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INTRODUCTION

Shape restrictions have a central role in economics as both testable
implications of classical theory and sufficient conditions for informa-
tive counterfactual predictions.

An important example is demand analysis where Slutzky conditions
provide shape restrictions.

There are many other applications including constraining probabilities
to be nonnegative in structural modeling.

Another important application is nonparametric instrumental vari-
ables estimation (NPIV) where shape restrictions may mitigate the
ill-posed inverse problem; Chetverikov and Wilhelm (2017).

Shape restrictions are often equivalent to inequality restrictions on
parameters of interest and on certain unknown functions.



Inference with inequality restrictions is difficult.

Such restrictions lead to discontinuities in limiting distributions as the
inequality restrictions become binding.

This makes inference challenging due to non-pivotal and potentially
unreliable pointwise asymptotic approximations.

Limit discontinuities make it difficult to construct confidence intervals
with uniform coverage.

Of course uniform coverage is importance to confidence statements
that are approximately valid across a range of parameter values where
constraints are binding or not.



We address these challenges by conservatively enforcing inequality
restrictions constraints as they become close to binding.

This conservative enforcement gives uniformity because the constraints
get imposed with rising probability as the parameters get close to
points where constraints bind.

Tests and confidence intervals may be conservative but powerful in
exploiting the large amount of information that inequality restrictions
can provide.

The test statistic is the difference of inequality restricted and unre-
stricted GMM objective functions.

Critical values obtained by bootstrapping while conservatively enforc-
ing inequalities.

Confidence intervals obtained by inverting test.



Straightforward computations for linear instrumental variables (IV)
model with linear inequalities.

Give general results for partially identified, nonlinear models.

Apply to conditional moment restriction models that encompasses
parametric (Hansen, 1982), nonparametric (Newey and Powell, 1989,
2003), and semiparametric (Ai and Chen, 2003) instrumental variable
models.

Also applies to functions of parameter estimates in these models.

General approach allows for partial identification.



We conduct inference on the causal effect of childbearing on female
labor force participation for the instrumental variables approach of
Angrist and Evans (1998).

We find that monotonicity of the local average treatment effect (LATE)
in education is not rejected by the data and neither is monotonicity
and negativity.

Further, imposing these shape restrictions yields narrower confidence
intervals for the LATE at different schooling levels.

Obtain similar results for the partially identified average treatment
effect (ATE), though the data is less informative about the ATE be-
cause of the low proportion of compliers.



These methods have been used by Torgovitsky (2019) to construct in-
formative confidence intervals for partially identified state dependence
parameters in the presence of unobserved heterogeneity.

Also, Kline and Walters (2021) used these methods to test shape con-
straints implied by a model of callback probabilities for employment
applications.

Freyberger and Horowitz (2015) gave inference methods for shape
restricted partially identified discrete IV models but those methods
do not provide uniform inference.

Our results are complementary to those of Bugni et al. (2017) and
Kaido et al. (2019), who provide uniformly valid procedures for sub-
vector inference with partial identification.

Our analysis is further related to Santos (2012), Tao (2014), and
Chen et al. (2011) who study inference on functionals of potentially
partially identified structural functions, but do not allow for shape
constraints.



INFERENCE

We focus first on linear IV estimation with equality and inequality
restrictions .

The model is

 = 0
0 +  [] = 0 ( = 1     )

where  is a left-hand side endogenous variable,  is a vector of right
hand-side variables, and  is a vector of instrumental variables.

Assume throughout that data  = ( ) are i.i.d..

The null hypothesis of interest is

0 : 0 =  0 ≤ 

Base tests on the two step GMM estimator with optimal weighting
matrix as in Hansen (1982) and White (1982).



Let ̄ be an initial IV estimator of 0 and Ω̂ be a corresponding esti-
mator of [02 ] such as

Ω̂ =
1



X
=1


0
̂
2
  ̂ =  − 0

 ̄

Let ̂() = (1)P
=1(− 0

) be sample moments of products of
instrumental variables and residuals and

̂() =
√
[̂()0Ω̂−1̂()]12

Square root of usual GMM objective is convenient for asymptotic
theory.

Restricted and unrestricted GMM estimators are

̂ = arg min
= ≤

̂() ̂ = argmin


̂()

Test statistic is

 = ̂(̂)− ̂(̂)



Construct critical value using the bootstrap.

Let recentered moment vector be

̂ = ̂ −
1



X
=1

̂ ̂ =  − 0
 ̂

Let  ∈ {1  } index bootstrap draws, 
1     


 be i.i.d.  (0 1)

independent of the data, and

 =
1
√


X
=1


 ̂

be a multiplier bootstrap draw of the moments.

To get critical value we impose a local version of the restrictions in
the bootstrap.

 with the same dimension as  serves as a possible value of
√
(̂−0).

  0 is a scalar slackness choice



Local constrained parameter space is

̂ =
n
 :  = 0  ≤ max

n
0−

√

n
 +̂ − 

oo
 for all 

o


Let ̂ = −P
=1

0


The level  critical value is the 1 −  quantile of over bootstrap
replications  of

 = min
∈̂

̂()−min


̂() ̂() :=
n
( + ̂)0Ω̂−1

³
 + ̂

´o12


This is the bootstrap version of the difference of constrained and
unconstrained objective function.

The use of square root objective function helps in asymptotic theory.

Computation of  quite straightforward because the objective func-
tion is quadratic and constraints are linear inequalities and or equali-
ties.



̂ =
n
 :  = 0  ≤ max

n
0−

√

n
 +̂ − 

oo
 for all 

o


  = min
∈̂

̂()−min


̂() ̂() :=
n
( + ̂)0Ω̂−1

³
 + ̂

´o12


Critical value depends on slackness parameter ; asymptotics requires
 converges to zero slower than convergence rate of ̂, i.e. slower
than 1

√
 for parametric estimator ̂.

Setting  = +∞ always theoretically valid, but may be conservative
(all constraints are binding in bootstrap) and result in loss of power.

Heuristically, when  tends to zero any constraint that is not bind-
ing at 0 will also not be binding in the bootstrap with probability
approaching one, so inference is not asymptotically conservative for
a fixed data generating process.



Example: Testing 0 : 0 ≤ 0 0 = [ ]

The moment function, optimal weighting matrix, GMM objective function and
estimator:

̂() =
X
=1

( − ) = ̄ −  Ω̂ =
X
( − ̄ )2

̂() =
√

¯̄̄
̄ − 

¯̄̄
Ω̂12 ̂ = min{0 ̄ }

The test statistic is

 =
√

¯̄̄
max{̄  0}

¯̄̄
Ω̂12

To describe the critical value, note that ̂ =  − ̄  



= (0 1)  =

−12
P
=1


 ( − ̄ )

̂ = { :  ≤ max{0−
√
[ + ̂]}}

Critical value is 1−  quantile of bootstrap distribution of

 = min
∈̂

{
¯̄̄
 − 

¯̄̄
Ω̂12}



 = min
∈̂

{
¯̄̄
 − 

¯̄̄
Ω̂12} ̂ = { :  ≤ max{0−

√
[ + ̂]}}

Uniformity comes from behavior of ̂ as  grows, i.e. behavior of

max{0−
√
[ + ̂]}

Basic assumption is  −→ 0
√
 −→∞

Suppose true [ ] is  with  −→ 0 and
√
 −→ −; this is where exact

critical value depends on unknown , so do not have uniformity.

Here
√
̂ = (1) so −

√
[ + ̂]  0 with probability approaching one, so

with probability approaching one

̂ = { :  ≤ 0}

  is conservative for because it imposes  ≤ 0 when a weaker (but unknown)
restriction would be sufficient for correct critical value from bootstrap.



Smaller choices of  give more powerful tests and tighter confidence
intervals.

Can choose  based on data; intuitively  meant to quantify sam-
pling uncertainty in (̂−0); cannot estimate distribution of (̂−0)
uniformly consistently, so link  to sampling uncertainty (̂

 − 0)

Choose  to be small probability giving  such that for bootstrap
version ̂

∗ of 0
Pr(max


{(̂

 − ̂
∗
)} ≤ ) ≈ 1− ;

 is more interpretable than ; in simulations choice of  does not
matter much.

Can get confidence intervals for a linear combination 0 while im-
posing 0 ≤  by inverting the test statistic.

For a given  find set of  such that test statistic is less than or equal
to critical value for

0 : 0 =  0 ≤ 



Paper describes test and proves validity for partially identified para-
meters.

Here need additional tuning parameter for estimating identified set
that is upper bound on objective function.

Paper describes test and proves validity for nonlinear moment, non-
parametric  models.

Need additional tuning parameter for nonlinear moments involving
linearization of moment restrictions.



EMPIRICAL EXAMPLE

We illustrate the preceding discussion by revisiting the study by An-
grist and Evans (1998) on the causal effect of childbearing on female
labor force participation.

Use the 1980 Census Public Use Micro Sample restricted to mothers
aged 21-35 with at least two children.

Outcome of interest is binary variable indicating whether mother is
employed.

Treatment binary variable indicating mother has more than two chil-
dren.

Instrument is indicator for whether the first two children are of the
same sex.

Parameter of interest is average treatment effect for compliers (LATE).



Angrist and Evans (1998) document that the impact of childbearing
on labor force participation depends on observable characteristics.

In particular, their two stage least squares (2SLS) estimates suggest
a negative impact of childbearing on labor force participation across
different levels of schooling, with magnitude of the impact decreasing
with schooling.

Phenomenon may reflect the fact that more educated mothers have
a stronger attachment to the labor force.

To examine this claim we introduce dummy variables S for each year
of schooling between 9 and 16 and for the categories less than 9 and
more than 16.

We test whether: (i) LATE(s) is increasing in schooling, and (ii)
LATE(s) is increasing in schooling and nonpositive.



Both hypotheses fall within the framework of linear IV with inequality
restrictions.

LATE(s) is identified through linear moment restrictions and the hy-
pothesized restrictions are linear in LATE(s).

Use five thousand bootstrap replications and setting  = +∞ or 
as determined by  = 05.

The p-value for LATE(s) being nondecreasing is 0.21.

The p-value for LATE(s) being nondecreasing and nonpositive is
0.394.



Figure 1 gives values of LATE(s) at different schooling levels.

The first panel displays the unconstrained 2SLS estimates and their
monotonicity restricted counterparts.

The latter are negative and hence also requiring nonpositive effects
does not change the estimates.

Second panel of Figure 1 we give 95% confidence intervals while
imposing monotonicity.

Set  = 05 to get 

Imposing monotonicity yields confidence intervals that are sometimes
substantially shorter than 2SLS counterparts.
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Figure 1: First Panel: Unconstrained and shape restricted LATE estimates (imposing
monotonicty or monotonicity and negativity yield the same estimates). Second and
Third Panels: 95% Confidence intervals for LATE at different education levels.

to mothers aged 21-35 with at least two children, and set: (i) D ∈ {0, 1} to indicate

whether a mother has more than two children (the treatment); (ii) Y ∈ {0, 1} to in-

dicate whether a mother is employed (the outcome of interest); and (iii) Z ∈ {0, 1} to

indicate whether the first two children are of the same sex (the instrument). We further

adopt the heterogeneous treatment effects model of Imbens and Angrist (1994) and let

Yd denote the potential outcome under treatment status d ∈ {0, 1} and employ “C,”

“NT,” and “AT” to denote compliers, never takers, and always takers.

Angrist and Evans (1998) document that the impact of childbearing on labor force

participation depends on observable characteristics. In particular, their two stage least

squares (2SLS) estimates suggest a negative impact of childbearing on labor force par-

ticipation across different levels of schooling, but that the magnitude of the impact

decreases with schooling – a phenomenon that may reflect that more educated moth-
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PARTIAL IDENTIFICATION

Illustrate for IV with view to inference about ATE in empirical exam-
ple.

The identified set is

Θ0 = { ∈ Θ : [( − 0)] = 0}

Test the null hypothesis that the intersection of Θ0 and the restricted
parameter set is nonempty.

Motivated by application take the restricted parameter set to be

 = { : Υ() = 0  ≤ }
where Υ() is possibly nonlinear.

For ease of exposition assume that min∈Θ ̂() = 0 i.e. number of
instrumental variables is less than or equal to the number of parame-
ters.



Continue to use restricted and unrestricted minima of GMM objective
function.

To allow for partial identification we use Ω̂ as before based on a first
step ̄ that is minimum norm minimizer of initial objective function.

For the bootstrap the local parameter space is now changed to ac-
count for nonlinear constraints, as

̂ () = { : Υ( + 
√
) = 0

 ≤ max
n
0−

√

n
 + − 

oo
 for all 

Bootstrap approximation uses an estimator Θ̂
 of Θ0 ∩ given by

Θ̂ = { ∈ Θ0 ∩ : ̂() ≤ inf
∈Θ0∩

̂() + }

where  ≥ 0 is a bandwidth, making Θ̂ is a set of "near minimizers"
of ̂(); positive  −→ 0 slower than 1

√
 ensures consistency of Θ̂



Θ̂
 = { ∈ Θ0 ∩ : ̂() ≤ inf

∈Θ0∩
̂() + }

Use step down procedure inspired by Romano and Shaikh (2010) to choose ; see
paper.

As before the statistic is

 = min
∈Θ0∩

̂()

The bootstrap critical value is more complicated than before; let

̂() = ()−
1



X
=1

() () =  − 0


̂ () =
1



X
=1


 ̂() ̂

( ) = {[̂ () + ̂]0Σ̂−1[̂ () + ̂]}12

Critical value is 1− quantile over bootstrap of  = min
∈Θ̂

∈̂ ()
̂( ).



EMPIRICAL EXAMPLE CONTINUED

Inference for conditional ATE denoted ATE(S), where S is schooling;
prior emprical work on this example for unconditional ATE is Zhang
et al. (2021).

For partial identification use decomposition

() = () (|) +[1 − 0| ] ( |)
+[1 − 0|] ( |)

where ,   are respectively the compliers, always takers, and
never takers.

With exception of [0|] and [1|] all terms can be iden-
tified through linear moment restrictions.

With 10 support points for  there are 60 moments and 80 parameters.

Inference on  under i) Logical bounds from  ∈ {0 1}; ii) and
ATE increasing in ; iii) and ATE is nonpositive.
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Figure 2: 95% Confidence intervals for ATE at different education levels. “Unr.” uses
bounds implied by Yd ∈ {0, 1}; “Mon. Restr.” adds that average treatment effects be
increasing in education for all types; “Mon.+Neg. Restr.” also requires they be negative.

obtained through the approach described in Remark 2.3 – here, the restriction Gθ ≤ g

imposes the described shape constraints while the nonlinear restriction ΥF (θ) = 0 cor-

responds to imposing a hypothesized value for ATE(S) through (11). In our bootstrap

approximation, we let τn = 0 and set rn according to (7) with γn = 0.05 and where we

used the distribution of estimators of identified parameters for their partially identified

counterparts.3 We do not report estimates of the identified sets for ATE(S) as they are

very close to the obtained confidence intervals: On average the bounds of the confidence

intervals exceed the bounds of the estimates by 0.011. Nonetheless, the unrestricted con-

fidence intervals are large as the estimates for the identified set are large – a result driven

by the low proportion of compliers (5% on average across S). Imposing monotonicity

across types carries identifying information on the upper end of the identified set at low

levels of education and on the lower end of the identified set at high levels of education.

Additionally imposing nonpositivity sharpens the upper bound of the identified set at

all schooling levels. The resulting confidence regions sign ATE(S) at all education levels

(weakly) smaller than 12 as strictly negative, though very close to zero.

Finally, as a preview of our general analysis in Section 3, in Table 1 we employ the

same shape restrictions to report estimates and 95% confidence intervals for the iden-

tified sets of the average treatment effects for: High School Dropouts (edu ∈ [9, 12)),

College Dropouts (edu ∈ [13, 15)), College Graduates (edu ≥ 16) and the overall aver-

age treatment effect. These confidence regions are obtained through test inversion after

noting that a hypothesized value for the average treatment effect of a subgroup can be

written as a nonlinear moment restriction in θ0 through (11) – nonlinear moment re-

strictions fall within our general framework but outside the scope of Section 2.2. Overall

the impact of imposing shape restrictions parallels the results in Figure 2.

3E.g., for the constraint E[Y1|NT, S] ≤ 1 we substituted the corresponding Gj{θ̂un − θ̂u
?

n } term in (7)
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Unrestricted Mon. Restr. Mon.+Neg Restr.
Subgroup Estimate 95% CI Estimate 95% CI Estimate 95% CI
HS Drop [-0.520,0.426] [-0.526,0.432] [-0.489,0.346] [-0.500,0.356] [-0.489,-0.008] [-0.501,-0.003]

Coll. Drop [-0.561,0.380] [-0.566,0.385] [-0.447,0.325] [-0.460,0.337] [-0.447,-0.004] [-0.462,0.000]
Coll. Grad [-0.579,0.375] [-0.586,0.382] [-0.446,0.328] [-0.462,0.339] [-0.446,-0.002] [-0.464,0.000]

All [-0.545,0.395] [-0.547,0.398] [-0.467,0.328] [-0.477,0.338] [-0.467,-0.008] [-0.478,-0.003]

Table 1: Point Estimates and 95% confidence intervals for the average treatment effect
at different groups defined by schooling levels under different shape restrictions.

3 General Analysis

We next develop a general inferential framework that encompasses the tests discussed in

Section 2. The class of models we consider are those in which the parameter of interest

θ0 ∈ Θ satisfies a finite number J of conditional moment restrictions

EP [ρ(X, θ0)|Z] = 0 for 1 ≤  ≤ J

with ρ : X × Θ → R, X ∈ X, and Z ∈ Z. For notational simplicity, we also let

Z ≡ (Z1, . . . , ZJ ) and V ≡ (X,Z) with V ∼ P ∈ P. In some of the applications that

motivate us, the parameter θ0 is not identified. We therefore define the identified set

Θ0 ≡ {θ ∈ Θ : EP [ρ(X, θ)|Z] = 0 for 1 ≤  ≤ J}

and employ it as the basis of our statistical analysis – we emphasize that Θ0 depends on

P , but leave such dependence implicit to simplify notation. For a set R of parameters

satisfying a conjectured restriction, we develop a test for the hypothesis

H0 : Θ0 ∩R 6= ∅ H1 : Θ0 ∩R = ∅; (12)

i.e. we devise a test of whether at least one element of the identified set satisfies the

posited constraint. In what follows, we denote the set of distributions P ∈ P satisfying

the null hypothesis in (12) by P0. We also note that in an identified model, a test of

(12) is equivalent to a test of whether θ0 itself satisfies the hypothesized constraint.

The defining elements determining the type of applications encompassed by (12) are

the choices of Θ and R. In imposing restrictions on Θ and R we therefore aim to allow

for a general framework while simultaneously ensuring enough structure for a fruitful

asymptotic analysis. To this end, we require Θ to be a subset of a complete vector space

B with norm ‖ · ‖B (i.e. (B, ‖ · ‖B) is a Banach space) and consider sets R satisfying

R = {θ ∈ B : ΥF (θ) = 0 and ΥG(θ) ≤ 0}, (13)

with a mean zero normal distribution with the variance of the estimator for E[Y0|NT, S].
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Find wide but not uninformative confidence intervals.

Estimated identified sets quite large due to compliers being a low
proportion of population.

Graph gives confidence intervals and tables give confidence sets.



HETEROGENEITY AND DEMAND ANALYSIS

Inference for averages under general heterogeneity in demand.

Let  ∈ [0 1] be expenditure share of some commodity,  a vector
of prices, total expenditure, and covariates,  indexes preferences.

Here  can be infinite dimensional.

For  independent of  we have for all constants 

Pr( ≤ | ) = Pr(() ≤ | ) =
Z
1{() ≤ }0()

Let Ψ( ) be an object of interest, such as equivalent variation for
some price change and value of 

Hausman and Newey (2016) consider functionals of the formZ
Ψ( )0()

Can use set up of this paper for inference about such objects, which
are generally partially identified.



This set up is random utility model (RUM) of McFadden (2005),
Hausman and Newey (2016), Kitamura and Stoye (2018).

We consider a set of  such that for each  the share function ()

satisfies Slutzky conditions on a grid of  values.

Can draw randomly from set of share functions rejecting those that do
not satisfy Slutzky on a grid to get large set of functions {( )}0=1

( ) =
X
=1

( )

Specify  to be discrete with Pr(() = ( )) =  ≥ 0

Allows us to impose smoothness on preferences in the sense that each
( ) is smooth.



Leads to residuals of the form

( ) = 1( ≤ )−
0X
=1

1(( ) ≤ )

Construct moment functions from interactions of residuals with func-
tions of 

Do GMM and bootstrap imposing the restriction  ≥ 0
P
  = 1

and  =
P
 Ψ( )

Invert the test statistic to get confidence intervals for 

Paper give regularity conditions sufficient for correct level tests and
confidence interval coverage.




