Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00

Station Heterogeneity and Asymmetric Gasoline Price Responses

Emmanuel Asane-Otoo and Bernhard C. Dannemann

Department of Business Administration, Economics and Law

Institute of Economics — Carl von Ossietzky University Oldenburg

August 22, 2022

Asane-Otoo and Dannemann

Station Heterogeneity

Aug 22, 2022 1 / 17

Introduction	Data	Methods	Results	Conclusion
●000	000	00	00000	00
Current Situation				

• Public perception that retail fuel prices are higher than necessary; oil companies are suspected of collusion and asymmetric pricing strategies

'Exxon made more money than God last year' - Joe Biden

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00

Asymmetric Pricing in the Retail Fuel Market

- Aforementioned findings and perceptions are partly confirmed by the empirical literature, however, mixed results are found even for the same market (Asane-Otoo and Schneider, 2015; Verlinda, 2008)
- Asymmetric gasoline price responses at the pump in reaction to input cost fluctuations are well-documented, with two prevalent explanations for non-competitive pricing: (Eckert, 2013; Periguero-Garía, 2013; Cook and Fosten, 2019; Asane-Otoo and Dannemann, 2022)
 - Market power (Borenstein et al., 1997; Balke et al., 1998)
 - A higher number of competitors is thought to ensure competitive pricing behavior (Barron et al., 2004; Lewis, 2008; Bergantino et al., 2020)
 - Search costs (Tappata, 2009; Johnson, 2002; Lewis, 2011)
 - With price comparison being costly for consumers, retailers can charge higher prices

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00
Aggregation	SSUES			

- The issue of data aggregation receives increasing attention, with focus on disaggregated data sets (Asane-Otoo and Dannemann, 2022; Frondel et al., 2020)
- Temporal aggregation inadequately reflects station level pricing decisions and masks pricing patterns '
- Spatial aggregation ignores heterogeneity across stations or regions, and masks patterns in the spatial distribution of pricing strategies (Haucap et al., 2017; Balaguer and Ripollés, 2016)

Asane-Otoo and Dannemann

Station Heterogeneity

Aug 22, 2022 4 / 17

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00
Research Cor	tribution			

- However, the majority of studies relies on panel regression techniques and presents parameter estimates as averages across stations
- Panel aggregation bias receives little to no attention
- This paper:
 - Estimation of asymmetric error correction model for 12,613 individual station daily time series
 - Focus on parameter heterogeneity
 - Station-specific input costs (wholesale price)
 - Analysis of drivers of pricing patterns in local markets

Introduction	Data	Methods	Results	Conclusion
0000	•00	00	00000	00
Retail Price D	ata			

- By law, fuel station operators are obliged to publicly disclose all price changes in real-time (German Federal Cartel Office, 2011)
 - Georeferenced station-level data available since 2014 for 15,227 stations
 - 12,613 stations (\approx 83%) part of the regression sample
 - Daily price averages 2014-2018

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00
Input Cost Data				

- Wholesale rather than international crude oil prices might be relevant for retailers (Delpachitra, 2002)
 - Currently 18 active refineries, with 8 at least partly owned by vertically integrated companies
 - Refined products stored in 117 fuel depots
- \Rightarrow Both types supply fuels to stations
 - Refineries and depots are assigned to 8 distinct wholesale market regions identified by an external data provider
 - Supply depot \rightarrow station is typically done by road transport
 - Openstreetmap driving distance used as a proxy for transport costs

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00
Further Variables				

- Further demand-side fluctuations are proxied for by considering relevant factors that affect motorists' behavior
- Neighborhood retail price of adjacent fuel stations to account for competition (Haucap et al., 2017; Atkinson, 2009)
- Ambient temperature and precipitation capture transportation mode choice based on weather conditions (Koetse and Rietveld, 2009; Klein Tank et al., 2002)
- Public holidays and school holiday start proxy for phenomena such as wave of vacationers (Cools et al., 2007; Jum, 2010)

Asane-Otoo and Dannemann

Station Heterogeneity

Aug 22, 2022 8 / 17

Introduction	Data	Methods	Results	Conclusion
0000	000	•0	00000	00
Cointegration	Fauation			

- Test for cointegration follows Engle-Granger two-step procedure (Granger and Engle, 1987)
- Ong-run relationship between retail fuel price and input cost is estimated:

$$\mathbf{r}_t = \sigma + \theta \mathbf{w}_t + \gamma' \mathbf{H} + \delta' \mathbf{D} + \xi_t \tag{1}$$

- **③** Test for stationarity of residual (ξ_t)
 - With cointegration, θ is long-run cost pass-through
 - Residual corresponds to deviations from long-run equilibrium

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00
Regression Ed	quation			

- Asymmetric Error Correction Model (AECM) estimated separately for 12,613 fuel stations and different input cost measures (Granger and Lee, 1989)
- Test for Symmetric pricing, that is, $|\phi^+|=|\phi^-|$

$$\Delta r_{t} = \alpha + \phi^{+} \xi_{t-1}^{+} + \phi^{-} \xi_{t-1}^{-}$$

$$+ \sum_{l=1}^{L} \left(\beta_{l}^{+} \bigtriangleup r_{t-l}^{+} + \beta_{l}^{-} \bigtriangleup r_{t-l}^{-} \right)$$

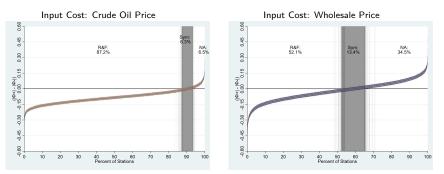
$$+ \sum_{m=0}^{M} \left(\lambda_{m}^{+} \bigtriangleup w_{t-m}^{+} + \lambda_{m}^{-} \bigtriangleup w_{t-m}^{-} \right) + \sum_{n=0}^{N} \left(\sigma_{n}^{+} \bigtriangleup c_{t-n}^{+} + \sigma_{n}^{-} c_{t-n}^{-} \right)$$

$$+ \psi \bigtriangleup \overline{r}_{(-i)t-1} + \pi' \bigtriangleup \mathbf{W} + \gamma' \mathbf{H} + \delta' \mathbf{D} + \tau t + \varepsilon_{t}$$

$$(2)$$

with r retail, w wholesale and c crude oil price, and W weather, H holidays, D dayof-the-week and month/year FE

Asane-Otoo and Dannemann


Station Heterogeneity

Aug 22, 2022 10 / 17

Introduction	Data	Methods	Results	Conclusion
0000	000	00	●0000	00

Part 1a: Input Cost Measure and Pricing Pattern

• Comparison of long-run adjustment parameters for individuals stations reveals drastic change in pricing patterns

Introduction	Data	Methods	Results	Conclusion
0000	000	00	0000	00

Part 1b: Spatial Distribution of Pricing Patterns

- Large geographic differences of prevailing pricing patterns across federal states, for example, for rockets and feathers
- States with higher population densities and more refinery / fuel depot infrastructure have high share of rockets and feathers stations

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00

Part 2: Local Market Characteristics

• Magnitude of pricing asymmetry from the prior regression is employed as the dependent variable in a cross-section of stations

•	(1)	(2)	(3)	(4)	(5)
	Dependent \	/ariable: ($ \phi^+ $ –	$ \phi^{-})/\sqrt{SE_{\phi^{+}}}$	$N + SE_{\phi^-}/N$	
Total Number of Neighbors	-0.103*** (0.028)	-0.096** (0.029)	-0.175*** (0.039)	-0.175*** (0.039)	-0.073* (0.035)
Total Number of Neighbors ²	0.003*** (0.001)	0.003*** (0.001)	0.004*** (0.001)	0.004*** (0.001)	0.002** (0.001)
No Neighbors	(****)	0.319 (0.441)	0.465 (0.444)	-0.587 (0.559)	-2.767*** (0.634)
In(Population Density)		()	0.466** (0.153)	0.504** (0.154)	0.111 (0.136)
Share of Major Brand			()	-1.322** (0.460)	-1.868*** (0.406)
Share of Same Brand				-1.276* (0.540)	-0.930 (0.476)
Share showing Rockets and Feathers				(0.0.0)	-10.035*** (0.496)
Share showing Negative Asymmetry					8.334*** (0.528)
Number of Stations	12,613	12,613	12,613	12,613	12,613
Federal State Fixed Effects?	Yes	Yes	Yes	Yes	Yes
Brand Fixed Effects? R ² _{Adj.}	Yes 0.078	Yes 0.078	Yes 0.079	Yes 0.079	Yes 0.285

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00

Part 3a: Pooled-Panel Estimation

• Estimation of a pooled-panel of all fuel stations

	(1)	(2)	(3)
	Crude Oil		Both
	Price	Price	
	Dependent Var	iable: $ riangle$ Retail P	rice of E5 Fuel
Input Cost Decrease (ϕ^+)	-0.021***	-0.024***	-0.024***
	(0.000)	(0.000)	(0.000)
Input Cost Increase (ϕ^-)	-0.056***	-0.042***	-0.042***
	(0.000)	(0.000)	(0.000)
	F-Tests for Syn	nmetry	
$\phi^+ = \phi^-$	20,022.02***	3,210.96***	3,146.30***
$\beta_{l}^{+} = \beta_{l}^{-}, l \in [1, 7]$	6,292.55***	5,150.56***	5,145.28***
$\lambda_m^+ = \lambda_m^-, m \in [0,7]$		390.63***	429.67***
$\sigma_n^+ = \sigma_n^-, n \in [0,7]$	4,522.24***		766.80***
Cointegration based on	Ct	Wt	Wt
Ν	21,621,581	21,621,581	21,621,581
R ² _{Adi}	0.286	0.332	0.332
Number of Stations	12,613	12,613	12,613
Month/Year Fixed Effects (Y)	Yes	Yes	Yes
Controls (W , H , T , $\triangle \overline{r}_{(-i)t-1}$)	Yes	Yes	Yes

Carl von Ossietzky Universität Oldenburg

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00

Part 3b: Pooling by Pricing Pattern

• Fuel stations are pooled by the pricing pattern obtained from individual time series regression

6	(1)	(2)	(3)
	Rockets and	Symmetric	Negative
	Feathers	Adjustment	Asymmetry
	Dependent Vari	iable: $ riangle$ Retail Pr	ice of E5 Fuel
Input Cost Decrease (ϕ^+)	-0.019***	-0.028***	-0.031***
	(0.000)	(0.001)	(0.000)
Input Cost Increase (ϕ^-)	-0.049***	-0.040***	-0.032***
	(0.000)	(0.001)	(0.000)
	F-Test for Sym	metry	
$\phi^+ = \phi^-$	4,887.60***	179.18***	1.89
$\beta_{I}^{+} = \beta_{I}^{-}, I \in [1, 7]$	2,115.47***	618.19***	2,527.68***
$\lambda_m^+ = \lambda_m^-, m \in [0,7]$	230.27***	45.84***	177.30***
$\sigma_n^+ = \sigma_n^-, n \in [0,7]$	425.37***	87.40***	267.95***
Cointegration based on	Wt	Wt	Wt
Ν	11,480,801	2,428,496	7,712,284
$R^2_{Adi.}$	0.328	0.336	0.339
Number of Stations	6,718	1,421	4,474
Month/Year Fixed Effects (D)	Yes	Yes	Yes
Controls (W , H , T , $\triangle \overline{r}_{(-i)t-1}$)	Yes	Yes	Yes

Carl von Ossietzky Universität Oldenburg

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	•0
Summary of N	lain Results			

- Individual station time series reveal wide scope of pricing patterns upon switching to wholesale prices as input costs
 - Findings masked by pooled-panel analysis
 - Controversially, individual price patterns deviate from pooled-panel results
- Brand structure and station density affect pricing pattern in local markets
- Geographical differences in prevailing pricing patterns
 - Access to refinery infrastructure as a possible explanation
 - States with many depots/refineries show higher prevalence of asymmetric pricing

Introduction	Data	Methods	Results	Conclusion
0000	000	00	00000	00
Conclusion				

- In spite of full market transparency in Germany facilitating consumer serach, asymmetric pricing patterns still prevail
- Use of crude oil rather than wholesale price seems to overstate prevalence of non-competitive pricing
- Market transparency unit makes price comparison possible, but could be a double-edged sword
 - Firms can also track competitors prices
 - Leads to tacit collusion and algorithmic pricing (Calvano et al., 2020)

Thank you!

References I

- Asane-Otoo, E. and Dannemann, B. C. (2022). Rockets and Feathers Revisited: Asymmetric Retail Gasoline Pricing in the Era of Market Transparency. *The Energy Journal*, 43(6).
- Asane-Otoo, E. and Schneider, J. (2015). Retail Fuel Price Adjustment in Germany: A Threshold Cointegration Approach. *Energy Policy*, 78:1–10.
- Atkinson, B. (2009). Retail Gasoline Price Cycles: Evidence from Guelph, Ontario using Bi-Hourly Station Specific Retail Price Data. *The Energy Journal*, 30:85–109.
- Balaguer, J. and Ripollés, J. (2016). Asymmetric Fuel Price Responses Under Heterogeneity. Energy Economics, 54:281–290.
- Balke, N. S., Brown, S. P., and Yücel, M. (1998). Crude Oil and Gasoline Prices: An Asymmetric Relationship? *Economic and Financial Policy Review*, Q1:2–11.
- Barron, J. M., Taylor, B. A., and Umbeck, J. R. (2004). Number of Sellers, Average Prices, and Price Dispersion. International Journal of Industrial Organization, 22(8-9):1041–1066.
- Bergantino, A. S., Capozza, C., and Intini, M. (2020). Empirical Investigation of Retail Fuel Pricing: The Impact of Spatial Interaction, Competition and Territorial Factors. *Energy Economics*, 90:104876.
- Borenstein, S., Cameron, A. C., and Gilbert, R. (1997). Do Gasoline Prices Respond Asymmetrically to Crude Oil Price Changes? *Quarterly Journal of Economics*, 112:305–339.
- Calvano, E., Calzolari, G., Denicolò, V., and Pastorello, S. (2020). Artificial Intelligence, Algorithmic Pricing, and Collusion. American Economic Review, 110(10):3267–3297.
- Cook, S. and Fosten, J. (2019). Replicating Rockets and Feathers. Energy Economics, 82:139-151.
- Cools, M., Moons, E., and Wets, G. (2007). Investigating Effect of Holidays on Daily Traffic Counts: Time Series Approach. Transportation Research Record: Journal of the Transportation Research Board, 2019:22–31.
- Delpachitra, S. B. (2002). Price Rigidity in the Downstream Petroleum Industry in New Zealand: Where Does It Happen? *Energy economics*, 24(6):597–613.
- Eckert, A. (2013). Empirical Studies of Gasoline Retailing: A Guide to the Literature. Journal of Economic Surveys, 27:140–166.

Carl von Ossietzky Universität Oldenburg

Asane-Otoo and Dannemann

Station Heterogeneity

Aug 22, 2022 2 / 4

References II

- Frondel, M., Horvath, M., Vance, C., and Kihm, A. (2020). Increased Market Transparency in Germany's Gasoline Market. *Journal of Transport Economics and Policy*, 54(2):102–120.
- German Federal Cartel Office (2011). Fuel Sector Inquiry. Final Report in Accordance with §32e GWB -May 2011 - Summary. https://www.bundeskartellamt.de/SharedDocs/Publikation/EN/Sector%20Inquiries/Fuel% 20Sector%20Inquiry%20-%20Final%20Report.pdf?__blob=publicationFile&v=14 (last accessed: 17 January 2020).
- Granger, C. W. and Engle, R. F. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. *Econometrica*, 55(2):251–276.
- Granger, C. W. and Lee, T. H. (1989). Investigation of Production, Sales and Inventory Relationships using Multicointegration and Non-Symmetric Error Correction Models. *Journal of Applied Econometrics*, 4:145–159.
- Haucap, J., Heimeshoff, U., and Siekmann, M. (2017). Fuel Prices and Station Heterogeneity on Retail Gasoline Markets. *The Energy Journal*, 38(6):81–103.
- Johnson, R. N. (2002). Search costs, lags and prices at the pump. Review of Industrial Organization, 20:33–50.
- Jun, J. (2010). Understanding the Variability of Speed Distributions Under Mixed Traffic Conditions Caused by Holiday Traffic. Transportation Research Part C, 18:599–610.
- Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., and others (2002). Daily Dataset of 20th-Century Surface Air Temperature and Precipitation Series for the European Climate Assessment. International Journal of Climatology, 22:1441–1453. Data and metadata available at https://www.ecad.eu//dailydata/predefinedseries.php (last accessed: 9 October 2019).
- Koetse, M. J. and Rietveld, P. (2009). The Impact of Climate Change and Weather on Transport: An Overview of Empirical Findings. *Transportation Research Part D*, 14:205–221.
- Lewis, M. (2008). Price Dispersion and Competition with Differentiated Sellers. The Journal of Industrial Economics, 56(3):654–678.
- Lewis, M. S. (2011). Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market. Journal of Economics & Management Strategy, 20:409–449.

Carl von Ossietzky Universität Oldenburg

Asane-Otoo and Dannemann

Station Heterogeneity

Aug 22, 2022 3 / 4

References III

- Periguero-Garía, J. (2013). Symmetric or Asymmetric Oil Prices? A Meta-Analysis Approach. Energy Policy, 57:389–397.
- Tappata, M. (2009). Rockets and Feathers: Understanding Asymmetric Pricing. RAND Journal of Economics, 40(4):673–687.
- Verlinda, J. A. (2008). Do Rockets Rise Faster and Feathers Fall Slower in an Atmosphere of Local Market Power? Evidence From the Retail Gasoline Market. *The Journal of Industrial Economics*, 57:581–612.

