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When a supplier cost to scale up production is unknown except to this

firm, we show that a retailer’s optimal purchase policy depends on market

demand: when demand is large, the retailer over-purchases from types who

face decreasing returns, under-purchases from types who face constant returns,

and purchases an inflexible quantity independent of demand from a set of

intermediate types. Such policy prevents small scale suppliers to under-state

the degree of decreasing returns, and large scale suppliers to over-state their

capacity constraint. When demand is low enough, the retailer under-purchases

to all types except to the most efficient one, and an inflexible rule consisting

in not purchasing from large scale producers can be used. The second best

purchase policy is such that the retail price can be above or below that of an

integrated monopoly.
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1 Introduction

As pointed out by many empirical analysis, firms display an enormous amount of

heterogeneity even within the same industry, be it on their production technology or

on the cost of their inputs. This heterogeneity also prevails geographically, no matter

whether U.S. firms or firms from developing countries are considered1. Productivity

or cost functions estimations2 also show that firms operate neither at the same scale

nor with the same level of efficiency, and often face increasing marginal costs of

production, that is decreasing returns-to-scale3.

Although it is not their focus, all these estimations also allow to emphasize an

important issue. Once a firm has chosen its short-run capacity of production and

once its operations are planned, generally based on demand forecasts and given

longer run investments whose costs are sunk4, a firm’s short run cost structure

is fixed. When the production and sales phases start, given the orders already

confirmed, each new order a firm receives exhausts its planned capacity. Once it

is fully used, additional orders force this firm to increase its capacity by acquiring

extra inputs (e.g. temporary labor or raw materials/components from spot markets),

and/or by increasing the number of workers shifts (if the installed production tools

or the labour legislation allow to), and/or by subcontracting part of the additional

orders received. These solutions can be more costly at the margin than what the

firm had been planned ex-ante. How low and how steep is the marginal cost curve

of a firm depend therefore on the technological choice made (whose cost is sunk),

as well as on the orders received. Differences in efficiencies as well as in residual

capacities may coexist and appear in the changes of the marginal cost of production

when the level of production changes. As the most efficient operators can attract

customers more easily than the least efficient ones, efficiencies and residual capacities

1See for example Baily et al [4], Bartelsman and Dhrymes [5], and Roberts and Tybout [22].
2See amongst others Beard et al [6], Röller [23], Van Biesebroeck [25] or Kim and Knittel [16].
3For example Van Biesebroeck [25] points out that these differences, and in particular decreasing

returns, may come from the use of a lean manufacturing system instead of a mass production system

which generates more economies of scale.
4In capital, such as in a plant or in the machines needed. Planning production is of concern to

management scientists but also to economists, at least as early as in Holt, Modigliani, Muth and

Simon [12]. The rationale for sharing production plans with suppliers in the automobile industry

is studied in Doyle and Snyder [10].
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can evolve in opposite directions: a firm’s residual capacity, embodied by how steep

its marginal production cost curve is, can be larger (i.e. the marginal cost can be

flatter) for the least efficient firms than for the most efficient ones at any point in

time.

Whether a supplier’s residual capacity is large or not, and whether a firm’s

marginal cost is low or not, is generally not observable to a buyer5. This is notably

the case for perishable products or services. For example in consulting services,

the composition of the labour force of a firm by level of seniority can generate

all sorts of patterns for the marginal cost of production of achieving a particular

mission. In the fast fashion industry, the total cost to produce a collection results

from a combination of human labor and machines which is not observable to the

buyer6. When deciding how much to order, a buyer may face an efficient but capacity

constrained seller, or on the contrary an inefficient but capacity unconstrained seller,

or any combination between these two extremes. These differences in marginal costs

of production result in differences in total cost of production of these different types

of suppliers, which may give each of them the opportunity to raise some profits. For

example a supplier efficient at the margin but experiencing large decreasing returns-

to-scale could pretend it is less efficient but less capacity constrained. A supplier

less efficient at the margin but less capacity constrained could pretend it is more

capacity constrained. Depending on the demand it faces, a buyer (be it a retailer, a

downstream manufacturer, or a client) therefore faces a tension between procuring

the quantity of product it needs as efficiently as possible (i.e. which limits the

informational rents of its supplier), and ordering an optimal quantity which allows

to serve the downstream market optimally.

In this paper, we characterize a retailer’s optimal purchase strategy to a supplier

whose marginal cost of production is unknown to all but itself. The supplier either

faces decreasing returns-to-scale and is more efficient at the margin than other types

of suppliers to produce at a small scale, or faces constant returns-to-scale and is

more efficient at the margin than other types at producing at a large scale, or

any combination of these two situations such that the steeper the marginal cost of

production the smaller its intercept and reciprocally. A unique type represents these

5For example see again Van Biesebroeck [25].
6See Cachon and Zhang [9].
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differences across suppliers: low types have low marginal costs for low output levels

(and high marginal costs for high output levels), while high types have low marginal

costs for high output levels (and high marginal costs for low output levels). Hence

the marginal costs of production do not have the same ranking across types when

the production increases.

Two fundamental assumptions satisfied by the basic textbook principal-agent

model do not hold any more in our setting. First, the marginal costs of production

of the different types of supplier, which rotate around a single output level when

the type changes, do not allow the supplier’s payoff to satisfy the Spence-Mirrlees

condition7. Second, as total costs of production obtain from the summation of all

the marginal costs a type faces to produce an output level, low types can produce

more cheaply small output levels than high types, while high types can produce

more cheaply large output levels. Therefore total costs of production are equal to

each other for a given output, but do not rank identically across types depending

on the production level considered. To say it differently, the supplier’s payoff is not

monotonic in its type, and hence countervailing incentives are present8.

We characterize the distortions the retailer acting as a principal chooses on the

quantity it purchases, compared to what a fully informed monopoly would purchase

and resell. We demonstrate that these distortions depend on how the market demand

the retailer faces compares to the determinants of a supplier’s cost of production.

When demand is large, the retailer’s purchase policy must prevent small scale

suppliers to over-state their capacity by over-stating their type, as well as large

scale suppliers to under-state their type (and hence their capacity). When paid

as the opposite type of supplier, such untruthful reports would allow small scale

producers to gain on the production of all the initial units (on which they are more

efficient at the margin than large scale producers), even if they loose on the last

units produced. Reciprocally, large scale producers would gain on the production

of the last units produced, even if they loose on the initial units where small scale

producers are more efficient at the margin. To prevent this, the retailer must over-

purchase from small scale producers whose marginal cost is steep, under-purchase

7See Araujo and Moreira [1], [2] and Schottmüller [24].
8See Lewis and Sappington [19], Biglaiser and Mezzeti [7], Maggi and Rodriguez-Clare [21],

Jullien [15], and Boone and Schottmüller [8].
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from large scale producers whose marginal cost is flat, and purchase a fixed quantity

which is independent of demand from a set of intermediate types. This inflexible

rule is set at the output level at which total costs of production are equal to each

other across the various types. Under this second best purchase strategy, only the

extreme types as well as an interior one are required to produce the first best level,

and the inflexible purchase policy leaves no rent to the intermediate types. The

retailer’s second best purchase policy is such that the retail price can be above or

below that of an integrated monopoly in this case.

When demand is small, small scale producers are more attractive to the retailer,

and to induce truthful type reporting the retailer must under-purchase to all types

except to the one whose marginal cost is the steepest. Doing so, the retailer prevents

small scale producers to benefit from over-stating their capacity of production and be

paid as a large scale producer required to product a small batch. By introducing an

inflexible rule which consists in not purchasing from the largest scale producers, the

retailer is able to reduce the informational rents left to all the small scale producers

which are required to produce a positive quantity. In this case the retail price of the

product is definitely above what an integrated perfectly informed monopoly would

choose, and the product is not always marketed.

How a firm shall source the input it uses has been the subject of many studies,

which either belong to the literature studying the regulation of firms under asymmet-

ric information9, or which belong to the literature studying spit-award auctions10.

Our paper crosses two streams of research in the principal-agent literature which, to

our knowledge, have been examined separately so far. In Lewis and Sappington [19],

affine total costs of production change with the agent’s type and countervailing in-

centives follow from the tension between misreporting one’s fixed and one’s unit cost

of production. This tension occurs more generally when the agent’s outside option

depends on its type, which has been analyzed comprehensively in Jullien [15]. We

show that countervailing incentives may also follow from differences between the de-

terminants of the variable cost of production of a firm, namely the intercept and the

slope of the marginal cost, in a model where fixed costs are sunk and hence outside

9See Laffont and Tirole [18]
10Our primary focus is not to discuss whether single or multiple sourcing should occur - we

assume single sourcing. However single sourcing is a theoretical equilibrium prediction of the

split-award auctions literature (see Inderst [13]).
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options can be normalized to zero for all types. Over-production, under-production,

and an inflexible purchase rule can occur in equilibrium. This mirrors in our setting

the seminal result obtained by Lewis and Sappington [19] and [20].

As we argued, countervailing incentives result from the fact that the marginal

cost of production is not monotonic in a supplier’s type. The Spence-Mirrlees con-

dition fails to be satisfied, and our paper therefore relates to Araujo and Moreira [1]

and [2], and Schottmüller [24]), which demonstrate that a global (non local) incen-

tive compatibility constraint must be taken into account. Under the assumption that

marginal costs functions rotate around each other as the supplier’s type changes, we

demonstrate that the global (non local) incentive constraints never bind when the

purchase order is monotonic with respect to the supplier’s type.

The monotonicity of the quantity purchased in the supplier’s type, as well as the

concavity of the virtual surplus, interact with the participation constraints which

can be binding for any type due to the presence of countervailing incentives (as in

Jullien [15]). We characterize sufficient conditions under which monotonic second

best purchase orders are chosen at equilibrium by the retailer11. This is in contrast

with Schottmüller [24], who analyzes the case where quadratic cost functions depend

on the agent’s type through the variable total cost of production and also through

type-dependent fixed costs, in such a manner that the agent’s payoff is monotonic

in its type. In such a setting, he characterizes the effect of non local incentive

constraints; in particular he shows that distortions may occur including for the type

which realizes the first best.

No matter whether the market demand is large or small, asymmetric information

results in additional social losses compared to a perfectly informed monopoly, even

if the retailer is able to contract with its supplier and double marginalization is

absent. Our results have several striking testable implications: first, to stop high

types from pretending they are more capacity constrained than what they truly are,

the retailer must purchase a smaller quantity than what would occur if information

was symmetric. This strategy is chosen by the retailer when the market demand

is large enough, case in which the downstream retail price will be above what an

integrated or informed monopoly would choose. This effect worsens the natural

11With the further specificity that the quantity purchased at the second best is not continuous

in the agent’s type, and jumps upward to reach the inflexible rule.
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price increase which occurs during an economic “boom”. On the contrary to stop

low types to pretend they are less capacity constrained than what they truly are,

the retailer must purchase a larger quantity than what would occur if information

was symmetric. This strategy is chosen by the retailer when the market demand

is small enough, case in which the downstream retail price will be below what an

integrated or informed monopoly would choose. This effect worsens the natural fall

in prices which occurs in an economic downturn. Last but not least, the retailer can

be better off with an inflexible purchase rule, which consists in ordering a quantity

which can be produced at the same total cost by the different types. Doing so,

informational rents are reduced to 0 but the quantity ordered does not depend on

the market demand anymore. We show that such a policy is optimal in the absence

of exogenous administrative costs, but results rather from asymmetric information.

The rest of the paper is organized as follows: section 2 presents our model, and

section 3 presents some preliminary results. Then section 4 characterizes the second

best purchase policy when demand is large, while section 5 when it is small.

2 The Model

A downstream retailer D sells to its customers a (non-negative) quantity of product

q, which it procures from a single upstream supplier U for a payment T . The

product is perishable and cannot be stored12. The consumers’ inverse demand is

denoted P (q), which is linear and strictly decreasing in q,

P (q) = max{a− bq, 0} with a > 0, b > 0. (1)

We let P ′(q) denote the first order derivative of the inverse demand13. The retailer’s

profit is therefore given by

πD(q;T ) = P (q)q − T. (2)

12Therefore the product traded can be a service the downstream firm purchases from the up-

stream one, as e.g. a number of hours of subcontracting. Strictly speaking to match the consulting

interpretation we discussed briefly in the introduction, we should assume that the service gener-

ates a strictly concave revenue R(q) to firm D, with R′′ < 0 and constant. The analysis of the

non-perishable good case is left for another study.
13We use a ′ to indicate the total derivative of a function with respect to a variable.
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The upstream supplier U cannot directly access the market, and produces the

quantity q with a technology of production whose investment costs are sunk and

normalized to 0, and whose variable cost of production is continuous and convex in

q. This variable cost also depends on a parameter θ, which is private information to

firm U . We denote C(q; θ) the total cost of production of supplier U , given by14

C(q; θ) = θq +
1

2
d(θ)q2 for all q ≥ 0, with θ ≥ 0, d(θ) ≥ 0, (3)

so that its profit writes

πU(q;T ; θ) = T − C(q; θ). (4)

The parameter θ is the realization of a random variable Θ which is drawn ac-

cording to a cumulative distribution function F (θ) on a bounded support [0, c̄], and

is revealed only to U . This parameter θ determines the value of the function d(θ),

which is continuous and strictly decreasing in θ. Whereas θ is unknown to D, the

function d(·) is common knowledge to U and D. We assume

d(θ) = d̄

(
1− θ

c̄

)
, (5)

which belongs to [0, d̄] as θ varies in [0, c̄]. Therefore once θ is drawn, U learns θ

and d(θ) but D does not.

We denote Cq(q; θ) the first order partial derivative with respect to q, i.e. the

marginal cost of supplier U to produce q when it is of type θ

Cq(q; θ) = θ + d̄

(
1− θ

c̄

)
q. (6)

The first order and the cross-partial derivatives with respect to θ (and respectively

θ and q) are equal to

Cθ(q; θ) = q − d̄

2c̄
q2 and Cqθ(q; θ) = 1− d̄

c̄
q. (7)

Finally the second and third order derivatives of the cost function are

Cqq(q; θ) = d̄

(
1− θ

c̄

)
≥ 0, Cqθθ(q; θ) = 0, and Cqqθ(q; θ) = − d̄

c̄
< 0. (8)

14Assuming that fixed costs are sunk allows us to focus on countervailing incentives which come

from increasing marginal costs of production, and not from type dependent participation constraints

as in Jullien [15]. This cost function also differs from the example in Schottmüller [24], in which non

sunk type-dependent fixed costs are introduced to ensure that informational rents are monotonic

in the agent’s type and hence that countervailing incentives are absent.
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The first order and the cross-partial derivatives defined in (7) do not have a constant

sign as q varies: Cθ(q; θ) > 0 if q < 2c̄
d̄
≡ 2q0 and strictly negative if q > 2q0,

while Cqθ(q; θ) > 0 if q < c̄
d̄
≡ q0 and is strictly negative if q > q0. Therefore

given a payment T offered for a purchase of q, πU(T, q) = T − C(q; θ) is such that
∂2πU (q;θ)
∂q∂θ

= −Cqθ(q; θ) > 0 if q > q0 and negative else. Therefore when q > q0 we

are working under the CS+ assumption, while when q < q0 we are working under

CS−15. Moreover ∂πU (q;θ)
∂θ

= −Cθ(q; θ) > 0 if q > 2q0, and negative else, so that to

carry on with the terminology Guesnerie and Laffont [11], rotations of marginal costs

imply that there are 3 regions of concern in the production space: q ≥ 2q0, in which

the supplier’s profit verifies CS + +, q0 ≤ q ≤ 2q0 in which it verifies CS +−, and

q ≤ q0 in which it verifies CS−−. The fact that the derivative of the supplier profit

function with respect to θ changes sign in 2q0 generates countervailing incentives in

our model16.

Figure 1 (left panel) illustrates the dependance of the total cost function to the

supplier’s type: the total costs intersect twice, at q = 0 where there are all nil,

and at 2q0, where they are all equal to C(2q0). When θ tends to 0, the slope of the

marginal cost tends to d̄ while, when θ tends to c̄ the slope of the marginal cost tends

to 0. All marginal costs rotate around the same value q0. Under these assumptions,

a very efficient supplier (θ = 0) is strongly capacity constrained (d(0) = d̄) and

operates therefore very efficiently at a small scale, while the least efficient supplier

faces constant returns-to-scale (θ = c̄ and d(c̄) = 0) and therefore operates more

efficiently than other types of suppliers at a large scale17. Moreover, three regions

of interest matter to the determination of the incentive contract offered by D as we

demonstrate below: around q = 2q0, where total costs are large but are all close to

each other, and where marginal costs differ a lot; around q = 0, where total costs

are small but are again all close to each other, and where again marginal costs differ

15See Guesnerie and Laffont [11], and Laffont and Martimort [17].
16See Lewis and Sappington [19], Maggi and Rodriguez-Clare [21] and Jullien [15].
17Johnson and Myatt [14] study how monopoly pricing reacts to changes in the shape of demand,

when shifts in demand occur through rotations and in the absence of private information. Araujo

and Moreira [2] study monopoly pricing when the inverse demands of different types of consumers

rotate around a single value, which causes the single crossing condition to not hold. They assume

that countervailing incentives are absent. We analyze the incentives a monopolistic retailer must

deal with when it orders to a supplier whose scale and efficiency are inversely related, in the simplest

model where these features appear.
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a lot; last around q = q0, where total costs are intermediate but differ a lot from

each other, while marginal costs are all close to each other.

+

0
q

Total cost

+

+

+

+

q0 2q0

C(2q0)

C(q; 0)

C(q; c̄)

(a) Total costs for θ = {0, c̄}

+

0
q

Marginal cost

+ +

q0 2q0

Cq(q; 0)

Cq(q; c̄)

Marginal revenue (large demand)

Marginal revenue

(low demand)

+

+

qM (c̄)

qM (0)

+

+qM (0)

qM (c̄)

(b) Monopolistic purchases for θ ∈ {0, c̄}

Figure 1: Supplier’s costs and monopoly production as types and demand change

The cumulative distribution function and the density function of θ are continuous

on [0, c̄] and given respectively by

F (θ) ∈ [0, 1] and f(θ) ≥ 0 for θ ∈ [0, c̄], (9)

where F (θ) verifies18

∂

∂θ

(
F (θ)

f(θ)

)
≥ 0 ≥ ∂

∂θ

(
1− F (θ)

f(θ)

)
for θ ∈ [0, c̄]. (10)

To procure the quantity q it markets, retailer D is able to offer a menu of con-

tracts to its upstream supplier U , from which U can choose. From the Revelation

Principle, any contract can be mimicked by a direct revelation mechanism in which

18As explained below, the cost structure we consider is such that the objective function of the

principal (here firm D) is not necessary concave in the purchase order q. Under the assumption

we make on F (θ), there could exist some types strictly greater than a threshold type θ̄ such that

the objective function is convex for θ > θ̄, and concave else. This assumption on F (θ) is identical

to that in Jullien [15], and satisfied if F (θ) is log-concave (see Bagnoli and Bergstrom [3]).
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the agent truthfully report its type. A direct revelation mechanism consists in a

pair of functions of the type θ̃ reported by U ,
(
T (θ̃), q(θ̃)

)
, which correspond to

the payment and the purchase order D sends to supplier U , and to which D com-

mits. Supplier U announces a type θ̃ ∈ [0, c̄], and truth-telling occurs when the

contract offered by the retailer satisfies the following set of incentive-compatibility

constraints:

πU(q(θ); θ) ≥ πU(q(θ̃); θ) for θ̃ 6= θ, (11)

where the ex-post profit of supplier U of type θ reporting θ̃ is given by:

πU(q(θ̃); θ) = T (θ̃)− C(q(θ̃); θ) for θ ∈ [0, c̄]. (12)

If it does not accept the contract offered by the downstream retailer D, the upstream

supplier U earns no profit.

The retailer D earns an expected profit19 equal to

πeD(θ̃) = E
(
P (q(θ̃))q(θ̃)− T (θ̃)

)
(13)

where the expectation is computed on the distribution of types F (θ). The timing of

the game is the following:

1. Nature draws the type θ of supplier U and informs this firm;

2. The retailer D offers a menu of binding contracts to U ,
(
T (θ̃); q(θ̃)

)
θ̃∈[0,c̄]

;

3. U reports its type;

4. U produces q(θ̃) which is then sold by D, and payoffs are realized.

The profit πU(q(θ); θ) and the quantity ordered to each supplier’s q(θ) must

be such that reporting θ̃ = θ is optimal for each type of supplier U . Replacing

T (θ) = πU(θ; θ) + C(q(θ); θ) into the expression of D’s expected profit, the retailer

optimization problem consists in choosing the quantity ordered q(θ) and a profit

level for its supplier πU(θ; θ) which maximizes its expected profit

πeD(θ) = E (P (q(θ))q(θ)− πU(q(θ); θ)− C(q(θ); θ)) (14)

19Since the product is perishable and leftover inventories could be infinitely costly to dispose

(economically or for reputation reasons, as the recent scandals on Amazon leftovers inventories

showed), D cannot sell less than the quantity purchased. That is, D’s sales are exactly equal to

its purchases q. The case of a storable good is left for another paper.
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subject to the supplier’s individual rationality (IR) and the incentive compatibility

(IC) constraints :

(IR) πU(q(θ); θ) ≥ 0 for all θ ∈ [0, c̄] (15)

(IC) πU(q(θ); θ) ≥ πU(q(θ̃); θ) for all (θ̃, θ) ∈ [0, c̄]× [0, c̄]. (16)

Moreover the retailer never obtains a profit below her reservation level normalized

to zero:

q(θ) ≤ 2(a− θ)
2b+ d(1− θ

c
)
≡ qmax(θ). (17)

The value qmax(θ) is the maximum quantity ordered by D for each possible value of

θ.

We can define the symmetric information benchmark. Let the industry profit,

and its derivative with respect to q, when supplier U ’s total cost is common knowl-

edge, be given by

Π(q; θ) = P (q)q − C(q; θ) and Πq(q; θ) = P (q) + qP ′(q)− Cq(q; θ). (18)

Under our assumptions, Π(q; θ) is continuous, differentiable and concave in q. If D

cannot discriminate consumers, we have:

Definition 1 (Monopolistic purchases) The integrated monopoly production qM(θ)

is the unique solution of Πq(q
M(θ); θ) = 0, equal to

qM(θ) =
a− θ

2b+ d̄
c̄
(c̄− θ)

, with derivative qM
′
(θ) =

−2b− d̄+ d̄
c̄
a(

2b+ d̄
c̄
(c̄− θ)

)2 .

We refer to this threshold as being the monopoly one hereafter20. This quantity

qM(θ) is equal to half of the maximum quantity qmax(θ) for each θ. Figure 1 (right

panel) illustrates for θ = 0 and θ = c̄ the cost function of the supplier and the

quantity an integrated monopoly would produce and sell, which varies with the size

of market demand: when demand is large, monopolistic purchases increase with the

intercept of the supplier’s marginal cost of production θ, while when demand is low,

monopolistic purchases decrease with θ.

20The first best level of production for the entire economy obtains when the market price is equal

to the marginal cost θ, P (qFB(θ))− Cq(qFB(θ); θ) = 0, which gives here qFB(θ) = a−θ
b+ d̄

c̄ (c̄−θ)
.

12



3 Preliminary results

In this section, we establish some preliminary results which allow us to characterize

some properties of the contract offered by the retailer at equilibrium. The first

subsection presents the optimality conditions which are derived from the supplier’s

maximization problem. The second subsection studies the properties of the virtual

surplus which follow from our assumptions on the marginal cost of production of

the supplier.

3.1 Incentive compatibility conditions for the supplier

The first two Lemmas below follow directly from the changes in the sign of ∂2πU
∂q∂θ

and ∂πU
∂θ

when q varies, and adapt to our setting the standard results of adverse

selection models with a continuum of types. The third Lemma provides a condition

on the quantity scheme q(θ) offered by the retailer at equilibrium, under which the

producer has no opportunity to deviate globally and hence under which only the

local incentive constraints matter.

When Cqθ changes sign as the quantity varies, satisfying locally the incentive

compatibility constraints implies that the purchase order q(θ) must be increasing or

decreasing in the supplier’s type θ depending on how the order compares to q0. We

have:

Lemma 1 In any local optimum of the retailer which satisfies the supplier’s (IC)

constraints, q(θ) must be (weakly) decreasing with θ (q′(θ) ≤ 0) when q(θ) ≤ q0, and

(weakly) increasing with θ (q′(θ) ≥ 0) when q(θ) ≥ q0.

Proof. See Appendix A.1.‖

A second result characterizes the non-monotonicity of the net profit of supplier

U when θ changes: incentive compatible contracts must leave a minimal rent to the

type to which a contract purchasing 2q0 is offered (should the menu of incentive

compatible contracts include such a quantity). We have:

Lemma 2 In any local optimum of the retailer which satisfies the supplier’s (IC)

constraints, the derivative of πU(q(θ); θ) with respect to θ is π′U(q(θ); θ) = −Cθ(q(θ); θ),
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which is strictly positive when q(θ) > 2q0, strictly negative when q(θ) < 2q0, and nil

when q(θ) = 2q0 or q(θ) = 0.

Proof. See Appendix A.2.‖

Therefore to forbid the supplier to lie locally, the retailer must choose a quan-

tity scheme q(θ) and a rent πU(q(θ); θ) which are both increasing with θ when the

quantity ordered exceed 2q0. When the quantity ordered belongs to [q0, 2q0], the

quantity scheme must increase with θ but the rent must decrease with θ. Finally

when the quantity ordered is lower than q0, both the rent and the quantity scheme

must decrease with θ.

Since the Spence-Mirrlees condition is not satisfied, the contract offered by the

retailer to its supplier must not only satisfy its local incentive constraints, but it

must also satisfy the non-local ones21: supplier U of type θ must not find profitable

to announce to be a type θ̂ “far” from θ in [0, c̄]. As the proof of Lemma 3 below

shows, the difference of profit supplier U earns from announcing θ̂ instead of θ when

its true type is θ rewrites as a function of the cross-partial derivative of the total

cost of production Cqθ(q; θ):

πU(q(θ); θ)− πU(q(θ̂); θ) = −
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃ =

∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

(
q

q0
− 1

)
dq̃dθ̃.

(19)

Then the non-local incentive constraints states that this profit difference must be

positive for any announcement θ̂ different from supplier U ’s true type θ,∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

(
q

q0
− 1

)
dq̃dθ̃ ≥ 0 ∀(θ, θ̂) ∈ [0, c̄]× [0, c̄], θ̂ 6= θ. (20)

As established when presenting our model, when marginal costs rotate around a

unique value q0, the cross-partial derivative of the total cost of production Cqθ(q; θ)

becomes strictly negative when q is strictly larger q0 = c̄
d̄
, which is independent of

θ. Therefore:

Lemma 3 If the contract offered by the retailer D to its supplier U is such that

the quantity scheme q(θ) verifies either (i), minθ q(θ) > q0 and q′(θ) ≥ 0, or (ii),

maxθ q(θ) < q0 and q′(θ) ≤ 0, then the supplier’s non-local incentive compatibility

constraint is always satisfied with strict inequality.

21See Araujo and Moreira [1] and Schotmüller [24].
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Proof. See Appendix A.3.‖

Lemma 3 implies that if the contract offered by the retailer is such that minθ q
∗(θ) >

q0 or maxθ q
∗(θ) < q0, then the supplier’s non-local incentive compatibility constraint

can be neglected. Consequently we can determine the solution of a relaxed maxi-

mization program of the retailer D, in which the non-local incentive compatibility

constraint is absent, and then check that this relaxed solution verifies the conditions

in Lemma 3.

3.2 The retailer’s relaxed problem

The retailer’s relaxed optimization problem writes

maxπeD =

∫ c̄

0

Π(q(θ); θ)− πU(q(θ); θ)dF (θ) (21)

with respect to (q(θ), πU(q(θ); θ)) for all θ ∈ [0, c̄], subject to

πU(q(θ); θ) ≥ 0 ∀θ ∈ [0, c̄] (IR)

π′U(q(θ); θ) = −Cθ(q(θ); θ) ∀θ ∈ [0, c̄] (LIC)

q′(θ) ≤ 0 if q ≤ q0, and q′(θ) ≥ 0 if q ≥ q0 (MON)

q(θ) ≤ qmax(θ) ∀θ ∈ [0, c̄].

The solution to this problem is denoted (q∗(θ), π∗U(θ)) for θ ∈ [0, c̄]. The expected

virtual surplus can be determined and simplified as in Jullien [15], starting from the

maximization of the expected profit of the retailer πeD in (21) with respect to the (IR)

and (LIC) constraints. The presence of countervailing incentives implies that the

(IR) constraints of a subset of types interior to [0, c̄] can be binding, and hence we

focus for the moment on the determination of the expected virtual surplus without

introducing the monotonicity constraint into its expression. As we point out below,

the fact that marginal costs of production are not ranked across types interacts with

the fact that (IR) constraints may bind anywhere in [0, c̄]. It implies two difficulties:

first, the virtual surplus is not concave in q; second, its cross partial derivative with

respect to q and θ has not a constant sign.

Let µ(θ) be the non negative multiplier of the (IR) constraint of a type θ, which
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we assume to be an integrable function of θ22. We denote M(θ) the integral of µ(θ)

M(θ) =

∫ θ

0

µ(t)dt, (22)

and we let 1− F (θ) be a primitive of −f(θ) and 1−M(θ) be a primitive of −µ(θ).

Integrating by parts the expected virtual surplus gives

V e
D =

∫ c̄

0

Π(q(θ); θ)− πU(q(θ); θ)dF (θ) +

∫ c̄

0

µ(θ)πU(q(θ); θ)dθ

=

∫ c̄

0

Π(q(θ); θ)dF (θ) + [(1− F (θ))πU(q(θ); θ)]c̄0 −
∫ c̄

0

1− F (θ)

f(θ)
π′U(q(θ); θ)dF (θ)

− [(1−M(θ))πU(q(θ); θ)]c̄0 +

∫ c̄

0

1−M(θ)

f(θ)
π′U(q(θ); θ)dF (θ). (23)

The multiplier of a type θ (IR) constraint µ(θ) interprets as the opportunity gain

for the retailer to reduce πU(q(θ); θ) from an infinitesimal (positive) amount to 0,

holding the quantity q(θ) unchanged. As µ(θ) is positive or nil, M(θ) cannot de-

crease, and interprets as the opportunity gain D obtains by reducing uniformly the

profits left to all types between 0 and θ, from an infinitesimal (positive) amount to

0, holding all quantities unchanged. Then, keeping quantities unchanged, a uniform

reduction of profits across all types continuously distributed over [0, c̄] has a cumu-

lated opportunity gain given by M(c̄) = 1, and consequently M(θ) has the property

of a cumulated distribution function23.

Using the local incentive constraint (LIC) to substitute π′U(q(θ); θ) into V e
D above,

and assuming for the moment that M(0) = 024, the expected virtual surplus the

retailer maximizes with respect to q(θ) simplifies into:

V e
D =

∫ c̄

0

Π(q(θ); θ)− F (θ)−M(θ)

f(θ)
Cθ(q(θ); θ)dF (θ) (24)

It is the surplus when the informational rents induced by incentive compatibility

are taking into account. The point-wise optimization with respect to q(θ) for each

22For the moment, we neglect the cases where only the (IR) constraint of θ = 0 or of θ = c̄ bind.

We analyze these two situations as “corner cases” of Propositions 2 and 3 below.
23Moreover M(θ) remains constant on every interval of types for which µ(θ) = 0, and hence

when µ(θ) > 0, the support of types for which M(θ) ∈ (0, 1) is included in [0, c̄]. When only the

IR constraint of θ = 0 binds, then M(0) = 1 and 0 else, while when the IR constraint of θ = c̄

binds, then M(c̄) = 1 and 0 else.
24I.e. we exclude for the moment the case in which M(0) = 1 i.e. in which only the IR constraint

of the lowest type, θ = 0, binds. We discuss this case separately at the end of the section.
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θ gives the first and second order conditions

Vq(q(θ); θ) = Πq(q(θ); θ)−
F (θ)−M(θ)

f(θ)
Cθq(q(θ); θ) = 0 (25)

and

Vqq(q(θ); θ) = Πqq(q(θ); θ)−
F (θ)−M(θ)

f(θ)
Cθqq(q(θ); θ) ≤ 0. (26)

We need to address a first difficulty: the expected virtual surplus is not always con-

cave in the purchased quantity q(θ)25, even if Πqq(q(θ); θ) = 2P ′(q(θ)−Cqq(q(θ); θ) =

−2b−d(θ) is negative under our assumptions. Indeed, the second term of (26) above

is not always negative. On the one hand our assumptions on the marginal costs

curves impose that Cθqq(q(θ); θ) = d′(θ) is strictly negative. On the other hand,

since the support of M(θ) belongs to the support of F (θ) then when M(θ) = 1,

F (θ) − 1 ≤ 0 and the second term of (26) is negative, but when M(θ) = 0, the

second term of (26) is positive. Consequently the second order condition (26) is not

always negative, as F (θ)−M(θ) may be positive and may exceed the second order

derivative of the industry profit Πqq(q(θ); θ) (in absolute value).

A second difficulty that must be discussed is the possibility that the scheme q∗(θ)

which solves Vq(q(θ); θ) = 0 does not necessarily satisfy the ”piecewise” monotonicity

constraint, i.e. does not satisfy Lemma 1. There may be a contradiction between the

sign of Cθq(q(θ); θ) which depends only on how q(θ) compares to q0, implying the sign

of q′(θ), and the solution to the retailer’s optimization problem, which could require

q(θ) to evolve in the opposite direction as θ varies. Indeed, the retailer is better off

choosing the quantity scheme q∗(θ) whose derivative is equal to dq∗(θ)
dθ

= −Vqθ(q(θ);θ)

Vqq(q(θ);θ)
.

Let us further differentiate (25) with respect to θ. Under our assumptions on the

cost C(q; θ), Cθθq = 0, it comes:

Vqθ(q(θ); θ) =Πqθ(q(θ); θ)−
d

dθ

(
F (θ)−M(θ)

f(θ)

)
Cθq(q(θ); θ)

=− Cqθ(q(θ); θ)−
dF (θ)
f(θ)

dθ
Cθq(q(θ); θ) +

µ(θ)f(θ)−M(θ)f ′(θ)

(f(θ))2
Cqθ(q(θ); θ)

=− Cqθ(q(θ); θ)

1 +
d
(
F (θ)
f(θ)

)
dθ

− µ(θ)

f(θ)
+
M(θ)f ′(θ)

(f(θ))2

 (27)

25And therefore our model does not satisfy assumption 2 in Jullien [15], so that the property

called potential separation cannot be verified here.
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Consider the value of the expected virtual marginal surplus at the output level q0

where the Spence-Mirrlees condition changes sign, Vq(q
0; θ) = Πq(q

0; θ) as Cθq(q
0; θ) =

0. As Cq(q
0; θ) = c̄ for all types θ ∈ [0, c̄] and P ′(q0)q0 + P (q0) is independent of θ,

Vq(q
0; θ) does not depend on θ. Moreover, it can be positive or negative depending

on the size of the market demand. That is, the expected virtual marginal surplus has

the same value at q0 for all θ, which follows directly from the fact that all marginal

costs of production are equal to each other at q0. Let us denote Vq(q
0; θ) ≡ Vq(q

0).

Suppose first that Vq(q; θ) is declining in q implying that dq∗(θ)
dθ

is of the same sign

as Vqθ(q(θ); θ). When Vq(q
0) > 0, and as Vq is linear (and decreasing) in q, then the

quantity scheme q∗(θ) solution to the retailer’s relaxed optimization problem is such

that q∗(θ) > q0 for all types26. This requires from Lemma 1 that q′(θ) ≥ 0. In that

case Cqθ(q(θ); θ) < 0 for all types and the sign of Vqθ(q(θ); θ) is given by the sign of

1 +
d
(
F (θ)
f(θ)

)
dθ

− µ(θ)

f(θ)
+
M(θ)f ′(θ)

(f(θ))2
, (28)

which depends on the values of µ(θ) and M(θ). If this expression is negative for

some types, then Vqθ(q(θ); θ) < 0, and dq∗(θ)
dθ

is negative. This contradicts Lemma 1

and implies that ironing the quantity scheme can be required. This reasoning can

be mirrored to the case where Vq(q
0) < 0, case in which the quantity scheme q∗(θ)

solution to the retailer’s relaxed optimization problem is such that q∗(θ) < q0 for all

types27. Symmetrically, if we suppose that Vq(q; θ) is increasing in q, implying that
dq∗(θ)
dθ

is of the opposite sign as Vqθ(q(θ); θ), we obtain that when Vq(q
0) > 0, q∗(θ) =

qmax ≥ q0 for each θ, and by Lemma 1 q(θ) must be increasing. As q∗(θ) ≥ q0,

Cqθ(q(θ); θ) < 0 for all types, and the sign of −Vqθ(q(θ); θ) is given by the opposite

of the sign of 28 which can be positive or negative. In this case again, the reasoning

can be mirrored to the case where Vq(q
0) < 0.

In the two sections which follow, we analyze separately the two cases in which

either Vq(q
0) > 0 or in which Vq(q

0) ≤ 0. Using the expressions of the demand,

Vq(q
0) > 0 is equivalent to a >

(
1 + 2b

d̄

)
c̄. This case, addressed in section 4, cor-

responds to a large demand situation. The mirror case addressed in section 5,

Vq(q
0) ≤ 0 (or a ≤

(
1 + 2b

d̄

)
c̄), corresponds to a low demand situation. In both

cases, we start by determining the solution q∗(θ) first neglecting the monotonicity

26The optimal value q∗(θ) must be lower than qmax(θ).
27q∗(θ) must be greater than 0.
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constraint and the non-local incentive compatibility constraint. Then we determine

sufficient conditions under which these solutions are the actual global optima of

the retailer. Then when these sufficient conditions are not met, we determine the

optimal quantity scheme in which bunching occurs.

4 Optimal sourcing when demand is large

In this section, we consider the case of a large demand relative to the support of the

distribution of types/cost intercept: qM(0) ≥ q0, which is equivalent to Vq(q
0) > 0.

We demonstrate that the minimal quantity the retailer D orders to its supplier

when information is asymmetric is such that Cqθ(q, θ) is strictly negative. Under

this result, Lemma 3 applies, the quantity scheme q∗(θ) does not trigger a non local

deviation of any type. We address at the end of the section the possibility to bunch

types in order for the scheme offered to satisfy the monotonicity constraint.

Let us denote M∗(θ) the cumulated multiplier of the (IR) constraints. Two

caricatural quantity schemes are useful to determine q∗(θ) and M∗(θ). The first

one assumes away the (IR) constraints by supposing that they do not bind for

any type (M(θ) = 0), while the second one assumes that M(θ) = 1 for all types.

The equilibrium q∗(θ) we are searching for is in between or can match one of these

two solutions for some value of θ. Let us denote the quantities q̃(θ, 1) and q̃(θ, 0)

which maximize V e
D for respectively M(θ) = 1 and M(θ) = 0, for all θ ∈ [0, c̄]. To

determine q̃(θ, 1) and q̃(θ, 0), we need to impose the following assumption:

Assumption 1 In our model, the demand is such that P (0) − G(c̄) ≥ 0, where

G(θ) = θ + F (θ)
f(θ)

.

This assumption ensures that all types participate: we demonstrate below that

it implies that the quantity ordered by the retailer to any type is never nil. As

F (θ)/f(θ) is increasing in θ, G(θ) is increasing in θ and the second part of this

assumption can be satisfied by a demand function P (q) if (necessary condition)

f(c̄) > 0 6= 0 so that G(c̄) is bounded. To say it differently, Assumption 1 ensures

that the quantity ordered by the retailer exists for every θ even if the retailer’s profit

is convex in q.

Under Assumption 1, we can prove:
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Lemma 4 The unique values q̃(θ, 1) and q̃(θ, 0) which maximize V e
D respectively for

M = 1 and M = 0 are such that:

(i) q̃(θ, 1) is continuous and increasing in θ.

(ii) q̃(θ, 0) = min{˜̃q(θ, 0), qmax(θ)} is continuous and increasing in θ, and kinked

at θ such that ˜̃q(θ, 0) = qmax(θ).

(iii) q̃(θ, 0) ≥ qM(θ) ≥ q̃(θ, 1) ∀ θ ∈ [0, c̄], with q̃(0, 0) = qM(0) and q̃(c̄, 1) = qM(c̄).

Proof. See Appendix A.4‖.

+ +

0 c̄
θ

Quantity

+

¯̄θ

+qM (0)

+qM (c̄)

+q̃(¯̄θ, 0)

q̃(θ, 1)

q
M (θ)

q̃(θ, 0)

Figure 2: Monopolistic purchases (solid line) and virtual surplus optima (dashed

lines) when M = 1 or M = 0 for all θ ∈ [0, c̄]

Lemma 4 is illustrated in Figure 2. The upper and lower bounds on the equi-

librium quantity scheme q∗(θ) the retailer offers to its supplier depend on the types

whose (IR) constraints bind: q∗(θ) belongs to [q̃(θ, 1), q̃(θ, 0)], and it will equate

q̃(θ, 0) or q̃(θ, 1) for some types.

Note that 2q0, the quantity around which the derivative of the agent profit with

respect to θ changes sign, can be part of a contract which leaves no rent to the

supplier. Indeed, the contract (q(θ), πU(q(θ); θ)) = (2q0, 0) is implementable and
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satisfies the individual rationality constraint of all types θ ∈ [0, c̄], i.e. is feasible28.

This contract is such that the IR constraint of any type offered this contract is bind-

ing. Moreover as the industry profit Π(2q0; θ) ≥ 0 for all θ, the retailer can purchase

the product from any type of supplier by offering such a contract. From Definition

1, it exists a unique value θ0 such that 2q0P ′(2q0) + P (2q0) = Cq(2q
0; θ0). Depend-

ing on how large the market demand is, the type θ0 such that the corresponding

industry marginal profit is nil when the production is exactly equal to 2q0, belongs

to [0, c̄] or not. As the industry marginal profit is strictly decreasing in q, θ0 ∈ [0, c̄]

if 2q0P ′(2q0) + P (2q0) − Cq(2q0; 0) ≤ 0 and 2q0P ′(2q0) + P (2q0) − Cq(2q0; c̄) ≥ 0,

that is if the marginal revenue at 2q0 is in between the marginal cost of the lowest

type θ = 0 computed at 2q0, and the marginal cost of the highest type θ = c̄. We

start to consider this case and address the two other cases (θ0 < 0 or θ0 > c̄) at the

end of this section.

In what follows we maintain first our approach which consists in assuming that

Vθq ≥ 0, ensuring that ironing the quantity scheme is not required, as a companion

assumption to Vq(q
0) > 0. Proposition 4 below establishes a sufficient condition for

this assumption to hold for every θ.

The comparison between θ0 and the bounds of the interval of types [0, c̄] is

equivalent to compare 2q0 to the maximal and minimal quantities ordered to the

supplier. As Lemma 4 demonstrates, the minimal quantity ordered is equal to q̃(0, 1),

and the largest order is qmax(c̄, 0) when ¯̄θ ≤ c̄ and q̃(c̄, 0) otherwise.

We consider first the case where the demand is such that q̃(0, 1) ≤ 2q0 ≤ q̃(c̄, 1).

In this configuration, the (IR) constraints of a subset of types interior to [0, c̄] bind.

Proposition 1 When Cq(2q
0; c̄) ≤ P (2q0) + 2q0P ′(2q0) ≤ Cq(2q

0; 0), i.e. q0 ≤
qM(0) ≤ 2q0 ≤ 2qM(0) and 2q0 ≤ q̃(c̄, 1), the quantity ordered q∗(θ) is such that the

IR of all types θ ∈ [min{θ1, θ̄}, θ2] bind, where θ1 (respectively θ2) is the unique type

28Here q(θ) = 2q0 is constant and the supplier’s reservation utility is nil for all θ. Moreover

the rate of growth of this reservation utility is nil, and the derivative of the supplier’s profit with

respect to θ, equal to −Cθ(q; θ), evaluated at q = 2q0, is nil too. Hence Jullien [15]’s homogeneity

property is (weakly) verified in our model.
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which solves q̃(θ1, 0) = 2q0 (resp. q̃(θ2, 1) = 2q0). We have:

(q∗(θ),M∗(θ)) =



(min{q̃(θ, 0), qmax(θ)}, 0) if θ < θ1

(2q0, F (θ)− f(θ) Πq(2q0;θ)

Cθq(2q0;θ)
) if θ ∈ [θ1, θ2]

(q̃(θ, 1), 1) if θ > θ2

Proof. See Appendix A.5.‖

From the previous analysis, the following corollary comes immediately.

Corollary 1 (to Proposition 1) The order q∗(θ) is larger (respectively lower) than

qM(θ) for θ lower (resp. larger) than θ0, where θ0 solves 2q0P ′(2q0) + P (2q0) =

Cq(2q
0; θ0).

Figure ?? illustrates the equilibrium described in proposition 1 above, by repre-

senting the scheme q(θ) with a thick black line and the monopoly purchases qM(θ)

by a thin black line going from qM(0) to qM(c̄). We can provide the intuition for this

result. When the market demand is such that the marginal revenue intersects the

supplier marginal cost at q < 2q0 for low types, and at q > 2q0 for high types, the

retailer must forbid low types to over-state their type and high types to under-state

their type. Over-stating one’s type allows a low type to gain on the production of

[0, q0] where it is paid as a higher type while it produces at a lower marginal cost,

even if it looses on the production of q > q0 where its marginal cost of production is

higher than the payment received by a higher type. The reverse logic explains why

a high type can be tempted to under-state its type: a high type gains on q > q0

where its marginal cost is lower than the payment it receives, and looses on [0, q0]

where it is higher. Then the retailer forbids low types to over-state their type by

enlarging its purchases compared what would happen with symmetric information,

at every type level i.e. at every level of the marginal cost θ which corresponds to a

small scale producer. On the contrary, it forbids the high types to understate their

types by reducing its purchases at every level of the marginal cost of production

corresponding to a large scale producer.

The distortions in the purchases the retailer chooses reduce the rents it leaves

to the different types of supplier. To satisfy the participation constraint of the in-

termediate types who earn less and less as the distortion increases compared to the
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monopoly, the retailer may have to offer these types an inflexible rule29. This rule

consists in purchasing a fixed quantity 2q0 against the payment of C(2q0) which is

identical for all types. In this situation, asymmetric information forces the unin-

formed party to renounce to procure a quantity which varies with the type of the

supplier or with the market demand.

+ +

0 c̄
θ

Quantity

+

+

θ0
+

¯̄θ

+qM (0)

qM (c̄)

θ1 θ2

2q0

Figure 3: Equilibrium when Cq(2q
0; c̄) ≤ P (2q0) + 2q0P ′(2q0) ≤ Cq(2q

0; 0)

The next two propositions characterize the retailer’s procurement strategies in

the cases where the market demand is such that only one type produces the first

best, while all other types receive distorted purchase orders from the retailer.

The type who realizes the first best can be either the highest c̄ when demand is

very large, or on the contrary the lowest 0 when demand is not so large (but still

satisfies the assumption Vq(q
0) ≥ 0. In both cases the distortions on the quantities

procured can force the retailer to use an inflexible purchase rule. First, consider the

case in which demand is large enough, so that the retailer is better off employing

optimally a supplier with a large capacity of production. We have,

Proposition 2 When P (2q0)+2q0P ′(2q0) > Cq(2q
0; 0) and 2q0 ≥ q̃(0, 1), (q∗(θ),M∗(θ))

is such that the IR constraint of all types θ ∈ [0,max{θ2, 0}] bind, where θ2 solves

29This terminology first appeared in Lewis and Sappington [20].
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q̃(θ2, 1) = 2q0. It is given by:

(q∗(θ),M∗(θ)) =


(2q0, F (θ) + f(θ) Πq(2q0;θ)

Cθq(2q0;θ)
) if θ ∈ [0,max{θ2, 0})

(q̃(θ, 1), 1) if θ ∈ [θ2, c̄].

When P (2q0) + 2q0P ′(2q0) > Cq(2q
0; 0) and 2q0 < q̃(0, 1), (q∗(θ),M∗(θ)) is such

that only the IR constraint of the type 0 binds, and it is given by ((q̃(θ, 1), 1), for

any θ ∈ [0, c̄].

In the case of a large demand, the most attractive supplier for retailer D is the

one with the largest capacity, θ = c̄, and when the demand is very large, q̃(0, 1) > 2q0

the IR constraint of a type θ = 0 is the only one binding: M∗(0) = 130.

Corollary 2 (to Proposition 2) The order q∗(θ) is strictly lower than (respec-

tively equal to) qM(θ) when θ is strictly lower than (respectively equal to) c̄.

Proof. See Appendix A.6.‖

Oppositely, consider the case demand is small enough so that the retailer is

better off employing optimally the supplier whose marginal cost of production has

the lowest intercept. We have,

Proposition 3 When P (2q0) + 2q0P ′(2q0) < Cq(2q
0; c̄), (q∗(θ),M∗(θ)) is such that

only the IR constraint of the type θ = c̄ binds It is given by:

(q∗(θ),M∗(θ)) =


(q̃(θ, 0), 0) if θ ∈ [0, θ1]

(2q0, F (θ) + f(θ) Πq(2q0;θ)

Cθq(2q0;θ)
) if θ ∈ [θ1, c̄].

In this case of a large but small enough demand 2q0 > q̃(c̄, 1), the most attractive

supplier for retailer D is the most efficient one but the most capacity constrained,

θ = 0, and the IR constraint of a type θ = c̄ is the only one binding.

Corollary 3 (to Proposition 3) The order q∗(θ) is strictly larger than (respec-

tively equal to) qM(θ) when θ is strictly larger than (respectively equal to) 0.
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Figure 4: P (2q0) + 2q0P ′(2q0) > Cq(2q
0; 0)

Figure 5: Equilibria when the market size points to one extreme type

Proof. See Appendix A.7.‖

We must now examine if the monotonicity condition of the solutions q∗(θ) is

satisfied for each of the three cases considered above. Whether the expected vir-

tual surplus is concave or convex, Πq(q
0; θ) > 0 implies that the solution q∗(θ) to

Vq(q(θ); θ) = 0 is strictly larger than q0 for all θ, and hence must be increasing in θ

to respect the envelope conditions of Lemma 1 and 2.

From dq∗(θ)
dθ

= −Vqθ(q(θ);θ)

Vqq(q(θ);θ)
and (27) above we know that for the monotonicity to

hold it must be the case that

1 +
d
(
F (θ)
f(θ)

)
dθ

− µ(θ)

f(θ)
+
M(θ)f ′(θ)

(f(θ))2


≥ 0 when V is concave

≤ 0 when V is convex.

(29)

When V (q(θ), θ) is concave, the condition (29) is granted for all types for which

µ(θ) = 0 and M(θ) = 0, i.e. the types θ ≤ θ1 such that q∗(θ) = ˜q(θ, 0). Indeed

30This corresponds to the standard case in the literature, where M(θ) is a Dirac at θ = 0 inducing

no distortion at the top and only the lowest type participation constraint which is binding.
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we assumed
d(F (θ)

f(θ) )
dθ

≥ 0 and therefore all the terms on the left hand side of the

inequality are positive or nil. However, for types such that (i) µ(θ) > 0 for which

M(θ) > 0, or such that (ii) M(θ) > 0 and µ(θ) = 0, it may not be the case, the

monotonicity constraint may not be satisfied: it depends on the properties and the

shapes of F (θ) and f(θ).

Consider case (i), i.e. θ ∈ [θ1, θ2]: the informational rent of all the types are

binding, thus for any θ, µ(θ) > 0 and the same quantity q∗(θ) = 2q0 is offered: the

solution is constant, i.e. does not depend on F (θ) and f(θ), and therefore monotonic.

Consider case (ii): In this case, (29) could be negative, and the retailer could be

interested in reducing q(θ) as θ increases, which would contradict the monotonicity

requirement. Notice that if the distribution of types is uniform or increasing, f ′(θ) ≥
0, the monotonicity constraint is satisfied by the quantity scheme.

Therefore, when V (q(θ), θ) is concave, there is no need to “iron” the quantity

as long as q∗(θ) is smaller or equal to 2q0 in Propositions 1, 2 and 3. Moreover,

when P (2q0) + 2q0P ′(2q0) < Cq(2q
0; c̄), the quantity asked to all types θ ∈ [θ1, c̄]

is constant and equal to 2q0, i.e. such that µ(θ) > 0, while the quantity asked to

θ ∈ [0, θ1] is strictly lower than 2q0 and therefore such that µ(θ) = M(θ) = 0. So

q∗(θ) defined in Proposition 3 satisfies the monotonicity constraint of Lemma 1 for

any θ ∈ [0, c̄].

The case V (q(θ), θ) convex only appears for values of θ strictly greater than θ̄.

Thus, we must verify if the monotonicity constraint is satisfied by q∗(θ) only for the

values of θ such that θ ≥ θ̄. As θ1 < θ̄, the optimal quantity q∗(θ) is greater or equal

to 2q0. Two cases are possible: either θ1 < θ2 < θ̄, or θ1 < θ̄ < θ2. The monotonicity

constraint may not be verified for θ ≥ max{θ2; θ̄}, i.e. types such that M(θ) > 0

and µ(θ) = 0. In this case, it may be possible to have (29) positive depending on the

sign of f ′(θ) implying that the monotonicity condition is not satisfied. A decreasing

distribution of types, f ′(θ) ≤ 0, is necessary but not sufficient for the monotonicity

constraint to be satisfied. Therefore,

Proposition 4 (i) The contract defined in Proposition 3 satisfies the monotonic-

ity constraint of Lemma 1 no matter the distribution of types, and whatever

the convexity of V (q(θ), θ);

(ii) The contracts defined in Propositions 1 and 2 satisfy the monotonicity con-
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straint of Lemma 1 for any θ ∈ [0, c̄] if the distribution of types is such that

f ′(θ) ≥ 0 for any θ ∈ [0, c̄] (resp. ≤ 0, for any θ ∈ [θ2, c̄]), when V (q(θ), θ) is

concave (resp. convex).

A uniform distribution f(θ) = 1
c̄

on [0, c̄] satisfies Proposition 4 (ii) when V (q(θ), θ)

is concave. More generally, when the distribution F (θ) has a density function

f ′(θ) < 0 such that the monotonicity constraint is not satisfied by the optimal

scheme proposed to types θ > θ2, then the retailer must “iron” the contract it offers.

We leave the investigation of this possibility for another paper.

5 Optimal sourcing when demand is low

In this section we consider the case where the demand is low relative to the support

of the distribution of types/cost intercept:

Vq(q
0) ≤ 0⇔ a ≤

(
1 +

2b

d̄

)
c̄. (30)

To proceed, we distinguish in particular two situations: first the caricatural situation

in which Vq(q
0) = 0 for all θ, and second the situation in which Vq(q

0) < 0, case in

which the marginal profit at q = q0 is strictly negative for all types.

When Vq(q
0) = 0 for all θ, the indifference curves of all types of suppliers are

tangent at q0: indeed when q = q0, Cq(q
0, θ) = Cq(q

0, θ′) for all θ 6= θ′. Then the

retailer offers a single pooling contract such that all types participate,

(q∗(θ), T ∗(θ)) = (q0, C(q0, c̄)) for all θ ∈ [0, c̄]. (31)

When such a contract is offered to the supplier, there are no distortions of the

quantity ordered compared to the first best no matter its type, and the lower θ the

higher the rent the supplier earns31.

When Vq(q
0) < 0, the first best orders are all smaller than q0, and the supplier

of type θ = 0 is the most efficient producer at every level of production q < q0. The

derivative of the total cost of production with respect to θ, Cθ(q, θ), is strictly positive

for all q ∈ (0, q0], and is nil for q = 0. The cross-partial derivative Cqθ(q, θ) is strictly

positive as long as q < q0. From Lemma 1 and 2, the supplier’s rent decreases with

31This case is a particular case of Araujo and Moreira [1]: the U-shaped condition (Theorem 1

p. 1120) holds at q0 for all types, and hence the pooling contract is implementable.
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θ, and the quantity ordered q(θ) is also strictly decreasing (i.e. monotonic and hence

implementable). Consequently the scale at which high types (θ = c̄) are working is

smaller than the scale at which low types (θ = 0) are working, and to limit the rent

left to low types, the retailer D must distort downwards the order it sends to higher

types. Depending on how small the market demand is, the possibility to limit the

participation of the higher types must be examined: indeed, the exclusion of these

types limit the informational rents left to the lower ones. Therefore this case can

be again analyzed as in the previous section and in Jullien [15], but the downward

distortion which results from Cqθ(q; θ) > 0 may jeopardize the full participation of

all types32.

The first step of this analysis consists in adapting Lemma 4. We have:

Lemma 5 When Vq(q
0) < 0, the unique values q̂(θ, 1) and q̂(θ, 0) which maximize

V e
D respectively for M = 1 and M = 0 are such that:

(i) q̂(θ, 1) is continuous and decreasing in θ.

(ii) q̂(θ, 0) is continuous and strictly decreasing in θ, for θ ∈ [0, θ], is nil for θ ≥ θ,

where θ solves F (θ)
f(θ)

= Πq(0; θ). The threshold value θ could be lower or greater

than c̄.

(iii) q̂(θ, 0) ≤ qM(θ) ≤ q̂(θ, 1) ∀ θ ∈ [0, c̄], with q̂(0, 0) = qM(0) and q̂(c̄, 1) = qM(c̄).

Proof. See Appendix A.8‖.

Using (25), q̂0(θ, 0) solves

Πq(q̂(θ, 0); θ)− F (θ)

f(θ)
Cqθ(q̂(θ, 0); θ) = 0. (32)

When the quantity ordered to supplier U is nil, the payment it receives is obviously

nil too, and the supplier’s (IR) constraint is binding. Moreover when θ > θ̄, the

multiplier M∗(θ) depends also on the value of the multiplier of the constraint q′(θ) =

0 which is strictly positive33. We have:

32Assuming that Cqθ(q; θ) > 0 implies that the cross-partial derivative of the supplier’s profit

with respect to the order and the type is negative, which contradicts Jullien [15]’s assumption 1.
33We do not determine it as it is not central to our analysis, and we focus only on q∗(θ) in the

first part of the proposition which follows. The second part corresponds to the standard case with

a cross partial derivative of the profit of the supplier with respect to type and quantity strictly

negative (a “CS−” configuration in the terminology of Guesnerie and Laffont [11]).
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Proposition 5 When Vq(q
0) < 0 and θ < c̄, q∗(θ) is such that the (IR) constraints

of all types θ ∈ [θ, c̄] bind. It is given by

q∗(θ) =


q̂(θ, 0) if θ ∈ [0, θ]

0 if θ ∈ (θ, c̄]

Else when Πq(q
0, 0) < 0 and θ ≥ c̄ only the (IR) constraint of θ = c̄ binds, M(c̄) = 1

and 0 for all θ 6= c̄, and all types produce according to q̂(θ, 0).

Proof. See Appendix A.9‖.

Therefore when Cθq(q; θ) > 0, the order is distorted downwards for all types

θ > 0, and the retailer orders less than what a monopoly fully informed would do.

Doing so, it avoids the low types who are very efficient on a small scale to lie and

pretend they are larger scale producers. We can illustrate graphically this result.

The optimal order implemented by the retailer corresponds to the black thick line,

while the fully informed monopoly corresponds to the black thin line. The left panel

illustrates the case of a very low demand, corresponding to θ < c̄. In that case the

order sent to an external supplier can be nil, and to preserve the possibility to sort

types, the retailer must further impose q∗(θ) = 0 for θ > θ̄, i.e. “iron” the quantity

ordered in the plan (θ, q). In the right panel, the demand is larger and all types

produce a strictly positive quantity. The only (IR) constraint which binds is the one

of the type c̄.

+ +

0 c̄
θ

Quantity

θ

+

+q0

qM (0)

qM (c̄)

θ̄

+

(a) θ < c̄

+ +

0 c̄
θ

Quantity

+q0

qM (0)

qM (c̄)

(b) θ ≥ c̄

Figure 6: Equilibria when the market demand is low, Πq(q
0, 0) < 0
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When Vq(q
0) < 0, the solution q(θ) to Vq(q(θ); θ) = 0 is strictly lower than q0 for

all θ, and hence q(θ) must be decreasing in θ to respect the envelope conditions of

Lemma 1 and 2. In this situation, q(θ) < q0 for all types and −Cqθ(q(θ); θ) < 0 for

all types. Again it must also be the case that Vθq(q(θ); θ) < 0 which requires

1 +
d
(
F (θ)
f(θ)

)
dθ

− µ(θ)

f(θ)
+
M(θ)f ′(θ)

(f(θ))2
> 0 (33)

which is again granted for all types for which µ(θ) = 0 and M(θ) = 0. However for

types such that µ(θ) > 0 and M(θ) > 0 (sole situation which occurs as the local

analysis showed) it may not be the case: it depends again on the properties and the

shapes of F (θ) and f(θ). However all the types for which µ(θ) > 0 are offered the

same quantity q(θ) = 0, and hence the solution is monotonic. So there is no need

to iron the quantity q(θ) and the contract described in Proposition 5 is the global

optimum of the retailer.

6 Discussion and concluding remarks

We have demonstrated that when demand is large, a retailer chooses to buy from

its supplier a quantity lower than what an informed monopoly would order. This

purchase policy causes the price to exceed that of an informed monopoly. In this

case, asymmetric information results in additional social losses compared to a per-

fectly informed monopoly, in a context where purchases are done through non linear

contracts where double marginalization is absent. On the contrary when demand is

small, the retailer chooses to buy from its supplier a quantity larger than what an

informed monopoly would order, which causes the price to be smaller than that of

an informed monopoly. Then the social losses decrease compared to the monopoly.

In this case, the presence of asymmetric information and of capacity constraints con-

strains the exercise of downstream monopoly power (when the product is a service or

a consumption good is not storable). To establish these findings, we demonstrated

that the contract offered by the retailer at equilibrium requires the use of an inflex-

ible purchase rule for which a constant payment is made. Moreover this contract

is potentially not continuous with the quantity purchased. The optimal contract is

therefore more sophisticated than an affine contract, which is the classical solution to

the double marginalization issue in vertical relationships models. Part of the social
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losses which follow from the presence of a chain of monopolies are partly resolved.

Our results have several striking testable implications to situations in which the

market demand varies: first, to stop high types from pretending they are more ca-

pacity constrained than what they truly are, the retailer must purchase a smaller

quantity than what would occur if information was symmetric. This strategy is

chosen by the retailer when the market demand is large enough, case in which the

downstream retail price will be above what an integrated or informed monopoly

would choose. This effect worsens the natural price increase which occurs during

an economic “boom”. On the contrary to stop low types to pretend they are less

capacity constrained than what they truly are, the retailer must purchase a larger

quantity than what would occur if information was symmetric. This strategy is

chosen by the retailer when the market demand is small enough, case in which the

downstream retail price will be below what an integrated or informed monopoly

would choose. This effect worsens the natural fall in prices which occurs in an eco-

nomic downturn. Last but not least, the retailer can be better off with an inflexible

purchase rule, which consists in ordering a quantity which can be produced at the

same total cost by the different types. Doing so, informational rents are reduced

to 0 but the quantity ordered does not depend on the market demand anymore.

We show that such a policy is optimal in the absence of exogenous administrative

costs, but results rather from asymmetric information. Last, these findings have

been characterized under a non disposability assumption. Studying the purchasing

behaviour of a retailer when the product is storable is the object of another paper.
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A Proofs

A.1 Proof of Lemma 1

When maximizing its profit with respect to the type θ̃ it reports, given its type θ,

supplier U faces the following necessary and sufficient conditions. The derivative of

its profit πU(q(θ̃); θ) with respect to θ̃ must be nil at θ̃ = θ,

T ′(θ̃)− q′(θ̃)Cq(q(θ̃); θ)|θ̃=θ = 0, (34)

and this solution must be maximizing its profit,

T ′′(θ̃)− q′′(θ̃)Cq(q(θ̃); θ)− (q′(θ̃))2Cqq(q(θ̃); θ) ≤ 0. (35)

The necessary condition at θ̃ = θ rewrites as T ′(θ)− q′(θ)Cq(q(θ); θ) = 0. Differen-

tiating this expression with respect to θ gives

T ′′(θ)− q′′(θ)Cq(q(θ); θ)− (q′(θ))2Cqq(q(θ); θ)− q′(θ)Cqθ(q(θ); θ) = 0. (36)

Using the sufficient condition (35) above rewritten for θ̃ = θ, and substituting (36),

we obtain

q′(θ)Cqθ(q(θ); θ) ≤ 0. (37)

The cross partial derivative of total cost with respect to q and θ evaluated at q(θ)

is equal to Cqθ(q(θ); θ) = 1− d̄
c̄
q(θ), whose sign is given by

Cqθ(q(θ); θ) ≥ 0⇔ 1− d̄

c̄
q(θ) ≥ 0⇔ q(θ) ≤ q0 (38)

while Cqθ(q(θ); θ) ≤ 0 when q(θ) ≥ q0. Therefore q′(θ) ≤ 0 for θ such that q(θ) ≤ q0

while q′(θ) ≥ 0 for θ such that q(θ) ≥ q0.

A.2 Proof of Lemma 2

The derivative of the supplier’s profit with respect its type θ when U reports it

truthfully is equal to

π′U(θ; θ) = T ′(θ)− q′(θ)Cq(q(θ); θ)− Cθ(q(θ); θ) = −Cθ(q(θ); θ) (39)

once the first order condition of the reporting game has been cancelled out. Using

the expression of the total cost, it comes

Cθ(q(θ); θ) = q(θ) +
1

2
d̄

(
−1

c̄

)
(q(θ))2 = q(θ)

(
1− d̄

2c̄
q(θ)

)
. (40)
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As q(θ) ≥ 0, the sign of this derivative is given by the sign of 1− d̄
2c̄
q(θ). Consequently

π′U(c; c) ≥ 0 if 1− d̄
2c̄
q(θ) ≤ 0, i.e. if q(θ) ≥ 2c̄

d̄
= 2q0, and π′U(θ; θ) ≤ 0 if 1− d̄

2c̄
q(θ) ≥ 0,

i.e. if q(θ) ≤ 2c̄
d̄

= 2q0.

A.3 Proof of Lemma 3

The profit of supplier U of type θ, πU(q(θ); θ), rewrites as a function of the partial

derivative of its cost function: using the first order condition of the revelation game,

π′U(q(θ); θ) = T ′(θ)− q′(θ)Cq(q(θ); θ)− Cθ(q(θ); θ) = −Cθ(q(θ); θ), (41)

so that

πU(q(θ); θ) =T (θ)− C(q(θ); θ) = πU(q(c̄); c̄)−
∫ c̄

θ

π′U(q(θ̃); θ̃)dθ̃

=πU(q(c̄); c̄) +

∫ c̄

θ

Cθ(q(θ̃); θ̃)dθ̃. (42)

There are no non-local (or global) deviations if a type θ is better off announcing its

true type θ than any other type θ̂ in [0, c̄]34. That is,

πU(q(θ); θ)− πU(q(θ̂); θ) = πU(q(θ); θ)− T (θ̂) + C(q(θ̂); θ) ≥ 0 ∀θ̂ 6= θ. (43)

We can use (42) above, and then rewrite this deviation as a function of Cqθ(q; θ).

We have:

πU(q(θ); θ)− πU(q(θ̂); θ) = πU(q(θ); θ)− T (θ̂) + C(q(θ̂); θ)

=πU(q(θ); θ)− πU(q(θ̂); θ̂)− C(q(θ̂); θ̂) + C(q(θ̂); θ)

=

∫ c̄

θ

Cθ(q(θ̃); θ̃)dθ̃ −
∫ c̄

θ̂

Cθ(q(θ̃); θ̃)dθ̃ − C(q(θ̂); θ̂) + C(q(θ̂); θ). (44)

Then suppose that θ̂ < θ and q′(θ) > 0, so that q(θ̂) < q(θ). (44) simplifies into

πU(q(θ); θ)− πU(q(θ̂); θ) = −
∫ θ

θ̂

Cθ(q(θ̃); θ̃)dθ̃ +

∫ θ

θ̂

Cθ(q(θ̂); θ̃)dθ̃

=−
∫ θ

θ̂

(
Cθ(q(θ̃); θ̃)− Cθ(q(θ̂); θ̃)

)
dθ̃ = −

∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃. (45)

34See Araujo and Moreira [1] and Schottmüller [24].
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The same simplification can be done for θ̂ > θ and q′(θ) > 0, so that q(θ̂) > q(θ):

(44) simplifies into

πU(q(θ); θ)− πU(q(θ̂); θ) =

∫ θ̂

θ

Cθ(q(θ̃); θ̃)dθ̃ −
∫ θ̂

θ

Cθ(q(θ̂); θ̃)dθ̃

=−
∫ θ̂

θ

(
Cθ(q(θ̂); θ̃)− Cθ(q(θ̃); θ̃)

)
dθ̃ = −

∫ θ̂

θ

∫ q(θ̂)

q(θ̃)

Cqθ(q̃; θ̃)dq̃dθ̃

=−
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃ (46)

For θ̂ < θ and q′(θ) < 0, so that q(θ̂) > q(θ), (44) simplifies into

πU(q(θ); θ)− πU(q(θ̂); θ) = −
∫ θ

θ̂

Cθ(q(θ̃); θ̃)dθ̃ +

∫ θ

θ̂

Cθ(q(θ̂); θ̃)dθ̃

=

∫ θ

θ̂

(
Cθ(q(θ̂); θ̃)− Cθ(q(θ̃); θ̃)

)
dθ̃ =

∫ θ

θ̂

∫ q(θ̂)

q(θ̃)

Cqθ(q̃; θ̃)dq̃dθ̃

=−
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃ (47)

Last for θ̂ > θ and q′(θ) < 0, so that q(θ̂) < q(θ), (44) simplifies into

πU(q(θ); θ)− πU(q(θ̂); θ) =

∫ θ̂

θ

Cθ(q(θ̃); θ̃)dθ̃ −
∫ θ̂

θ

Cθ(q(θ̂); θ̃)dθ̃

=

∫ θ̂

θ

(
Cθ(q(θ̃); θ̃)− Cθ(q(θ̂); θ̃)

)
dθ̃ =

∫ θ̂

θ

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃

=−
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃ (48)

Therefore no matter the deviation considered and the sign of q′(θ), the non local

incentive constraint requires

πU(q(θ); θ)− πU(q(θ̂); θ) = −
∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

Cqθ(q̃; θ̃)dq̃dθ̃ =

∫ θ

θ̂

∫ q(θ̃)

q(θ̂)

(
q̃

q0
− 1

)
dq̃dθ̃ ≥ 0

(49)

for any θ and θ̂ in [0, c̄]. Then suppose that in the contract offered by D to U ,

the quantity scheme q(θ) is always strictly larger than q0 for all θ ∈ [0, c̄] and

increasing. All the pairs quantities above which the cross-partial derivative Cqθ(q; θ)

is integrated belong to the half-plane q > q0 in which Cqθ(q; θ) < 0, and hence

q̃
q0 − 1 > 0. Consequently the non-local incentive constraint, which is equal to an

integral below a strictly positive function, is strictly positive too. The same holds
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true when in the contract offered by D to U , the quantity scheme q(θ) is always

strictly lower than q0 for all θ ∈ [0, c̄] and decreasing. All the pairs of quantities

above which the cross-partial derivative Cqθ(q; θ) is integrated belong to the half-

plane q < q0 in which Cqθ(q; θ) > 0, and hence q̃
q0 − 1 < 0. As q(θ̂) > q(θ̃) when

θ̂ < θ, the integration bounds of the second integral with respect to q must be

permuted, which reverts the sign of πU(q(θ); θ)− πU(q(θ̂); θ) to positive.

A.4 Proof of Lemma 4

As the analysis of (26) demonstrates, the virtual surplus is concave in q for M = 1

and hence the solution q̃(θ, 1) solves the first order condition which is necessary and

sufficient:

Πq(q̃(θ, 1); θ)− F (θ)− 1

f(θ)
Cθq(q̃(θ, 1); θ) = 0. (50)

It comes

q̃(θ, 1) =
a− θ − F (θ)−1

f(θ)

2b+ d− d
c
(θ + F (θ)−1

f(θ)
)
. (51)

which is continuous in θ, and

dq̃(θ, 1)

dθ
=

[−1 +
d(

1−F (θ)
f(θ)

)

dθ
][2b+ d+ d

c
(−θ + 1−F (θ)

f(θ)
)]− [a− θ + 1−F (θ)

f(θ)
][ d̄
c̄
(
d(

1−F (θ)
f(θ)

)

dθ
− 1)]

[2b+ d+ d
c
(−θ + 1−F (θ)

f(θ)
)]2

.

(52)

The sign of (52) is the sign of its numerator:

N =

(
2bc+ dc− ad

c

)(
d(1−F (θ)

f(θ)
)

dθ
− 1

)
, (53)

The first factor in N is negative when Vq(q
0) ≥ 0. The second factor is also negative

by the assumption made on the distribution F (θ). Therefore q̃(θ, 1) is increasing in

θ when the demand is large. This proves (i).

Consider now M = 0: in this case the virtual surplus is not concave in q for

every θ. When M(θ) ≥ 0 the second order condition for V to be concave writes:

G(θ)− 2b+ d̄

d̄
c̄ ≤ M(θ)

f(θ)
, (54)

with G(θ) = θ + F (θ)
f(θ)

defined in Assumption 1. When M = 0, (54) rewrites

G(θ) ≤ 2b+ d̄

d̄
c̄. (55)

37



Let G−1(x) the reciprocal of G(x). Then (55) is equivalent to

θ ≤ G−1
(

(2b+ d̄)
c̄

d̄

)
≡ θ̄. (56)

As the virtual surplus is concave for θ = 0 where F (0) = 0, the threshold value θ̄

is strictly positive. As θ̄ can be larger or smaller than c̄, the virtual surplus may be

convex in some case. Indeed, when θ̄ ≥ c̄, the virtual surplus is concave for each θ

in [0, c̄]. However, when θ̄ < c̄, the second order derivative of V e
D evaluated at θ = c̄

is equal to −2b + d̄
c̄f(c̄)

and can be positive when d̄ is large enough (i.e. when cost

functions are very convex in q), or negative when d̄ is not sufficiently large.

Let q̃(θ, 0) be the solution of the first order condition

Πq(q̃(θ, 0); θ)− F (θ)

f(θ)
Cθq(q̃(θ, 0); θ) = 0. (57)

It comes

q̃(θ, 0) =
a− θ − F (θ)

f(θ)

2b+ d̄− d̄
c̄
(θ + F (θ)

f(θ)
)
, (58)

with limθ→θ̄ q̃(θ, 0) = +∞.

Calculating the derivative of q̃(θ, 0) gives

dq̃(θ, 0)

dθ
=

[−1−
d(
F (θ)
f(θ)

)

dθ
][2b+ d̄− d̄

c̄
(θ + F (θ)

f(θ)
)]− [a− θ − F (θ)

f(θ)
][− d̄

c̄
(
d(
F (θ)
f(θ)

)

dθ
+ 1)]

[2b+ d̄− d̄
c̄
(θ + F (θ)

f(θ)
)]2

,

(59)

which is positive if [
2b+ d̄− ad̄

c̄

][
−1−

d(F (θ)
f(θ)

)

dθ

]
≥ 0. (60)

Under our assumption on the distribution F , (60) is positive if and only if [2b +

d̄− a d̄
c̄
] is negative, which is always true when the demand is large, i.e. Vq(q

0) ≥ 0.

Therefore, q̃(θ, 0) is continuous and increasing in θ from q̃(θ, 0) to +∞, for θ ∈ [0, θ̄].

It follows that there is a unique value ¯̄θ < θ̄ such that q̃(¯̄θ, 0) = qmax(
¯̄θ). We

must distinguish the cases ¯̄θ lower or greater than c̄. In the first case, we have

q̃(θ, 0) ≥ qmax(θ) for any θ ≥ ¯̄θ. In the second case, q̃(θ, 0) is always lower than

qmax(θ). This proves (ii).

The comparison of q̃(θ, 0) with q̃(θ, 1) is straightforward from the comparison of

the first order conditions which determine these quantities. The virtual surplus is

concave in q for M = 1 and M = 0 for any θ when ¯̄θ ≤ min{θ̄, c̄}: both marginal

38



virtual surpluses defining these two solutions are strictly decreasing in q. Therefore,

under the assumption Vq(q
0) ≥ 0, the quantity produced is greater than q0, i.e.

such that Cθq < 0 for all θ. The left-hand-side of the first order condition which

determines q̃(θ, 1) defines a function of θ which is below the function of θ defined

by the first order condition which determines q̃(θ, 0). When M = 0 and ¯̄θ ≥ c̄, both

marginal surpluses are again concave, and again q̃(θ, 1) is below q̃(θ, 0). When θ ≥ ¯̄θ,

the quantity ordered for M = 0 is qmax(θ) and is a fortiori above q̃(θ, 1). Therefore

min{q̃(θ, 0), q̄} > q̃(θ, 1).

When the demand is linear, the calculation of the difference q̃(θ, 0)− q̃(θ, 1) gives

1
f(θ)

(a d̄
c̄
− 2b+ d̄)

[2b+ d̄− d̄
c̄
G(θ)]2 + d̄

c̄f(θ)
[2b+ d̄− d̄

c̄
G(θ)]

. (61)

When θ < θ̄ and Vq(q
0) ≥ 0, the numerator and the denominator are positive.

Indeed, Vq(q
0) ≥ 0 is equivalent to a d̄

c̄
− 2b + d̄ ≥ 0, and 2b + d̄ − d̄

c̄
G(θ) ≥ 0 is

equivalent to G(θ) ≤ G(θ̄) which is always true when θ < θ̄ as G(θ) is increasing.

When θ ≥ θ̄, the quantity ordered for M = 0 is qmax(θ). Last the monopoly solution

qM(θ) is strictly increasing with θ, and such that Πq(q
M(θ); θ) = 0. Inspecting the

first order conditions determining q̃(c̄, 1) and q̃(0, 0) above, it is immediate to verify

that these solutions coincide with qM(c̄) and qM(0) respectively. Therefore qM(θ),

which increases with θ, lies in between the solutions for M = 1 and M = 0. This

proves (iii). Lemma 2 established that the supplier payoff decreases with θ when the

quantity is lower than 2q0, while it increases with θ when q exceeds 2q0. Moreover

for every θ ∈ [0, θ1), the equilibrium order q∗(θ) which belongs to [q̃(θ, 1), q̃(θ, 0)] is

strictly lower than 2q0.

A.5 Proof of Proposition 1 and its corollary

When P (2q0) + 2q0P ′(2q0) ∈ [Cq(2q
0; c̄), Cq(2q

0; 0)], two cases arise depending on

wether q̃(¯̄θ, 0) is greater or lower than q̃(c̄, 1). In the first case, as here we consider

a demand such that q̃(0, 1) ≤ 2q0 ≤ q̃(c̄, 1), it follows that 2q0 is always lower than

q̃(¯̄θ, 0), and therefore for M = 0, q(θ) = q̃(θ, 0) for any θ ∈ [0, θ̄]. In the second case,

it is possible to have 2q0 ≥ q̃(¯̄θ, 0) and therefore for M = 0, q(θ) = q̃(θ, 0) for θ ≤ ¯̄θ,

and q(θ) = qmax(θ) for θ ≥ ¯̄θ.

The proof is similar for each case, we make it in the case q̃(¯̄θ, 0) ≥ q̃(c̄, 1), il-
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lustrated in Figure ??. Lemma 4 established that q̃(θ, 0) and q̃(θ, 1) are strictly

increasing in θ. Therefore it exists θ1 and θ2 such that θ1 ≤ θ2 which solve respec-

tively q̃(θ1, 0) = 2q0 and q̃(θ2, 1) = 2q0. Therefore as ΠU(2q0, θ) ≥ 0 and decreases

in θ when q < 2q0, the profit of supplier U , ΠU(q∗(θ), θ), is strictly larger than

ΠU(2q0, θ) and hence strictly positive for θ < θ1. Therefore µ∗(θ) = 0 for every

θ ∈ [0, θ1) and M∗(θ) = 0 for every θ ∈ [0, θ1). The optimization of the virtual

surplus, which is concave in q for θ ≤ ¯̄θ < θ̄, directly leads the retailer to offer

q∗(θ) = q̃(θ, 0) < 2q0.

A symmetric argument applies to every θ ∈ (θ2, c̄]: the equilibrium order q∗(θ)

which belongs to [q̃(θ, 1), q̃(θ, 0)] is strictly larger than 2q0. Therefore as ΠU(2q0, θ) ≥
0 and increases for every θ such that q > 2q0, then Π(q∗(θ), θ) > 0 for θ ∈ (θ2, c̄].

Consequently µ∗(θ) = 0 for every θ ∈ (θ2, c̄], and M∗(θ) = 1 for every θ ∈ (θ2, c̄].

The optimization of the virtual surplus, which is concave in q for every θ, directly

leads the retailer to offer q∗(θ) = q̃(θ, 1) > 2q0.

It remains to examine the case where θ ∈ [θ1, θ2]. First, let θ0 be the value of

θ such that Πq(2q
0, θ0) = 0, i.e. qM(θ0) = 2q0. By (25), the retailer can offer the

contract (q(θ), πU(q; θ)) = (2q0, 0) to its supplier θ0 if M(θ0) = F (θ0) > 0. This

contract does not leave a rent to this supplier, and requires this type to supply

the first best. Then (50) and (25) are both satisfied (with strict inequality for the

latter) if θ = θ0. Therefore (q∗(θ0),M∗(θ0)) = (2q0, F (θ0)) maximizes the virtual

surplus the retailer obtains from a type θ0. Then from Lemma 1 the quantity

scheme offered to the supplier must be weakly increasing in θ to respect the local

incentive compatibility constraint. Therefore for θ ∈ [θ1, θ2] the quantity offered

must be constant and equal to 2q0: if it was different from 2q0, the local incentive

compatibility constraint would be violated, by forcing the quantity q(θ) to decrease

either compared to its level for θ ∈ [0, θ1), or within the interval [θ1, θ2]. The

contract (q(θ), πU(q; θ)) = (2q0, 0) can therefore be offered to all types θ ∈ [θ1, θ2].

Then M∗(θ) must be equal to

M∗(θ) = F (θ)− f(θ)
Πq(2q

0; θ)

Cθq(2q0; θ)
(62)

which is such that equates the first order condition of the optimization of the virtual

surplus is equal to 0 for q(θ) = 2q0.

It remains to establish the continuity of q∗(θ), by verifying the continuity
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of M∗(θ) at θ1 and θ2. The functions Πq(q; θ) and Cqθ(q; θ) are continuous in θ.

Therefore from the determination of q̃(θ, 0) in Lemma 4, we have

Πq(2q
0, θ1)

Cqθ(2q0, θ1)
=
F (θ1)

f(θ1)
. (63)

We can plug this expression into M∗(θ1) which gives immediately M∗(θ1) = 0. The

same analysis can be performed at θ2, where from Lemma 4 again we have

Πq(2q
0, θ2)

Cqθ(2q0, θ2)
=
F (θ2)− 1

f(θ2)
, (64)

and therefore M∗(θ2) = 1. Since the industry marginal profit Πq(q; θ) is strictly

decreasing in q, and since Πq(2q
0; θ0) = 0, Πq(2q

0; θ) > 0 for θ > θ0 (as the first best

order qM(θ) exceeds 2q0) and Πq(2q
0; θ) < 0 for θ < θ0 (as the first best order qM(θ)

is strictly lower than 2q0). Therefore M∗(θ) ≤ F (θ) for θ ≤ θ0 and M∗(θ) ≥ F (θ)

for θ ≥ θ0.

The corollary can be proved immediately: the comparison between q∗(θ) and

qM(θ) is a straightforward consequence of Lemma 4: since qmax(θ) ≥ q̃(θ, 0) >

qM(θ), then q∗(θ) > qM(θ) for θ < θ0. Conversely, since q̃(θ, 1) < qM(θ), we have

q∗(θ) < qM(θ) for θ > θ0.

A.6 Proof of Proposition 2 and its corollary

Start with Proposition 2. When 2q0P ′(2q0) +P (2q0)−Cq(2q0; 0) > 0, and q̃(0, 1) ≤
2q0, for any θ ∈ [θ2; min{θ̄; c̄}], q∗(θ) is strictly larger than 2q0 and by the same

reasoning as in the proof of proposition 1, the optimization of the virtual surplus

leads the retailer to offer q∗(θ) = ˜q(θ, 1) ≥ 2q0.

For any θ ∈ [0, θ2], we must distinguish when V (q(θ); θ) is concave or convex.

When V (q(θ); θ) is concave, Vq is decreasing in q. As Vq(q
0) ≥ 0, q∗(θ) ≥ q0 for

any θ ∈ [0, θ2], and by Lemma 1, q∗(θ) is increasing in θ. As q∗(θ2) = 2q0, q∗(θ)

must be such that q̃(0, 1) ≤ q∗(θ) ≤ 2q0. On one hand, q∗(θ) ≤ 2q0 implies from

Lemma 2 that the rent of the supplier is decreasing in θ: ΠU(q∗(θ), θ) ≥ ΠU(2q0, θ).

On the other hand, q∗(θ) is here always lower than qM(θ) implying that Πq(q
∗(θ))

is positive for any θ ∈ [0, θ2] (Rm(q∗(θ)) ≥ Cq(q
∗(θ))). It follows that the expected

virtual surplus of the retailer is increasing in q∗(θ). Therefore the retailer is better

off by setting for any θ ∈ [0, θ2] an order q∗(θ) = 2q0 which eliminates informational

rents and increases its profit .
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When V (q(θ); θ) is convex, which is possible depending on the sign of (28),

V (q(θ); θ) is positive and increasing in q with Vq(q
0) ≥ 0. Therefore the retailer

would like to order the maximal possible quantity: q̃(θ, 0) when θ ≤ ¯̄θ, and qmax(θ) >

q0 otherwise. However, q̃(θ, 0) and qmax(θ) are greater than 2q0 the value of q∗(θ)

when θ = θ2. And as q′(θ) ≥ 0 for q(θ) ≥ q0 it is not possible for the retailer to

order a quantity greater than 2q0 over [0, θ2]: the monotonicity condition would be

violated. The retailer is better off ordering 2q0.

When 2q0P ′(2q0) + P (2q0) − Cq(2q
0; 0) > 0, and q̃(0, 1) > 2q0, q∗(θ) which

belongs to [q̃(θ, 0), q̃(θ, 1)] is greater than 2q0. From Lemma 2, ΠU(q∗(θ), θ) and

q∗(θ) are strictly increasing too. The retailer must distort downward the quantity

asked to the supplier from the efficient one to decrease the informational rents. For

any θ, the minimal possible quantity is the closest to 2q0, i.e. q̃(θ, 1). Moreover, as

q∗(θ) is strictly increasing, only the participation constraint of the type 0 supplier

can be binding with ΠU(q∗(0)) = 0 for the quantity q∗(0) = q̃(0, 1), all other types

benefiting from a positive rent. As M(θ) = 1 for any θ, V (q(θ); θ) is always concave.

Finally, in both cases q̃(0, 1) ≤ 2q0 and q̃(0, 1) > 2q0, only the type c̄ realizes the

first best: q̃(c̄, 1) = qM(c̄). The proof of the corollary is immediate: 2q0 and q̃ are

lower than qM(θ) for any θ ∈ [0, c̄].

A.7 Proof of Proposition 3 and its corollary

Consider now Proposition 3: as 2q0P ′(2q0)+P (2q0)−Cq(2q0; c̄) < 0, i.e. Rm(2q0) ≤
Cq(q(θ), c̄), we have 2q0 ≥ qM(θ) for any θ ∈ [0, c̄]. Moreover, the large demand

implies q0 ≤ qM(0) = q̃(0, 0), therefore q0 ≤ qM(θ) ≤ 2q0. For any θ ∈ [0, θ1], with

θ1 such that q̃(θ1, 0) = 2q0, q∗(θ) ≤ 2q0 and the rent of the supplier is decreasing in

q with a minimum at ΠU(2q0, θ) ≥ 0. It follows that µ∗(θ) = 0 and M∗(θ) = 0 for

every θ ∈ [0, θ1], with θ1 always lower than θ̄. The optimal quantity ordered to the

types lower than θ1 is q̃(θ, 0).

As q̃(θ1, 0) = 2q0 and q∗(θ) ≥ 0 is increasing over [0, c̄], the optimal quantity over

[θ1, c̄] must be larger than 2q0. This implies that ΠU(q∗(θ), θ) is increasing in q for

every θ ∈ [θ1, c̄]. To decrease the rent of the supplier, the retailer set the orders of the

different types of supplier as close as possible to 2q0 ≥ qM(c̄). Moreover, decreasing

the quantity ordered to the supplier allows him to increase its profit. Indeed, Rm(q)

is decreasing in q therefore q∗(θ) ≥ 2q0 implies that Rm(q∗(θ)) ≤ Rm(2q0). And here
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we have Rm(2q0) ≤ Cq(q(θ), c̄) ≤ Cq(q(θ), θ) for any θ ∈ [0, c̄], therefore Rm(q∗(θ)) ≤
Cq(q

∗(θ), θ), i.e. Πq(q
∗(θ), θ) ≤ 0 for any θ ∈ [θ1, c̄]. By decreasing q∗(θ), the retailer

increases its profit and minimizes the rent of the supplier. It follows that the retailer

sets q∗(c̄) = 2q0 and as q̃(θ1, 0) = 2q0 and q∗(θ) must be increasing in θ (monotonicity

constraint), q∗(θ) = 2q0 for any θ ∈ [θ1, c̄].

The proof of the corollary is immediate: q̃(θ, 0) and 2q0 are larger than qM(θ).

And as only the IR constraint of the type c̄ is binding, M∗(c̄) = 1 and M∗(θ) = 0

for all θ 6= c̄.

A.8 Proof of Lemma 5

As the proof of Lemma 4 established, the virtual surplus is concave in q for M = 1

and hence the solution q̂(θ, 1) solves the first order condition which is necessary and

sufficient:

Πq(q̂(θ, 1); θ)− F (θ)− 1

f(θ)
Cθq(q̂(θ, 1); θ) = 0, (65)

where q̂(θ, 1) is continuous in θ. Similarly to the proof of Lemma 4, we obtain

q̂(θ, 1) =
a− θ − F (θ)−1

f(θ)

2b+ d− d
c
(θ + F (θ)−1

f(θ)
)
. (66)

which is continuous in θ. And the sign of dq̃(θ,1)
dθ

is given by the sign of:

N =

(
2bc+ dc− ad

c

)(
d(1−F (θ)

f(θ)
)

dθ
− 1

)
, (67)

The first factor in N is positive when Vq(q
0) ≤ 0. The second factor is negative by

the assumption made on the distribution F (θ). Therefore q̂(θ, 1) is decreasing in θ

when the demand is large. This proves (i).

We have also demonstrated that the virtual surplus is not concave in q for M = 0

and every θ. When M = 0, using again G(θ) = θ + F (θ)
f(θ)

which is an increasing and

continuous function, with G−1 its reciprocal, the second order condition is negative

if and only if

− 2b− d̄+
d̄

c̄

(
θ +

F (θ)

f(θ)

)
≤ 0⇔ θ ≤ G−1

(
(2b+ d̄)

c̄

d̄

)
≡ θ̄. (68)

As the virtual surplus is concave for θ = 0, the threshold value θ̄ is strictly positive.

However it can be larger or smaller than c̄: when θ = c̄, the second order derivative
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of V e
D is equal to −2b + d̄

c̄f(c̄)
which can be positive when d̄ is large (i.e. when cost

functions are very convex in q), or negative when d̄ is not sufficiently large. The

virtual surplus V e
D is therefore may not be concave forM = 0 when θ ∈ [min{c̄; θ̄}, c̄].

When θ ∈ [0,min{c̄; θ̄}], the first order condition is sufficient to determine q̂(θ, 0)

which solves

Πq(q̂(θ, 0); θ)− F (θ)

f(θ)
Cθq(q̂(θ, 0); θ) = 0, (69)

where q̂(θ, 0) is continuous in θ for θ ∈ [0,min{c̄; θ̄}]. Since Cθq > 0, q̂(θ, 0) < qM(θ)

except for θ = 0 where they coincide. It comes

q̂(θ, 0) =
a− θ − F (θ)

f(θ)

2b+ d̄− d̄
c̄
(θ + F (θ)

f(θ)
)
, (70)

with limθ→θ̄ q̃(θ, 0) = −∞, as a − G(θ̄) is negative when Vq(q
0) ≤ 0. Moreover, the

derivative in θ of q̂(θ, 0) is negative if[
2b+ d̄− ad̄

c̄

][
−1−

d(F (θ)
f(θ)

)

dθ

]
≤ 0. (71)

Under our assumption on the distribution F , (71) is negative if and only if [2b+d̄−a d̄
c̄
]

is positive, which is always true when the demand is small, i.e. Vq(q
0) ≤ 0. Therefore,

q̂(θ, 0) is continuous and decreasing in θ from q̂(0, 0) to 0, for θ ∈ [0, θ̄], with q̂(θ, 0) =

0 for θ ∈ [θ, θ̄], and θ such that a = G(θ), i.e. θ = G−1(a), which is always positive

since G(0) = 0. Consequently q̂(θ, 0) > 0 for θ < θ, and q̂(θ, 0) = 0 else, and q̂(θ, 0)

is continuous at θ. If θ̄ > c̄, q̂(θ, 0) is strictly positive. This proves (ii).

Moreover, when θ = θ, the marginal virtual surplus is nil,

Πq(0; θ)− F (θ)

f(θ)
Cθq(0; θ) = 0⇔ P (0)− Cq(0, θ)−

F (θ)

f(θ)
Cθq(0; θ) = 0,

⇔a− θ − F (θ)

f(θ)
= 0. (72)

. and therefore as the marginal virtual surplus is decreasing here, it is strictly

negative for all θ ∈ [θ, θ̄].

When θ ∈ [min{c̄; θ̄}, c̄], the virtual surplus is not concave, its derivative increases

with q. To respect the incentive compatibility constraints, the quantity ordered must

be weakly decreasing in types. Since q̂(θ, 0) = 0 for θ ≥ θ, and θ < θ̄ the quantity

scheme must be “ironed” as in Guesnerie and Laffont [11], with q̂(θ, 0) = 0 for

θ ∈ [min{c̄; θ̄}, c̄].
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Last the first order condition (25) decreases with M when Cqθ > 0, then the

solution q̂(θ, 0) must be lower than q̂(θ, 1), and it is immediate to verify that the

solutions q̂(c̄, 1) and q̂(0, 0) coincide with qM(c̄) and qM(0) respectively. Therefore

qM(θ), which decreases with θ when a < (2b+ d̄) c̄
d̄
, lies in between the solutions for

M = 1 and M = 0. This proves (iii).

A.9 Proof of Proposition 5

Let us start with the case where θ < c̄. From Lemma 2, the profit of the supplier

is strictly decreasing in θ when q < 2q0, and moreover it is nil for θ = θ which is

producing nothing. Therefore πU(0, θ) = 0, and the profit of all types θ < θ must be

strictly positive. Therefore M(θ) = 0 for all types smaller than θ. Consequently the

retailer is better off by ordering q̂(θ, 0) to all types θ < θ, which from Lemma 5 is the

unique value which maximizes the virtual surplus. When θ > θ, the supplier’s profit

must still be decreasing in θ, and to respect the implementability constraint q∗(θ)

must also be weakly decreasing. Therefore the optimum for the retailer consists in

ordering nothing to types θ > θ. In that case the multiplier M∗(θ) must be equal to

M∗(θ) = F (θ)− f(θ) Πq(0;θ)

Cθq(0;θ)
= F (θ)− f(θ)(a− θ) for every θ < θ̄ for which ironing

does not occur. When ironing occurs (for θ > θ̄, the multiplier M∗(θ) depends also

on the value of the multiplier of the constraint q′(θ) = 0 which is strictly positive.

We do not determine it as it is not central to our paper.

In the case where θ ≥ c̄, all productions must be positive, and for the rent to be

strictly decreasing in θ the retailer must set the (IR) constraint of a type c̄ to 0. No

ironing occurs Therefore M(c̄) = 1 and all other types earn a rent, M(θ) = 0 for all

θ < c̄. Then the optimum of the retailer consists in ordering q̂(θ; 0) for all types.
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