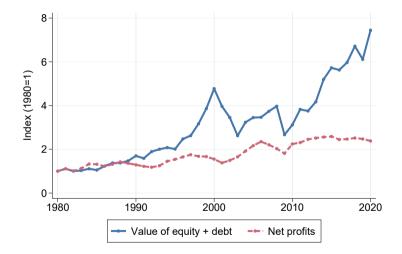
Asset-Price Redistribution

ANDREAS FAGERENG BI MATTHIEU GOMEZ Columbia

ÉMILIEN GOUIN-BONENFANT Columbia


MARTIN B. HOLM University of Oslo

BENJAMIN MOLL LSE GISLE NATVIK BI

Rising Asset Prices

Rising Asset Prices ... Relative to Income

► The rise in asset valuations had large effects on the distribution of wealth

- Q. What are the consequences in terms of welfare? Who are the winners/losers?
- ► The answer is not obvious. Two polar views regarding the effect of P↑:
 - (1) Shift of real resources towards the wealthy (Saez–Yagan–Zucman, 2021)
 - (2) Welfare-irrelevant paper gains (Cochrane, 2020; Krugman, 2021)

What We Do: Theory

► Sufficient statistic for the (money metric) welfare effect of asset price "deviations"

Welfare
$$\text{Gain}_i = \sum_{t=0}^{T} \text{Discount rate}_t \times \sum_k \left(\text{Net asset sales}_{ikt} \times \text{Price deviation}_{kt} \right)$$

► In practice. Focus on deviation of prices from dividends (ie, changes in valuations)

Price deviation_{kt} =
$$\Delta\% \left(\frac{\mathsf{Price}_{kt}}{\mathsf{Dividend}_{kt}} \right)$$

▶ Two main lessons. Rising asset prices ...

(1) Benefit sellers, not holders

(2) Are purely redistributive in terms of welfare (for every seller there is a buyer)

What We Do: Empirics

- ► Application to Norway using administrative panel microdata (1994–2015)
 - ightarrow 4 pp. decline in interest rates, 3x increase in housing price-to-rent, ...
- Calculate sufficient statistic for every Norwegian

Welfare
$$\text{Gain}_i = \sum_{t=0}^{T} \text{Discount rate}_t \times \sum_k \left(\text{Net asset sales}_{ikt} \times \text{Price deviation}_{kt} \right)$$

- (i) Measure financial transactions (housing, deposits, debt, stocks, private equity)
- (ii) Construct asset-specific price-dividend series
- Quantify redistribution along several dimensions
 (ie, between cohorts, along the wealth distribution, role of government/foreigners, ...)

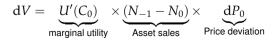
Outline

Theory: Two-period model

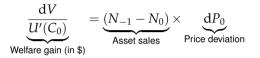
Theory: Baseline model

Empirics: Implementation

Empirics: Redistribution Between Households


Empirics: Redistribution Between Sectors

Household Problem


- ▶ Two period model $t \in \{0, 1\}$ where a individual is endowed with $\{Y_0, Y_1\}$. Agents can trade shares *N* at time t = 0 that pay a dividend *D* at time t = 1
- ► The household problem is

$$V = \max_{\{C_0, C_1\}} U(C_0) + \beta U(C_1)$$
$$C_0 + (N_0 - N_{-1})P_0 = Y_0$$
$$C_1 = Y_1 + N_0 D_1$$

• Comparative static. What is the effect of P_0 on welfare V?

Welfare Gain: Intuition

- ▶ Rising asset prices benefit sellers $(N_{-1} N_0 > 0)$, not initial holders $(N_{-1} > 0)$
- ▶ How can initial holders not benefit from P_0 \uparrow ? Two effects:
- (t = 0) High initial return $R_0 = P_0/P_{-1}$ \uparrow
- (*t* = 1) Low future returns $R_1 = D_1/P_0 \downarrow$
- ► For sellers, high initial returns dominate ... for buyers, low future returns dominate

Outline

Theory: Two-period model

Theory: Baseline model

Empirics: Implementation

Empirics: Redistribution Between Households

Empirics: Redistribution Between Sectors

- ► We consider a deterministic, endowment economy with multiple assets
- ▶ Liquid asset. One-period ponds $\{B_t\}_{t=0}^{\infty}$ with prices $\{Q_t\}_{t=0}^{\infty}$
 - \rightarrow No adjustment costs
 - \rightarrow One-period return is $R_t = 1/Q_t$
 - \rightarrow Cumulative return $R_{0 \rightarrow t} \equiv R_1 \cdot R_2 \cdots R_t$
- ▶ Long-duration assets. K assets $\{N_{k,t}\}_{t=0}^{\infty}$ with price/dividends $\{P_{k,t}, D_{k,t}\}_{t=0}^{\infty}$
 - \rightarrow Trading subject to convex adjustment cost $\chi_k(\Delta N_{k,t})$

$$\rightarrow$$
 One-period return is $R_{k,t+1} = \frac{D_{k,t+1} + P_{k,t+1}}{P_{k,t}}$

Individual Welfare Gain

► The household problem is

$$V = \max_{\{C_t, B_t, \{N_{k,t}\}_{k=1}^K\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(C_t)$$

s.t. $C_t + \sum_{k=1}^K (N_{k,t} - N_{k,t-1}) P_{k,t} - B_t Q_t = \sum_{k=1}^K N_{k,t-1} D_{k,t} + B_{t-1} + Y_t - \sum_{k=1}^K \chi_k$

▶ Proposition. The welfare effect of a perturbation $\{dP_{k,t}, dQ_t\}_{t=0}^{\infty}$ is

$$dV = U'(C_0) \times \underbrace{\sum_{t=0}^{\infty} R_{0 \to t}^{-1} \left(\sum_{k=1}^{K} (N_{k,t-1} - N_{k,t}) dP_{k,t} - B_t dQ_t \right)}_{\text{Welfare gain}}$$

Individual Welfare Gain: Discussion

Welfare Gain =
$$\sum_{t=0}^{\infty} R_{0 \to t}^{-1} \left(\sum_{k=1}^{K} (N_{k,t-1} - N_{k,t}) \, \mathrm{d}P_{k,t} - B_t \, \mathrm{d}Q_t \right)$$

1. As in two-period model, rising asset prices benefit net sellers ... but portfolio choice + timing of purchases also matters

Individual Welfare Gain: Discussion

Welfare Gain =
$$\sum_{t=0}^{\infty} R_{0 \to t}^{-1} \left(\sum_{k=1}^{K} (N_{k,t-1} - N_{k,t}) \, \mathrm{d}P_{k,t} - B_t \, \mathrm{d}Q_t \right)$$

- 1. As in two-period model, rising asset prices benefit net sellers ... but portfolio choice + timing of purchases also matters
- 2. Welfare gain is an equivalent variation: how much do you value the price deviation?

Individual Welfare Gain: Discussion

Welfare Gain =
$$\sum_{t=0}^{\infty} R_{0 \to t}^{-1} \left(\sum_{k=1}^{K} (N_{k,t-1} - N_{k,t}) dP_{k,t} - B_t dQ_t \right)$$

1. As in two-period model, rising asset prices benefit net sellers ... but portfolio choice + timing of purchases also matters

- 2. Welfare gain is an equivalent variation: how much do you value the price deviation?
- **3.** Result is an application of the envelope theorem
 - \rightarrow Exact formula for small price change dP_t
 - \rightarrow First-order approx for arbitrary price deviations ΔP_t (because saving decisions respond)

Aggregation

► Corollary. Suppose that initial prices clear the market.

```
\sum_{i=1}^{I} \text{Welfare Gain}_i = 0
```

Asset price deviations are purely redistributive.

Aggregation

► Corollary. Suppose that initial prices clear the market.

$$\sum_{i=1}^{I} \text{Welfare Gain}_i = 0$$

Asset price deviations are purely redistributive.

(i) In an a multisector economy (government, corporation, foreigners, ...):

$$\text{Welfare Gain}_{\substack{\text{house}\\\text{holds}}} = -\text{Welfare Gain}_{\substack{\text{other}\\\text{sectors}}}$$

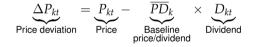
(ii) In GE, the total welfare effect of an aggregate shock ϵ is

Extensions

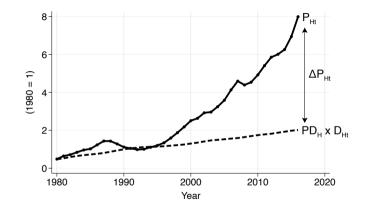
- 1. Stochastic environment
- 2. Borrowing and collateral constraints
- 3. Bequests
- 4. General equilibrium
- 5. Government sector
- 6. Housing and wealth in the utility function

Outline

Theory: Two-period model


Theory: Baseline model

Empirics: Implementation


Empirics: Redistribution Between Households

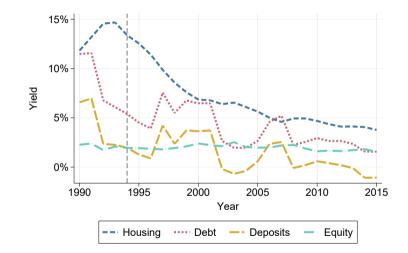
Empirics: Redistribution Between Sectors

- dP_t represents a perturbation of prices holding dividends constant ($dD_t = 0$)
- ▶ In practice, we consider price changes ΔP_t due to change in the price-dividend ratio

Example of Price Deviation: Housing

- ► Since 1994, prices have grown 8x while rents have grown 2x but
- ► Our implementation captures pure valuation effects ⇒ 4x price-to-rent increase

Data on Holdings and Transactions


- ► Administrative data covering the universe of Norwegians over 1993–2015
- ► Focus on 4 broad asset categories that cover most of liquid household wealth
 - 1. Deposits (15%)
 - 2. Debt (mortgage, student loan, ..., -35%)
 - 3. Equity (individual stocks, mutual funds, private businesses, ..., 10%)
 - 4. Housing (110%)
- ► For deposits/debt, we only need to measure the holdings
- ► For equities/housing, we use data on individual transactions
- ► Take into account indirect transactions/holdings through equity ownership

For each individual, we compute the following asset-specific welfare gain formulas:

$$\begin{aligned} \text{Welfare Gain}_{\text{housing}} &= \sum_{t=1994}^{2015} 1.05^{-t} \times (N_{H,t-1} - N_{H,t}) P_{H,t} \times \frac{PD_{H,t} - \overline{PD}_{H}}{PD_{H,t}} \\ \text{Welfare Gain}_{\text{debt}} &= -\sum_{t=1994}^{2015} 1.05^{-t} \times B_{M,t} Q_{M,t} \times \frac{Q_{M,t} - \overline{Q}_{M}}{Q_{M,t}} \\ \text{Welfare Gain}_{\text{deposit}} &= -\sum_{t=1994}^{2015} 1.05^{-t} \times B_{D,t} Q_{D,t} \times \frac{Q_{D,t} - \overline{Q}_{D}}{Q_{D,t}} \\ \text{Welfare Gain}_{\text{equity}} &= \sum_{t=1994}^{2015} 1.05^{-t} \times (N_{E,t-1} - N_{E,t}) P_{E,t} \times \frac{PD_{E,t} - \overline{PD}_{E}}{\overline{PD}_{E,t}} \end{aligned}$$

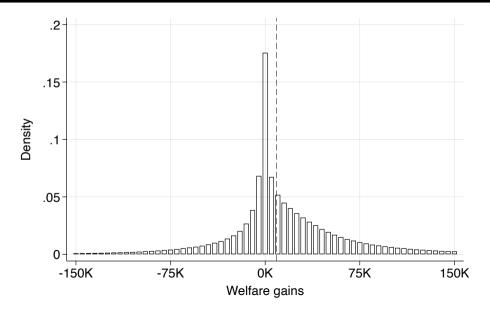
Baseline \overline{Q} and \overline{PD} are set to 1992–1996 averages.

Data on Valuations

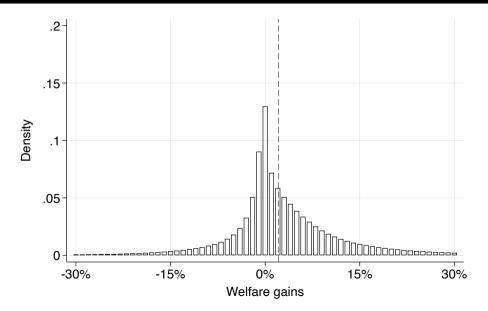
Gross real interest rate (debt/deposits); Rents/Price (housing); Cashflows/EV (equity)

Outline

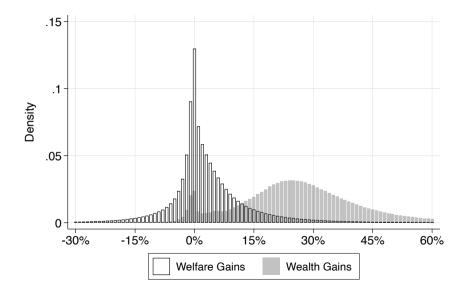
Theory: Two-period model

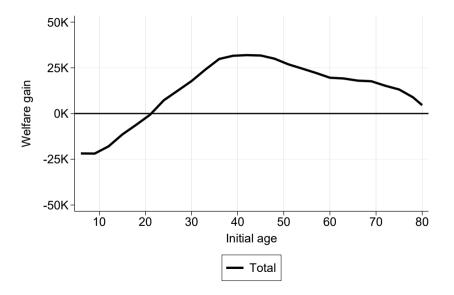

Theory: Baseline model

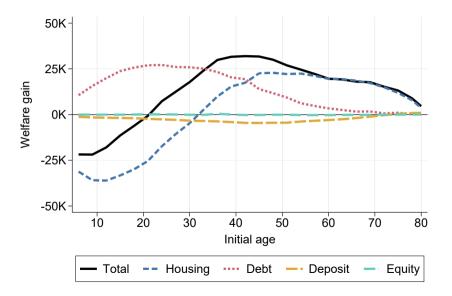
Empirics: Implementation

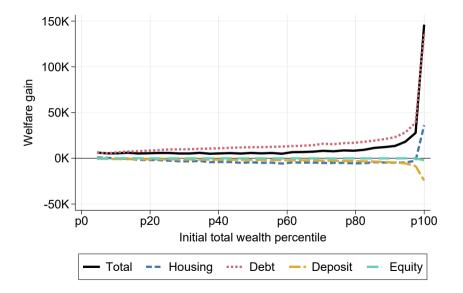

Empirics: Redistribution Between Households

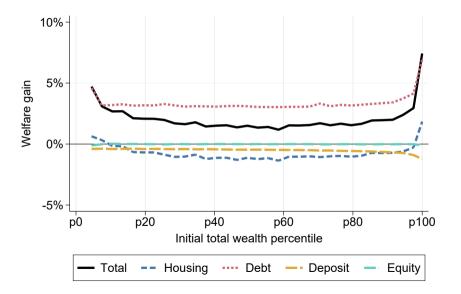
Empirics: Redistribution Between Sectors


Large Amount of Redistribution


Large Amount of Redistribution (% of initial total wealth)


Welfare Gain \neq Wealth Gain


Redistribution From Young to Old


Redistribution From Young to Old

Welfare Gains Concentrated at the Top

... Largely Reflecting Wealth Inequality

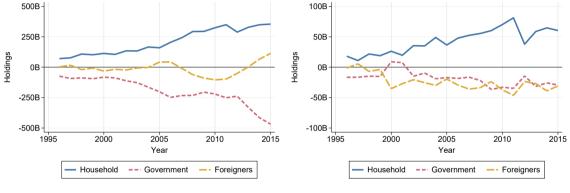
Outline

Theory: Two-period model

Theory: Baseline model

Empirics: Implementation

Empirics: Redistribution Between Households

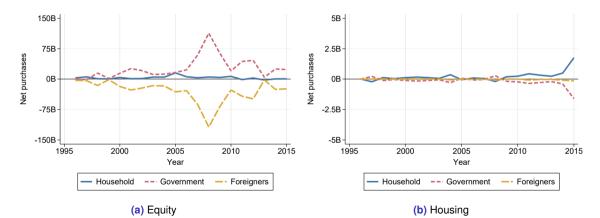

Empirics: Redistribution Between Sectors

► The household sector as a whole has a positive welfare gain. Who is the losing counterparty?

 $\text{Welfare Gain}_{\text{household}} = -\text{Welfare Gain}_{\substack{\text{other}\\ \text{sectors}}}$

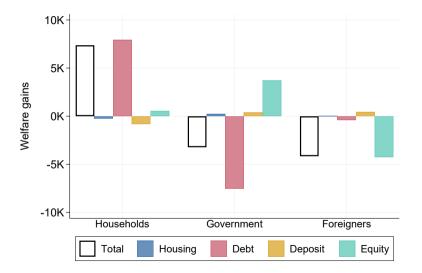
Next: (i) Describe transactions between sectors, (ii) Compute welfare gain by sector, (iii) Interpret the meaning of "government welfare gain"

Sectoral Flows: Debt & Deposits



(a) Debt

(b) Deposits


► Households debt > deposits ⇒ the government lends to households

Sectoral Flows: Equity & Housing

► The government is a net buyer of foreign equities

Redistribution From the Government to Households

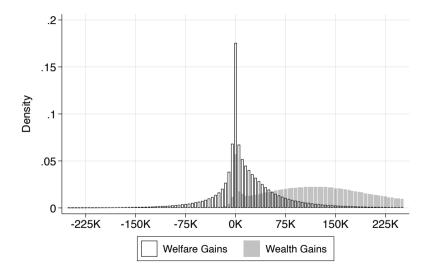
Conclusion

- ► Simple framework to quantify the welfare effect of historical asset price fluctuations
- ► Application to Norway over 1994–2015
 - (i) Large redistributive effects
 - (ii) Wealth gains \neq welfare gains
 - (iii) Redistribution from young to old
 - (iv) Redistribution from poor to rich
 - (v) Negative "welfare gain" for government \implies decline in future net transfers
- ▶ What does this imply for optimal policy? (Insuring the unborn, capital gains taxes, ...)

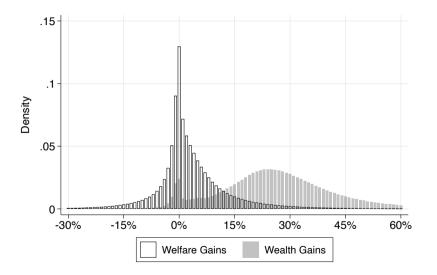
Appendix

Wealth gains vs Welfare Gains

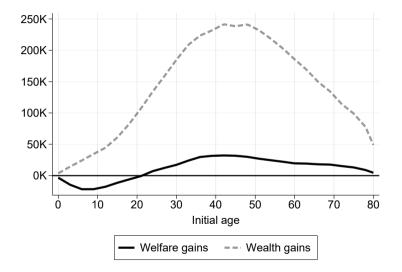
• We define "capital gain" as the contribution of price deviations ΔP on wealth


Capital Gain
$$\equiv \sum_{t=0}^{T} R_{0 \to t-1}^{-1} \sum_{k=1}^{K} N_{k,t-1} \left(R_t^{-1} \Delta P_{k,t} - \Delta P_{k,t-1} \right) - \sum_{t=0}^{T} R_{0 \to t}^{-1} B_t \Delta Q_t$$
$$\neq \sum_{t=0}^{T} R_{0 \to t}^{-1} \sum_{k=1}^{K} (N_{k,t-1} - N_{k,t}) \Delta P_{k,t} - \sum_{t=0}^{T} R_{0t}^{-1} B_t \Delta Q_t$$

(1) The contribution of the liquid asset B_t is the same


(2) The contribution of the long-lived assets is different. Wealth gains do not capture the contribution of lower future returns over t > T.

(3) With $T \to \infty$, the two measures converge


Capital vs Welfare Gains Across Households

Capital vs Welfare Gains Across Households (as a % of initial wealth)

Capital vs Welfare Gains Between Cohorts

