A Parsimonous Model of Idiosyncratic Income

Edmund Crawley, Federal Reserve Board Martin B. Holm, University of Oslo Håkon Tretvoll, Statistics Norway

24 August, 2022

Viewpoints and conclusions stated in this paper are the responsibility of the authors alone and do not necessarily reflect the viewpoints of the Federal Reserve Board or Statistics Norway.

[T]he key challenge for future work is to develop a specification for the **wage process** that is both **parsimonious** enough to be used as an input to incomplete-markets models, and rich enough to **account empirically for the covariance structure of wages in both** *levels and differences*.

Heathcote, Perri, and Violante (2010, p. 40)

Motivation

The standard model:

$$y_t = p_t + \varepsilon_t + \theta \varepsilon_{t-1}$$
$$p_t = p_{t-1} + \nu_t$$

can be estimated using level moments, $Cov(y_t, y_s)$, or difference moments, $Cov(\Delta y_t, \Delta y_s)$.

But choice of moments gives different results:

	Level moments	Difference moments
$\sigma^2_{\rm perm}$	0.004	0.011
$\sigma^2_{ m perm} \ \sigma^2_{ m tran}$	0.032	0.020

i.e., the standard model is *misspecified*.

Propose minimal changes to the standard model:

- 1. Shocks are spread uniformly through the year (time-aggregation problem)
- 2. Two types of transitory shocks ("bonus" and "passing")

Still parsimonious: only one extra parameter to estimate

1. We estimate the standard model on simulated data from proposed model:

Same misspecification 'structure' as in actual data

2. We estimate the proposed model in Norwegian data:

Similar parameter estimates irrespective of level or difference Same for PSID

Data

Problem With the Standard Model

The Proposed Model

Simulation Results

Data Results

Norwegian administrative data on annual income, 1971 - 2014

Main variable: log residualized pre-tax earnings (year, age, and education dummies)

Sample selection (Daly, Hryshko & Manovskii, 2022)

males aged 35-50

drop extreme income changes (> 500%) and low income (< approx USD 10,000) balanced panel

More than 500k individuals, in 27 cohorts, observed for 15 years each.

Data

Problem With the Standard Model

The Proposed Model

Simulation Results

Data Results

Income process:

$$y_t = p_t + \varepsilon_t + \theta \varepsilon_{t-1}$$

 $p_t = p_{t-1} + \nu_t$

- p = permanent component, unit root
- ε = transitory component

Parameters to be estimated: $\sigma_{\nu_t}^2$, $\sigma_{\varepsilon_t}^2$, θ , $\sigma_{p_0}^2$.

Estimation Procedure

Compute empirical level or difference moments:

$$L_{t,s} = rac{1}{N}\sum_{i=1}^N y_{i,t}y_{i,s}$$
 or $D_{t,s} = rac{1}{N}\sum_{i=1}^N \Delta y_{i,t}\Delta y_{i,s}$

where $y_{i,t}$ is residualized log income and minimize the loss function:

$$\mathcal{L} = \textit{vech}(D_{\text{data}} - D_{\text{model}})^T \Omega^{-1} \textit{vech}(D_{\text{data}} - D_{\text{model}})$$

Where Ω is either

identity matrix (Identity)

optimal minimum distance weighting matrix (Optimal)

optimal matrix along the diagonal (Diagonal)

Results: Estimating the Standard Model with Norwegian Data

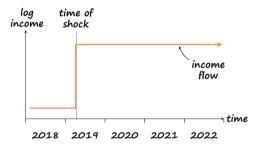
	Identity		Di	agonal	Optimal	
	Level	Difference	Level	Difference	Level	Difference
$\sigma^2_{ m perm}$	0.004	0.011	0.004	0.011	0.005	0.007
$\sigma_{\rm tran}^2$	0.032	0.020	0.033	0.020	0.021	0.021
θ	0.570	0.070	0.574	0.071	0.163	0.145
σ_{init}^2	0.062	×	0.062	×	0.059	×

- 1. Difference in permanent variance
- 2. Difference in transitory variance opposite of permanent variance
- 3. Optimal: 'similar' results irrespective of level or difference (Daly, Hryshko & Manovskii, 2022)

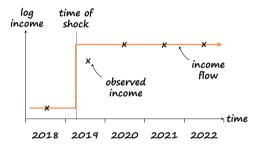
Data

Problem With the Standard Model

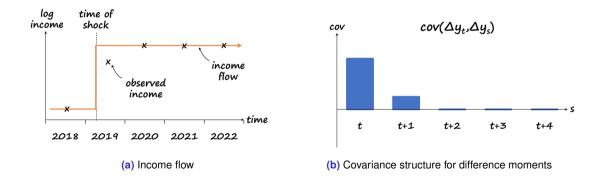
The Proposed Model

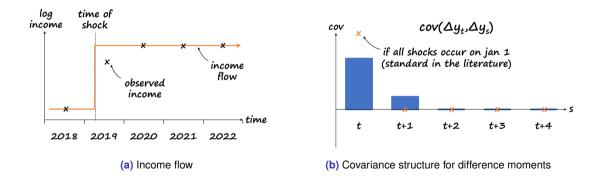

Simulation Results

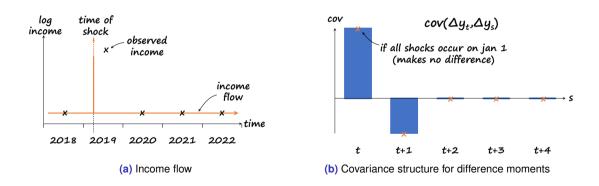
Data Results

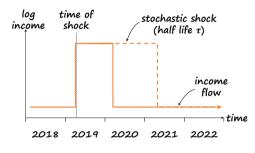

Two adjustments

- 1. We allow shocks to happen throughout the year (in continuous time)
- 2. We allow for three types of income shocks
 - 1 Permanent Income Shocks
 - 2 'Bonus' Income Shocks
 - 3 'Passing' Income Shocks

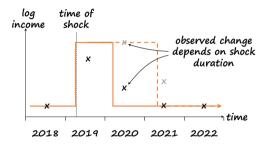

Transitory Shocks

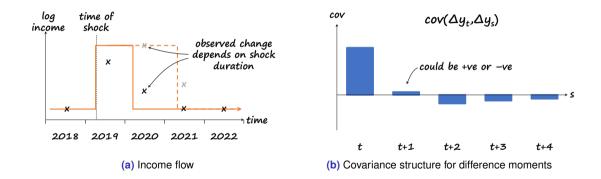



(a) Income flow

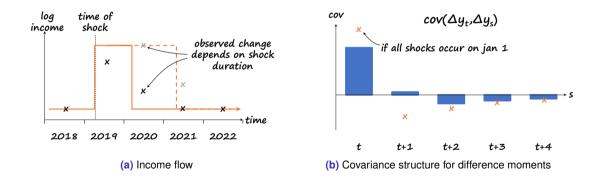


(a) Income flow

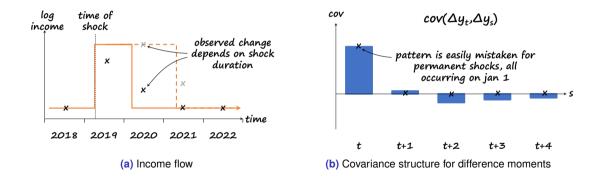




(a) Income flow



(a) Income flow


Shock Type 3: Passing

Shock Type 3: Passing

Shock Type 3: Passing

Mapping between standard and proposed model parameters

Parameter Description	Proposed	Standard
Permanent income variance	$\sigma^2_{ m perm}$	$\operatorname{Var}(\nu)$
Transitory income variance	$\sigma_{\rm tran}^2$	$(1+\theta^2)$ Var (ε)
Half life of passing shock	au	×
Bonus fraction of σ^2_{tran}	b	×
MA(1) transitory persistence	×	heta
Initial permanent income variance	σ_{init}^2	$\operatorname{Var}(p_0)$

Data

Problem With the Standard Model

The Proposed Model

Simulation Results

Data Results

Simulate 50k individuals using discretized (monthly) version of proposed model

Estimate standard model on the simulated data

		Identity		Di	Diagonal		Optimal	
Parameter	True Value	Level	Difference	Level	Difference	Level	Difference	
$\sigma_{\rm perm}^2$	0.005	0.005	0.013	0.005	0.013	0.008	0.009	
$\sigma_{\rm tran}^2$	0.038	0.031	0.017	0.032	0.017	0.021	0.020	
au	2.0 years	X	×	X	×	×	×	
b	0.40	X	×	X	×	X	×	
θ	×	0.50	0.10	0.53	0.10	0.18	0.16	
σ_{init}^2	0.065	0.065	×	0.065	×	0.064	×	

Main results:

- 1. Same 'structure' of misspecification as when using data
 Data Results
- 2. Optimal gives similar parameter estimates regardless of moments (DHM, 2022)
- 3. Level moments with Identity/Diagonal perform well

Data

Problem With the Standard Model

The Proposed Model

Simulation Results

Data Results

Exercises:

- 1. Results using Norwegian data
- 2. Age-varying / time-varying results using Norwegian data
- 3. Results using the PSID
- 4. Time-varying results using the PSID

Norwegian Results

	Identity	Di	agonal	0	ptimal
Leve	Difference	Level	Difference	Level	Difference

Panel A: Proposed Model

$\sigma_{\rm perm}^2$	0.003	0.005	0.003	0.005	0.003	0.004
$rac{\sigma_{perm}^2}{\sigma_{tran}^2}$	0.039	0.038	0.038	0.039	0.039	0.036
au	1.547	2.045	1.770	2.058	2.234	1.862
b	0.360	0.478	0.341	0.473	0.443	0.480
σ_{init}^2	0.062	×	0.062	×	0.059	×

Panel B: Standard Model

$\sigma_{\rm perm}^2$	0.004	<mark>0.011</mark> 0.020	0.004	0.011	0.005	0.007
$\sigma_{\rm tran}^2$	0.032	0.020	0.033	0.020	0.021	0.021
θ	0.570	0.070	0.574	0.071	0.163	0.145
σ_{init}^2	0.062	×	0.062	×	0.059	×

le	dentity	Di	agonal	Optimal		
Level	Level Difference		Level Difference		Difference	

$\sigma_{\rm perm}^2$	0.003 0.036	0.011	0.003	0.011	0.005	0.007
$\sigma_{\rm tran}^2$	0.036	0.021	0.036	0.021	0.023	0.022
au	0.982	0.065	1.202	0.080	0.231	0.157
σ_{init}^2	0.064	×	0.063	×	0.060	×

Norwegian Results (Persistence)

 ld	entity	Diagonal		Optimal	
Level	Difference	Level	Difference	Level	Difference

Panel A: Proposed Model

$\sigma^2_{\sf perm}$	0.004	0.006	0.004	0.006	0.003	0.005
$\sigma_{perm}^2 \ \sigma_{tran}^2$	0.038	0.034	0.041	0.035	0.039	0.033
au	1.494	1.810	1.328	1.815	2.241	1.640
b	0.390	0.540	0.407	0.526	0.443	0.525
ρ	0.991	0.979	0.982	0.985	1.000	0.989
σ_{init}^2	0.063	X	0.063	X	0.059	X

Panel B: Standard Model

$\sigma^2_{\sf perm}$	0.010	0.014	0.010	0.015	0.011	0.010
$\sigma^2_{ m perm} \ \sigma^2_{ m tran}$	0.022	0.017	0.022	0.016	0.019	0.019
θ	0.216	0.026	0.233	0.000	0.088	0.092
ρ	0.923	0.894	0.921	0.809	0.926	0.952
$\sigma_{\rm init}^2$	0.063	×	0.062	X	0.059	×

Data

Problem With the Standard Model

The Proposed Model

Simulation Results

Data Results

Conclusion

We propose a new model of idiosyncratic income. Two changes to standard model:

Continuous time to solve time aggregation problem

Three types of income shocks to match data.

The model is **parsimonious** and has **no obvious misspecification** issues.

Only one extra parameter to be estimated.

Parameter estimates are similar across moments and weighting matrix applied.

For practitioners:

Use our model!

If you for some reason have to use the standard model: use level moments!

	Identity		Di	agonal	Optimal		
	Level	Difference	Level	Difference	Level	Difference	
$\sigma^2_{\rm perm}$	0.004	0.011	0.004	0.011	0.005	0.007	
$\sigma^2_{ m perm} \ \sigma^2_{ m tran}$	0.032	0.020	0.033	0.020	0.021	0.021	
θ	0.570	0.070	0.574	0.071	0.163	0.145	
$\sigma_{\rm init}^2$	0.062	×	0.062	×	0.059	×	

		Identity		Diagonal		Optimal	
Parameter	True Value	Level	Difference	Level	Difference	Level	Difference
$\sigma^2_{ m perm}$	0.005	0.008	0.015	0.009	0.015	0.013	0.013
$\sigma_{\rm tran}^2$	0.038	0.026	0.015	0.027	0.015	0.017	0.017
au	2.0 years	×	×	×	×	×	×
b	0.40	×	×	×	×	×	×
θ	×	0.38	0.07	0.39	0.07	0.12	0.11
ρ	1.00	0.97	0.93	0.97	0.93	0.94	0.95
$\sigma_{\rm init}^2$	0.065	0.062	×	0.063	×	0.064	×