 -0.45 0.06 Stock 0.09
(38.89)

0.02
(2.23)

Median 0.72 24.45 -0.07 18.24 2.01 0.17 0.59 2.02 -0.54 0.00 10-years -0.11
(-18.14)

-0.80
(-14.78)

p10 -0.69 21.80 -0.20 18.24 1.90 0.15 0.39 -0.20 -1.48 -0.90 20-years -0.20
(-17.15)

-0.77
(-13.99)

p90 2.30 27.30 0.08 18.24 2.12 0.22 0.73 5.37 0.66 1.05

The stock moments are derived from 1,000 simulations of 78 years, the term structure moments use 1,000 simulations of 16
years and the regression use 100 simulations of 10,000 years. The data estimates are from ? and ? respectively. R(1:84) denotes
the average of the dividend strips up to a maturity of seven years. The regression results show the estimates of (??) and (??)
with the t-statistics between brackets. The baseline results are those for γ= 5. The lower level of γ is chosen to equal 4 as for
lower levels the level of risk aversion over consumption is insufficient to counteract states of risk-seeking gain-loss preferences,
such that an equilibrium does not exist.
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