Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	00000	000	0000

Single sourcing from a supplier with unknown efficiency and capacity

Christophe Bernard Sébastien Mitraille Toulouse Business School

August 2022

ESEM/EARIE conferences 2022

roduction	Results overview	Literature	Model	Resolution	Results
00	00	00	00000	000	0000

Int

- Enormous amount of heterogeneity within same industry, on production technology or input costs (*see Baily, Hulten, Campbell, Bresnahan and Caves (1992) or Bartelsman and Drhymes (1998) amongst others*)
- Firms do not operate at the same scale or with the same efficiency (*see Röller (1990) or Van Biesebroeck (2003*))
- *Single sourcing* is commonly used (even if risk management considerations should deter purchasers), as e.g. :
 - Administrative costs savings, larger attractiveness to supplier(s), better unit price, monopolized technology

- > Often used for indirect purchases, but not only
- Suppliers' concentration reduces the choices

roduction	Results overview	Literature	Model	Resolution	Results
00	00	00	00000	000	0000

Int

- Enormous amount of heterogeneity within same industry, on production technology or input costs (see Baily, Hulten, Campbell, Bresnahan and Caves (1992) or Bartelsman and Drhymes (1998) amongst others)
- Firms do not operate at the same scale or with the same efficiency (see Röller (1990) or Van Biesebroeck (2003))
- *Single sourcing* is commonly used (even if risk management considerations should deter purchasers), as e.g. :
 - Administrative costs savings, larger attractiveness to supplier(s), better unit price, monopolized technology

- > Often used for indirect purchases, but not only
- Suppliers' concentration reduces the choices

roduction	Results overview	Literature	Model	Resolution	Results
0	00	00	00000	000	0000

Int

- Enormous amount of heterogeneity within same industry, on production technology or input costs (see Baily, Hulten, Campbell, Bresnahan and Caves (1992) or Bartelsman and Drhymes (1998) amongst others)
- Firms do not operate at the same scale or with the same efficiency (see Röller (1990) or Van Biesebroeck (2003))
- *Single sourcing* is commonly used (even if risk management considerations should deter purchasers), as e.g. :
 - Administrative costs savings, larger attractiveness to supplier(s), better unit price, monopolized technology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▷ Often used for indirect purchases, but not only
- Suppliers' concentration reduces the choices

roduction	Results overview	Literature	Model	Resolution	Results
0	00	00	00000	000	0000

Int

- Enormous amount of heterogeneity within same industry, on production technology or input costs (see Baily, Hulten, Campbell, Bresnahan and Caves (1992) or Bartelsman and Drhymes (1998) amongst others)
- Firms do not operate at the same scale or with the same efficiency (see Röller (1990) or Van Biesebroeck (2003))
- *Single sourcing* is commonly used (even if risk management considerations should deter purchasers), as e.g. :
 - Administrative costs savings, larger attractiveness to supplier(s), better unit price, monopolized technology

- Often used for indirect purchases, but not only
- Suppliers' concentration reduces the choices

Results overview Literature

Introduction

lodel

Resolution 000

・ロット (雪) ・ (日) ・ (日) ・ (日)

- Each time a (downstream) firm procures an amount from its supplier, it faces a (upstream) supplier with
 - either a small cost/unit for a small scale of production (i.e. soft capacity constrained)
 - or able to produce at a large scale but at a higher cost/unit (i.e. constant returns but less efficient at small scale)
- **E.G.** Capacities planned <u>ahead of demand</u> + purchase orders exhaust first the planned capacity of most efficient suppliers
 - ⇒ Acquiring extra inputs to satisfy an order *above planned capacity* is generally *more costly* than planned unit cost
 - ⇒ For a given procurement, marginal cost is steeper for an efficient supplier than an inefficient one

Results overview Literature Mod

Introduction

F

- Each time a (downstream) firm procures an amount from its supplier, it faces a (upstream) supplier with
 - either a small cost/unit for a small scale of production (i.e. soft capacity constrained)
 - or able to produce at a large scale but at a higher cost/unit (i.e. constant returns but less efficient at small scale)
- **E.G.** Capacities planned <u>ahead of demand</u> + purchase orders exhaust first the planned capacity of most efficient suppliers
 - ⇒ Acquiring extra inputs to satisfy an order *above planned capacity* is generally *more costly* than planned unit cost
 - ⇒ For a given procurement, marginal cost is steeper for an efficient supplier than an inefficient one

Introduction

N

0

- Each time a (downstream) firm procures an amount from its supplier, it faces a (upstream) supplier with
 - either a small cost/unit for a small scale of production (i.e. soft capacity constrained)
 - or able to produce at a large scale but at a higher cost/unit (i.e. constant returns but less efficient at small scale)
- **E.G.** Capacities planned <u>ahead of demand</u> + purchase orders exhaust first the planned capacity of most efficient suppliers
 - ⇒ Acquiring extra inputs to satisfy an order *above planned capacity* is generally *more costly* than planned unit cost
 - ⇒ For a given procurement, marginal cost is steeper for an efficient supplier than an inefficient one

Introduction

del 200 Resolution 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Each time a (downstream) firm procures an amount from its supplier, it faces a (upstream) supplier with
 - either a small cost/unit for a small scale of production (i.e. soft capacity constrained)
 - or able to produce at a large scale but at a higher cost/unit (i.e. constant returns but less efficient at small scale)
- **E.G.** Capacities planned <u>ahead of demand</u> + purchase orders exhaust first the planned capacity of most efficient suppliers
 - ⇒ Acquiring extra inputs to satisfy an order *above planned capacity* is generally *more costly* than planned unit cost
 - ⇒ For a given procurement, marginal cost is steeper for an efficient supplier than an inefficient one

Introduction

e

odel

- Each time a (downstream) firm procures an amount from its supplier, it faces a (upstream) supplier with
 - either a small cost/unit for a small scale of production (i.e. soft capacity constrained)
 - or able to produce at a large scale but at a higher cost/unit (i.e. constant returns but less efficient at small scale)
- **E.G.** Capacities planned <u>ahead of demand</u> + purchase orders exhaust first the planned capacity of most efficient suppliers
 - ⇒ Acquiring extra inputs to satisfy an order *above planned capacity* is generally *more costly* than planned unit cost
 - ⇒ For a given procurement, marginal cost is steeper for an efficient supplier than an inefficient one

ction	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

Introdu

- How should a buyer/retailer optimally purchase the product it resales from a single supplier with unknown cost, such that this supplier can be
 - ▷ either efficient for small output levels, but faces a steep marginal cost curve,
 - ▷ or is less efficient, but faces a flatter marginal cost curve,
 - ▷ or faces any combination of the two, such that *the steeper the* marginal cost of production the smaller its intercept is
- ⇔ How to buy from a supplier when efficient ones are (soft) capacity constrained / less efficient ones are less constrained, without knowing the supplier true characteristics ?

tion	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

Introduc

- How should a buyer/retailer optimally purchase the product it resales from a single supplier with unknown cost, such that this supplier can be
 - either efficient for small output levels, but faces a steep marginal cost curve,
 - ▷ or is less efficient, but faces a flatter marginal cost curve,
 - ▷ or faces any combination of the two, such that *the steeper the* marginal cost of production the smaller its intercept is
- ⇔ How to buy from a supplier when efficient ones are (soft) capacity constrained / less efficient ones are less constrained, without knowing the supplier true characteristics ?

ction	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

Introdu

- How should a buyer/retailer optimally purchase the product it resales from a single supplier with unknown cost, such that this supplier can be
 - either efficient for small output levels, but faces a steep marginal cost curve,
 - ▷ or is less efficient, but faces a flatter marginal cost curve,
 - ▷ or faces any combination of the two, such that *the steeper the* marginal cost of production the smaller its intercept is
- ⇔ How to buy from a supplier when efficient ones are (soft) capacity constrained / less efficient ones are less constrained, without knowing the supplier true characteristics ?

tion	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

Introduc

- How should a buyer/retailer optimally purchase the product it resales from a single supplier with unknown cost, such that this supplier can be
 - either efficient for small output levels, but faces a steep marginal cost curve,
 - ▷ or is less efficient, but faces a flatter marginal cost curve,
 - or faces any combination of the two, such that the steeper the marginal cost of production the smaller its intercept is
- ⇔ How to buy from a supplier when efficient ones are (soft) capacity constrained / less efficient ones are less constrained, without knowing the supplier true characteristics ?

tion	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

Introduc

- How should a buyer/retailer optimally purchase the product it resales from a single supplier with unknown cost, such that this supplier can be
 - either efficient for small output levels, but faces a steep marginal cost curve,
 - ▷ or is less efficient, but faces a flatter marginal cost curve,
 - ▷ or faces any combination of the two, such that the steeper the marginal cost of production the smaller its intercept is
- ⇔ How to buy from a supplier when efficient ones are (soft) capacity constrained / less efficient ones are less constrained, without knowing the supplier true characteristics ?

Results overview	Literature	Model	Resolution
•0	00	00000	000

- Over-ordering or under-ordering is possible : retailer's order above or below the order of an informed monopoly
 - Over-ordering : asymmetric information makes the market price lower than the monopoly one (absent storage/free disposal)
 - ▷ Under-ordering : asymmetric information makes the market price higher than the monopoly one
- Distortions depend on the size of the market relative to the support of cost/type distribution
 - For an intermediate market size, no distortion at the extremes of the type distribution, and for an interior type

(日) (四) (日) (日) (日)

Results overview	Literature	Model	Resolution	Resu
•0	00	00000	000	000

- Over-ordering or under-ordering is possible : retailer's order above or below the order of an informed monopoly
 - Over-ordering : asymmetric information makes the market price lower than the monopoly one (absent storage/free disposal)
 - ▷ Under-ordering : asymmetric information makes the market price higher than the monopoly one
- Distortions depend on the size of the market relative to the support of cost/type distribution
 - For an intermediate market size, no distortion at the extremes of the type distribution, and for an interior type

人口 医水黄 医水黄 医水黄素 化甘油

Results overview	Literature	Model	Resolution	Results
•0	00	00000	000	0000

- Over-ordering or under-ordering is possible : retailer's order above or below the order of an informed monopoly
 - Over-ordering : asymmetric information makes the market price lower than the monopoly one (absent storage/free disposal)
 - Under-ordering : asymmetric information makes the market price higher than the monopoly one
- Distortions depend on the size of the market relative to the support of cost/type distribution
 - For an intermediate market size, no distortion at the extremes of the type distribution, and for an interior type

Results overview	Literature	Model	Resolution	Results
•0	00	00000	000	0000

- Over-ordering or under-ordering is possible : retailer's order above or below the order of an informed monopoly
 - Over-ordering : asymmetric information makes the market price lower than the monopoly one (absent storage/free disposal)
 - Under-ordering : asymmetric information makes the market price higher than the monopoly one
- Distortions depend on the size of the market relative to the support of cost/type distribution
 - ▷ For an intermediate market size, no distortion at the extremes of the type distribution, and for an interior type

duction	Results overview	Literature	Model	Resolution	Result
	0•	00	00000	000	0000

- Supplier's rents depend on the demand size
 - ▷ For an intermediate market size, no rent for interior types *i.e.* the supplier's rent is non monotonic in types
- Under-ordering occurs in absence of double marginalization :
 - in large or intermediate markets, retailers should order less than what a vertical monopoly would do, to reduce the incentives of non capacity constrained suppliers to lie
- Despite marginal cost differences to produce this quantity, offering the same contract to a set of types is attractive :
 - ▷ the cost of producing marginal and infra-marginal units compensate each other, and rents are nil
 - ▷ the dispersion of orders is smaller than the dispersion of marginal costs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

duction	Results overview	Literature	Model	Resolution	Results
	0•	00	00000	000	0000

- Supplier's rents depend on the demand size
 - ▷ For an intermediate market size, no rent for interior types *i.e.* the supplier's rent is non monotonic in types
- Under-ordering occurs in absence of double marginalization :
 - in large or intermediate markets, retailers should order less than what a vertical monopoly would do, to reduce the incentives of non capacity constrained suppliers to lie
- Despite marginal cost differences to produce this quantity, offering the same contract to a set of types is attractive :
 - the cost of producing marginal and infra-marginal units compensate each other, and rents are nil
 - the dispersion of orders is smaller than the dispersion of marginal costs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Results' driver : countervailing incentives, without the Spence-Mirrlees condition, without a concave objective
- Lewis and Sappington (1989), Biglaiser and Mezzeti (1993), Maggi and Rodriguez-Clare (1995), and Jullien (2000)
 - Countervailing incentives come from determinants of variable cost (not from participation constraint or from fixed cost)
 - Marginal costs do not rank identically across types as q increases (and <u>cross once</u> !)
 - To gain on the initial units of a batch, capacity constrained efficient firms may pretend they can serve a larger quantity (even if the last units of a batch are more costly to produce)
 - Even if they loose on the initial units of a batch, unconstrained inefficient firms may pretend they can serve a smaller quantity (to get paid at a higher price on the last unit of a batch)

- Results' driver : countervailing incentives, without the Spence-Mirrlees condition, without a concave objective
- Lewis and Sappington (1989), Biglaiser and Mezzeti (1993), Maggi and Rodriguez-Clare (1995), and Jullien (2000)
 - Countervailing incentives come from determinants of variable cost (not from participation constraint or from fixed cost)
 - Marginal costs do not rank identically across types as q increases (and <u>cross once</u> !)
 - To gain on the initial units of a batch, capacity constrained efficient firms may pretend they can serve a larger quantity (even if the last units of a batch are more costly to produce)
 - Even if they loose on the initial units of a batch, unconstrained inefficient firms may pretend they can serve a smaller quantity (to get paid at a higher price on the last unit of a batch)

- Results' driver : countervailing incentives, without the Spence-Mirrlees condition, without a concave objective
- Lewis and Sappington (1989), Biglaiser and Mezzeti (1993), Maggi and Rodriguez-Clare (1995), and Jullien (2000)
 - Countervailing incentives come from determinants of variable cost (not from participation constraint or from fixed cost)
 - Marginal costs do not rank identically across types as q increases (and <u>cross once</u> !)
 - To gain on the initial units of a batch, capacity constrained efficient firms may pretend they can serve a larger quantity (even if the last units of a batch are more costly to produce)
 - Even if they loose on the initial units of a batch, unconstrained inefficient firms may pretend they can serve a smaller quantity (to get paid at a higher price on the last unit of a batch)

- Results' driver : countervailing incentives, without the Spence-Mirrlees condition, without a concave objective
- Lewis and Sappington (1989), Biglaiser and Mezzeti (1993), Maggi and Rodriguez-Clare (1995), and Jullien (2000)
 - Countervailing incentives come from determinants of variable cost (not from participation constraint or from fixed cost)
 - Marginal costs do not rank identically across types as q increases (and <u>cross once</u> !)
 - ▷ To gain on the initial units of a batch, capacity constrained efficient firms may pretend they can serve a larger quantity (even if the last units of a batch are more costly to produce)
 - Even if they loose on the initial units of a batch, unconstrained inefficient firms may pretend they can serve a smaller quantity (to get paid at a higher price on the last unit of a batch)

duction	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

- Adverse selection without the Spence-Mirlees condition : Araujo and Moreira (2010, 2015) and Schottmüller (2015)
 - **>** Rotations of marginal costs rule out global deviations
 - Quantity ordered must be monotonic in supplier's type (increasing when demand is large enough, and decreasing when demand is small enough)
- Need to deal with non concavity of principal's objective
 - Consequence of the absence of Spence-Mirrlees condition, implying that monotonicity not always granted
 - either "ironing" is needed (see Guesnerie and Laffont (1984)) or a condition which ensures monotonicity

・ロット (雪) ・ (日) ・ (日) ・ (日)

- (Huge) Sourcing literature, in economics and management
- (*Under construction*) Comparative statics compared to classical monopoly with convex costs

- ction Results overview Literature Model Resolution Result 00 0● 00000 000 0000
 - Adverse selection without the Spence-Mirlees condition : Araujo and Moreira (2010, 2015) and Schottmüller (2015)

Rotations of marginal costs rule out global deviations

 Quantity ordered must be monotonic in supplier's type (increasing when demand is large enough, and decreasing when demand is small enough)

• Need to deal with non concavity of principal's objective

- Consequence of the absence of Spence-Mirrlees condition, implying that monotonicity not always granted
- either "ironing" is needed (see Guesnerie and Laffont (1984)) or a condition which ensures monotonicity

- (Huge) Sourcing literature, in economics and management
- (*Under construction*) Comparative statics compared to classical monopoly with convex costs

- ction Results overview Literature Model Resolution Result 00 0● 00000 000 0000
 - Adverse selection without the Spence-Mirlees condition : Araujo and Moreira (2010, 2015) and Schottmüller (2015)

▶ Rotations of marginal costs rule out global deviations

- Quantity ordered must be monotonic in supplier's type (increasing when demand is large enough, and decreasing when demand is small enough)
- Need to deal with non concavity of principal's objective
 - Consequence of the absence of Spence-Mirrlees condition, implying that monotonicity not always granted
 - either "ironing" is needed (see Guesnerie and Laffont (1984)) or a condition which ensures monotonicity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (Huge) Sourcing literature, in economics and management
- (*Under construction*) Comparative statics compared to classical monopoly with convex costs

- ction Results overview Literature Model Resolution Result 00 0● 00000 000 0000
 - Adverse selection without the Spence-Mirlees condition : Araujo and Moreira (2010, 2015) and Schottmüller (2015)

▶ Rotations of marginal costs rule out global deviations

- Quantity ordered must be monotonic in supplier's type (increasing when demand is large enough, and decreasing when demand is small enough)
- Need to deal with non concavity of principal's objective
 - Consequence of the absence of Spence-Mirrlees condition, implying that monotonicity not always granted
 - either "ironing" is needed (see Guesnerie and Laffont (1984)) or a condition which ensures monotonicity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (Huge) Sourcing literature, in economics and management
- (*Under construction*) Comparative statics compared to classical monopoly with convex costs

- ction Results overview Literature Model Resolution Result 00 0● 00000 000 0000
 - Adverse selection without the Spence-Mirlees condition : Araujo and Moreira (2010, 2015) and Schottmüller (2015)

▶ Rotations of marginal costs rule out global deviations

- Quantity ordered must be monotonic in supplier's type (increasing when demand is large enough, and decreasing when demand is small enough)
- Need to deal with non concavity of principal's objective
 - Consequence of the absence of Spence-Mirrlees condition, implying that monotonicity not always granted
 - either "ironing" is needed (see Guesnerie and Laffont (1984)) or a condition which ensures monotonicity
- (Huge) Sourcing literature, in economics and management
- (*Under construction*) Comparative statics compared to classical monopoly with convex costs

Results overview	Literature	Model	Resolution	Results
00	00	•0000	000	0000

• Downstream firm *D* procures *q* from upstream producer *U* (*D* sells *q* but can't produce, *U* can't access the market)

• Consumers inverse demand is linear in q

 $P(q) = \max\{a - bq, 0\}$ with a > 0, b > 0. (1)

- Disposal/storage prohibitive (q entirely sold at P(q))
- *P*/*A* model : *D* offers a menu of binding contracts to U

$$\pi_D^e(\tilde{\theta}) = \mathbb{E}\left(P(q(\tilde{\theta}))q(\tilde{\theta}) - T(\tilde{\theta})\right)$$
(2)

and U's ex-post payoff is

$$\pi_U(q(\tilde{ heta}); heta) = T(\tilde{ heta}) - C(q(\tilde{ heta}); heta) ext{ for } heta \in [0, \bar{c}]$$
 (3)

Results overview	Literature	Model	Resolution	Results
00	00	00000	000	0000

- Downstream firm *D* procures *q* from upstream producer *U* (*D* sells *q* but can't produce, *U* can't access the market)
- Consumers inverse demand is linear in q

$$P(q) = \max\{a - bq, 0\}$$
 with $a > 0, b > 0.$ (1)

- Disposal/storage prohibitive (q entirely sold at P(q))
- *P*/*A* model : *D* offers a menu of binding contracts to U

$$\pi_D^e(\tilde{\theta}) = \mathbb{E}\left(P(q(\tilde{\theta}))q(\tilde{\theta}) - T(\tilde{\theta})\right)$$
(2)

and U's ex-post payoff is

$$\pi_U(q(\tilde{ heta}); heta) = T(\tilde{ heta}) - C(q(\tilde{ heta}); heta) ext{ for } heta \in [0, \bar{c}]$$
 (3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results overview	Literature	Model	Resolution	Results
00	00	00000	000	0000

- Downstream firm *D* procures *q* from upstream producer *U* (*D* sells *q* but can't produce, *U* can't access the market)
- Consumers inverse demand is linear in q

$$P(q) = \max\{a - bq, 0\}$$
 with $a > 0, b > 0.$ (1)

- Disposal/storage prohibitive (q entirely sold at P(q))
- *P*/*A* model : *D* offers a menu of binding contracts to U

$$\pi_D^e(\tilde{\theta}) = \mathbb{E}\left(P(q(\tilde{\theta}))q(\tilde{\theta}) - T(\tilde{\theta})\right)$$
(2)

and U's ex-post payoff is

$$\pi_U(q(\tilde{ heta}); heta) = T(\tilde{ heta}) - C(q(\tilde{ heta}); heta) ext{ for } heta \in [0, \bar{c}]$$
 (3)

Results overview	Literature	Model	Resolution	Results
00	00	00000	000	0000

- Downstream firm *D* procures *q* from upstream producer *U* (*D* sells *q* but can't produce, *U* can't access the market)
- Consumers inverse demand is linear in q

$$P(q) = \max\{a - bq, 0\}$$
 with $a > 0, b > 0.$ (1)

- Disposal/storage prohibitive (q entirely sold at P(q))
- $P/A \mod i$ D offers a menu of binding contracts to U

$$\pi_D^e(\tilde{\theta}) = \mathrm{E}\left(P(q(\tilde{\theta}))q(\tilde{\theta}) - T(\tilde{\theta})\right)$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

and U's ex-post payoff is

$$\pi_{U}(q(\tilde{\theta});\theta) = T(\tilde{\theta}) - C(q(\tilde{\theta});\theta) \text{ for } \theta \in [0,\bar{c}]$$
(3)

Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	00000	000	0000

No fixed costs + convex variable cost

$$C(q; heta) = heta q + rac{1}{2} d(heta) q^2 \quad ext{with } heta \geq 0 \tag{4}$$

where $d(heta)=ar{d}\left(1-rac{ heta}{ar{c}}
ight)$ decreases with heta

• θ unknown + function $d(\theta)$ known + θ distributed as

$$F(\theta) \in [0,1] \text{ and } f(\theta) \ge 0 \text{ for } \theta \in [0,\bar{c}],$$
 (5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\triangleright \ F(\theta) \text{ s.t. } \frac{\partial}{\partial \theta} \left(\frac{F(\theta)}{f(\theta)} \right) \geq 0 \geq \frac{\partial}{\partial \theta} \left(\frac{1 - F(\theta)}{f(\theta)} \right) \text{ for } \theta \in [0, \bar{c}]$

• Industry profit : $\Pi(q; \theta) = P(q)q - C(q; \theta)$ with $\Pi_{qq} < 0$

▷ **first best** for $q^{M}(\theta)$ s.t. $\Pi_{q}(q^{M}(\theta); \theta) = 0$

Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	00000	000	0000

No fixed costs + convex variable cost

$$C(q; heta) = heta q + rac{1}{2} d(heta) q^2 \quad ext{with } heta \geq 0$$
 (4)

where $d(heta)=ar{d}\left(1-rac{ heta}{ar{c}}
ight)$ decreases with heta

• θ unknown + function $d(\theta)$ known + θ distributed as

$$F(\theta) \in [0,1] \text{ and } f(\theta) \ge 0 \text{ for } \theta \in [0,\overline{c}],$$
 (5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\triangleright \ F(\theta) \text{ s.t. } \frac{\partial}{\partial \theta} \left(\frac{F(\theta)}{f(\theta)} \right) \ge 0 \ge \frac{\partial}{\partial \theta} \left(\frac{1 - F(\theta)}{f(\theta)} \right) \text{ for } \theta \in [0, \overline{c}]$$

• Industry profit : $\Pi(q; \theta) = P(q)q - C(q; \theta)$ with $\Pi_{qq} < 0$

▷ **first best** for $q^{M}(\theta)$ s.t. $\Pi_{q}(q^{M}(\theta); \theta) = 0$

Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	00000	000	0000

No fixed costs + convex variable cost

$$C(q; \theta) = \theta q + \frac{1}{2}d(\theta)q^2$$
 with $\theta \ge 0$ (4)

where $d(heta)=ar{d}\left(1-rac{ heta}{ar{c}}
ight)$ decreases with heta

• θ unknown + function $d(\theta)$ known + θ distributed as

$$F(\theta) \in [0,1] \text{ and } f(\theta) \ge 0 \text{ for } \theta \in [0, \overline{c}],$$
 (5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\triangleright \ F(\theta) \text{ s.t. } \frac{\partial}{\partial \theta} \left(\frac{F(\theta)}{f(\theta)} \right) \ge 0 \ge \frac{\partial}{\partial \theta} \left(\frac{1 - F(\theta)}{f(\theta)} \right) \text{ for } \theta \in [0, \bar{c}]$$

• Industry profit : $\Pi(q; \theta) = P(q)q - C(q; \theta)$ with $\Pi_{qq} < 0$

▷ **first best** for $q^M(\theta)$ s.t. $\Pi_q(q^M(\theta); \theta) = 0$

Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	0000	000	0000

Graphical illustration

• All marginal costs are equal to each other at $q^0 = \frac{\bar{c}}{\bar{d}}$ (right)

All total costs are equal to each other at 2q⁰ and at 0 (left)
 I > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 > 1 < 0 >

Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	00000	000	0000

• "Rotation" consequences :

$$\triangleright \ \ C_{ heta}(q; heta) = q - rac{ ilde{d}}{2 ilde{c}}q^2 \geq 0$$
 if $q \leq 2q^0$, else negative

- $\triangleright \ \ C_{q\theta}(q;\theta) = 1 \frac{\bar{d}}{\bar{c}}q \geq 0 \ \text{if} \ q \leq q^0 = \frac{\bar{c}}{\bar{d}}, \ \text{else negative}$
- $\triangleright \ C(2q^0;\theta) = C(2q^0;\theta') \equiv C(2q^0) \text{ for } \theta \neq \theta'$
- \triangleright Rotations imply that q^0 is independent of θ
- ▷ NB : Rotations of demand in Johnson and Myatt (2006) and Araujo and Moreira (2015)
- Such changes in the rankings of marginal costs also occur with stepwise increasing marginal costs (*they must "cross" once*)

tion	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

IR and IC constraints

Individual rationality constraints

 $\pi_U(q(heta); heta)\geq 0 ext{ for all } heta\in [0,ar c] \qquad (\mathit{IR}_ heta)$

Incentive compatibility constraints

$$\pi_U(q(\theta); \theta) \ge \pi_U(q(\tilde{\theta}); \theta) \text{ for } \tilde{\theta} \neq \theta$$
 (*IC* _{θ})

where supplier's U payoff has the following local properties

• Spence-Mirrlees condition not satisfied

$$\frac{\partial^2 \pi_U(q;\theta)}{\partial q \partial \theta} = -C_{q\theta}(q;\theta) > 0 \text{ if } q > q^0, \text{ else negative} \quad (6)$$

• and U's profit not monotonic in θ

$$\frac{\partial \pi_U(q;\theta)}{\partial \theta} = -C_{\theta}(q;\theta) > 0 \text{ if } q > 2q^0, \text{ else negative}$$
(7)

ion	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

IR and IC constraints

Individual rationality constraints

 $\pi_U(q(heta); heta)\geq 0 ext{ for all } heta\in [0,ar c] \qquad (\mathit{IR}_ heta)$

Incentive compatibility constraints

$$\pi_U(q(\theta); \theta) \ge \pi_U(q(\tilde{\theta}); \theta) \text{ for } \tilde{\theta} \neq \theta \qquad (IC_{\theta})$$

where supplier's U payoff has the following local properties

• Spence-Mirrlees condition not satisfied

$$\frac{\partial^2 \pi_U(q;\theta)}{\partial q \partial \theta} = -C_{q\theta}(q;\theta) > 0 \text{ if } q > q^0, \text{ else negative} \quad (6)$$

• and U's profit not monotonic in θ

$$\frac{\partial \pi_U(q;\theta)}{\partial \theta} = -C_{\theta}(q;\theta) > 0 \text{ if } q > 2q^0, \text{ else negative}$$
(7)

on	Results overview	Literature	Model	Resolution	Results
	00	00	00000	000	0000

IR and IC constraints

Individual rationality constraints

 $\pi_U(q(heta); heta) \geq 0$ for all $heta \in [0, ar c]$ (*IR*_{heta})

Incentive compatibility constraints

$$\pi_U(q(\theta); \theta) \ge \pi_U(q(\tilde{\theta}); \theta) \text{ for } \tilde{\theta} \neq \theta$$
 (*IC* _{θ})

where supplier's U payoff has the following local properties

• Spence-Mirrlees condition not satisfied

$$\frac{\partial^2 \pi_U(q;\theta)}{\partial q \partial \theta} = -C_{q\theta}(q;\theta) > 0 \text{ if } q > q^0, \text{ else negative} \quad (6)$$

• and U's profit not monotonic in θ

$$\frac{\partial \pi_U(q;\theta)}{\partial \theta} = -C_{\theta}(q;\theta) > 0 \text{ if } q > 2q^0, \text{ else negative}$$
(7)

Resolution (sketch) to construct $q^*(\theta)$

• Lewis and Sappington (1989) + Jullien (2000)

- $\triangleright~$ Countervailing incentives imply that IR constraints of types interior to $[0,\bar{c}]$ can bind
- Virtual surplus (once local IC incorporated) must be rewritten to make this feature appear
- Virtual surplus not concave in q for all θ + virtual marginal surplus not monotonic with θ
 - Quantity ordered can hit an upper bound (which exists for all demand functions) depending on which IR constraints bind
 - \triangleright Monotonicity of $q^*(\theta)$ must be granted
- Global IC constraint satisfied if $q^*(\theta)$ is monotonic
 - \triangleright Rotations imply that there is no frontier in the graph (θ, q) along which global deviations must be checked

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Model 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Resolution (sketch) to construct $q^*(\theta)$

- Lewis and Sappington (1989) + Jullien (2000)
 - \triangleright Countervailing incentives imply that IR constraints of types interior to $[0,\bar{c}]$ can bind
 - Virtual surplus (once local IC incorporated) must be rewritten to make this feature appear
- Virtual surplus not concave in q for all θ + virtual marginal surplus not monotonic with θ
 - Quantity ordered can hit an upper bound (which exists for all demand functions) depending on which IR constraints bind
 - \triangleright Monotonicity of $q^*(\theta)$ must be granted
- Global IC constraint satisfied if $q^*(\theta)$ is monotonic
 - \triangleright Rotations imply that there is no frontier in the graph (θ, q) along which global deviations must be checked

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Resolution (sketch) to construct $q^*(\theta)$

- Lewis and Sappington (1989) + Jullien (2000)
 - \triangleright Countervailing incentives imply that IR constraints of types interior to $[0,\bar{c}]$ can bind
 - Virtual surplus (once local IC incorporated) must be rewritten to make this feature appear
- Virtual surplus not concave in q for all θ + virtual marginal surplus not monotonic with θ
 - Quantity ordered can hit an upper bound (which exists for all demand functions) depending on which IR constraints bind
 - ▷ Monotonicity of $q^*(\theta)$ must be granted
- Global IC constraint satisfied if $q^*(\theta)$ is monotonic
 - \triangleright Rotations imply that there is no frontier in the graph (θ, q) along which global deviations must be checked

Resolution (sketch) to construct $q^*(\theta)$

- Lewis and Sappington (1989) + Jullien (2000)
 - ▷ Countervailing incentives imply that IR constraints of types interior to $[0, \bar{c}]$ can bind
 - Virtual surplus (once local IC incorporated) must be rewritten to make this feature appear
- Virtual surplus not concave in q for all θ + virtual marginal surplus not monotonic with θ
 - Quantity ordered can hit an upper bound (which exists for all demand functions) depending on which IR constraints bind
 - ▷ Monotonicity of $q^*(\theta)$ must be granted
- Global IC constraint satisfied if $q^*(\theta)$ is monotonic
 - ▷ Rotations imply that there is no frontier in the graph (θ, q) along which global deviations must be checked

troduction Results overview Literature Model Resolution Results 00 00 00 000 000 0●0 0000

Downstream firm D relaxed problem

• $D \max \pi_D^e$ w.r.t. $(q(\theta), \pi_U(q(\theta); \theta))$ for all $\theta \in [0, \bar{c}]$

$$\pi_D^e = \int_0^{\bar{c}} \Pi(q(\theta); \theta) - \pi_U(q(\theta); \theta) dF(\theta)$$
(8)

$$\begin{array}{ll} \text{subject to } (IR)_{\theta}: & \pi_{U}(q(\theta);\theta) \geq 0 \quad \forall \theta \in [0,\bar{c}] \\ & (LIC)_{\theta}: & \pi'_{U}(q(\theta);\theta) = -C_{\theta}(q(\theta);\theta) \quad \forall \theta \in [0,\bar{c}] \\ & (MON): & q'(\theta) \leq 0 \text{ if } q \leq q^{0} \text{ and } q'(\theta) \geq 0 \text{ if } q \geq q^{0} \end{array}$$

- $\mu(\theta)$ multiplier of $(IR)_{\theta}$: opportunity gain to reduce π_U to 0
- $\mu(\theta)$ assumed to be integrable, $M(\theta) = \int_0^{\theta} \mu(t) dt$: cumulated opportunity gain to reduce π_U to 0 for all types t = 0 to $t = \theta$

Results overview	Literature	Model	Resolution	Results
00	00	00000	000	0000

• Expected virtual surplus (IPP from the Lagrangian of (8))

$$V_D^e = \int_0^{\bar{c}} \Pi(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta}(q(\theta);\theta) dF(\theta)$$
(9)

• point-wise optimization w.r.t. $q(\theta)$ for each θ gives

$$\Pi_{q}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta q}(q(\theta);\theta) = 0$$
(10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\Pi_{qq}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta qq}(q(\theta);\theta) \le 0.$$
(11)

- $M(\theta)$ behaves as a C.D.F. over $[0, \bar{c}]$ (possibly degenerated)
- Search for $(q^*(\theta), M^*(\theta))$ solving (10) and (11) for every θ

Results overview	Literature	Model	Resolution	Results
00	00	00000	000	0000

• Expected virtual surplus (IPP from the Lagrangian of (8))

$$V_D^e = \int_0^{\bar{c}} \Pi(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_\theta(q(\theta);\theta) dF(\theta)$$
(9)

• point-wise optimization w.r.t. $q(\theta)$ for each θ gives

$$\Pi_{q}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta q}(q(\theta);\theta) = 0$$
(10)

$$\Pi_{qq}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta qq}(q(\theta);\theta) \le 0.$$
(11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $M(\theta)$ behaves as a C.D.F. over $[0, \overline{c}]$ (possibly degenerated)
- Search for $(q^*(\theta), M^*(\theta))$ solving (10) and (11) for every θ

Results overview	Literature	Model	Resolution	Results
00	00	00000	000	0000

• Expected virtual surplus (IPP from the Lagrangian of (8))

$$V_D^e = \int_0^{\bar{c}} \Pi(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_\theta(q(\theta);\theta) dF(\theta)$$
(9)

• point-wise optimization w.r.t. $q(\theta)$ for each θ gives

$$\Pi_{q}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta q}(q(\theta);\theta) = 0$$
(10)

$$\Pi_{qq}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta qq}(q(\theta);\theta) \le 0.$$
(11)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $M(\theta)$ behaves as a C.D.F. over $[0, \bar{c}]$ (possibly degenerated)
- Search for $(q^*(\theta), M^*(\theta))$ solving (10) and (11) for every θ

Results overview	Literature	Model	Resolution	Results
00	00	00000	000	0000

• Expected virtual surplus (IPP from the Lagrangian of (8))

$$V_D^e = \int_0^{\bar{c}} \Pi(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_\theta(q(\theta);\theta) dF(\theta)$$
(9)

• point-wise optimization w.r.t. $q(\theta)$ for each θ gives

$$\Pi_{q}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta q}(q(\theta);\theta) = 0$$
(10)

$$\Pi_{qq}(q(\theta);\theta) - \frac{F(\theta) - M(\theta)}{f(\theta)} C_{\theta qq}(q(\theta);\theta) \le 0.$$
(11)

- $M(\theta)$ behaves as a C.D.F. over $[0, \bar{c}]$ (possibly degenerated)
- Search for $(q^*(\theta), M^*(\theta))$ solving (10) and (11) for every θ

Bounds on $q^*(\theta)$ for M = 0 and M = 1

- $\tilde{q}(\theta, 0)$ maximizes V_D^e for M = 0, $\tilde{q}(\theta, 1)$ for $M(\theta) = 1$
- $C_{\theta q} < 0 \Rightarrow \mathbf{\tilde{q}}(\theta, \mathbf{1}) \le \mathbf{q}^{\mathsf{M}}(\theta) \le \mathbf{\tilde{q}}(\theta, \mathbf{0}) \text{ (equal at 0 and } \bar{c})$

Figure – Bounds on $q^*(\theta)$ for M = 1 or M = 0 for all $\theta \in [0, \overline{c}]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

uction Results overview Literature Model Resolution Results 00 00 000 000 000 000 000

Determination of $q^*(\theta)$

How large market demand is determines where (and for which types) the IR constraints bind

- Only the IR of $\theta = \overline{c}$ binds on small markets
- Only the IR of $\theta = 0$ binds on large markets
- For intermediate demand, the IR of an interval of types bind, around θ^0 such that $q(\theta^0) = 2q^0$, which all produce $q(\theta^0)$ (*interval is endogenous*)
- A single contract ordering 2q⁰ and reimbursing C(2q⁰) can be offered to any supplier without leaving a rent - bunching types is profitable for the retailer, at the loss of marginal efficiency

iction Results overview Literature Model Resolution Results 00 00 0000 000 000 000

Determination of $q^*(\theta)$

How large market demand is determines where (and for which types) the IR constraints bind

- Only the IR of $\theta = \overline{c}$ binds on small markets
- Only the IR of $\theta = 0$ binds on large markets
- For intermediate demand, the IR of an interval of types bind, around θ^0 such that $q(\theta^0) = 2q^0$, which all produce $q(\theta^0)$ (interval is endogenous)
- A single contract ordering 2q⁰ and reimbursing C(2q⁰) can be offered to any supplier without leaving a rent - bunching types is profitable for the retailer, at the loss of marginal efficiency

Determination of $q^*(\theta)$

How large market demand is determines where (and for which types) the IR constraints bind

- Only the IR of $\theta = \overline{c}$ binds on small markets
- Only the IR of $\theta = 0$ binds on large markets
- For intermediate demand, the IR of an interval of types bind, around θ^0 such that $q(\theta^0) = 2q^0$, which all produce $q(\theta^0)$ (interval is endogenous)
- A single contract ordering 2q⁰ and reimbursing C(2q⁰) can be offered to any supplier without leaving a rent - bunching types is profitable for the retailer, at the loss of marginal efficiency

Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	00000	000	0000

Intermediate demand : graphical illustration

Figure $-C_q(2q^0; \bar{c}) \le P(2q^0) + 2q^0 P'(2q^0) \le C_q(2q^0; 0)$

Figure - Equilibrium when intermediate demand

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Results overview	Literature	Model	Resolution	Results
000	00	00	00000	000	0000

Large demand : graphical illustration

Figure – Equilibria when market demand is large

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00