Estimation of a Latent Reference Point:
 Method and Application to NYC Taxi Drivers

Marco Stenborg Petterson
Brown University
CSEF - University of Naples Federico II
August 24, 2022
2022 EEA - ESEM

Motivation

- Key assumption in labor supply models: inter-temporal maximization (MaCurdy 1981)
- Consider a taxi driver choosing how many hours to work
- decision depends on target income
- target income depends on expectations
- Daily labor supply studies show evidence of income targeting (Camerer et al. 1997)
- Utility of outcomes is experienced relative to some point of reference
- changes not just levels matters

Motivation

- Reference-dependent preferences have become widely used in economics
- Labor supply (Camerer et al. 1997, Farber 2008, Farber 2015, Thakral and Tô 2021)
- Job search (Della Vigna et al. 2017)
- Consumer choice (Koszegi and Rabin 2006)
- Housing market (Genesove and Mayer 2001)
- Reference points are not observed by the econometrician and may vary over time
- Specific parametric forms of reference point often assumed a priori
- Several theories on formation and evolution of reference points
- Status quo (Kahneman and Tversky 1979)
- Forward-looking rational expectations (Koszegi and Rabin 2006)
- Slow adjusting (Thakral and Tô 2021)

This Paper

- Estimate the evolution of the reference point in a structural model of daily labor supply directly from observational data
- Estimate a DDCM with a latent state unobserved by econometrician
- observed and unobserved variables are modeled as a joint Markov process
- parsimonious model for the transition matrix
- Apply the model to the daily labor supply decisions of NYC taxi drivers
- Tackle open questions on reference point formation
- how persistent are reference points over time?
- do agents react differently to positive and negative shocks?(Arkes et al. 2008 and Arkes et al. 2010)

Application

- I consider the daily labor supply decisions of NYC taxi drivers
- I estimate a structural dynamic discrete choice model
- hours worked and income earned are observed state variables
- reference point for income is an unobserved state variable
- utility is time separable and each shift is identical to the next (Camerer et al. 1997)
- 165 million trips, 7 million shifts and 38,659 drivers Data

Structural model: Dynamic programming

- Consider an infinite horizon discrete choice model where V is the agent's lifetime utility from time t onwards

$$
V\left(s_{t}, x_{t}, \varepsilon_{t}\right)=\max _{a_{t}} \mathbb{E}\left[\sum_{j=0}^{\infty} \beta^{j} u\left(s_{t+j}, x_{t+j}, \varepsilon_{t+j}, a_{t+j}\right) \mid s_{t}, x_{t}, \varepsilon_{t}, a_{t}\right]
$$

- a_{t} is a binary action, $a_{t}=1$ corresponds to ending the shift
- s_{t} is a state variable observable by both the agent and the econometrician
- x_{t} is a state variable observable only by the agent
- ε_{t} is an unobservable distributed as an EV1

Structural model: Dynamic programming

- Consider an infinite horizon discrete choice model where V is the agent's lifetime utility from time t onwards

$$
V\left(s_{t}, x_{t}, \varepsilon_{t}\right)=\max _{a_{t}} \mathbb{E}\left[\sum_{j=0}^{\infty} \beta^{j} u\left(s_{t+j}, x_{t+j}, \varepsilon_{t+j}, a_{t+j}\right) \mid s_{t}, x_{t}, \varepsilon_{t}, a_{t}\right]
$$

- a_{t} is a binary action, $a_{t}=1$ corresponds to ending the shift
- s_{t} is a state variable observable by both the agent and the econometrician
- x_{t} is a state variable observable only by the agent
- ε_{t} is an unobservable distributed as an EV1

Structural model: Dynamic programming

- Consider an infinite horizon discrete choice model where V is the agent's lifetime utility from time t onwards

$$
V\left(s_{t}, x_{t}, \varepsilon_{t}\right)=\max _{a_{t}} \mathbb{E}\left[\sum_{j=0}^{\infty} \beta^{j} u\left(s_{t+j}, x_{t+j}, \varepsilon_{t+j}, a_{t+j}\right) \mid s_{t}, x_{t}, \varepsilon_{t}, a_{t}\right]
$$

- a_{t} is a binary action, $a_{t}=1$ corresponds to ending the shift
- s_{t} is a state variable observable by both the agent and the econometrician
- x_{t} is a state variable observable only by the agent
- ε_{t} is an unobservable distributed as an EV1

Structural model: Dynamic programming

- Consider an infinite horizon discrete choice model where V is the agent's lifetime utility from time t onwards

$$
V\left(s_{t}, x_{t}, \varepsilon_{t}\right)=\max _{a_{t}} \mathbb{E}\left[\sum_{j=0}^{\infty} \beta^{j} u\left(s_{t+j}, x_{t+j}, \varepsilon_{t+j}, a_{t+j}\right) \mid s_{t}, x_{t}, \varepsilon_{t}, a_{t}\right]
$$

- a_{t} is a binary action, $a_{t}=1$ corresponds to ending the shift
- s_{t} is a state variable observable by both the agent and the econometrician
- x_{t} is a state variable observable only by the agent
- ε_{t} is an unobservable distributed as an EV1

Structural model: Reference point

- The flow utility is

$$
u\left(s_{t}, x_{t}, \varepsilon_{t}, a_{t}\right)= \begin{cases}u_{1}\left(s_{t}, x_{t}\right)+\varepsilon_{1 t} & a_{t}=1 \\ \varepsilon_{0 t} & a_{t}=0\end{cases}
$$

- $s_{t}=s\left(W_{t}, H_{t}\right), x_{t}=\xi_{t}$ and

$$
\begin{aligned}
& u_{1}\left(W_{t}, H_{t}, \xi_{t}\right)=(1+\alpha)\left(W_{t}-g\left(W_{t}, H_{t}, \xi_{t}\right)\right)-\frac{\psi}{1+\eta}\left(H_{t}\right)^{1+\eta} \quad W_{t}<g\left(W_{t}, H_{t}, \xi_{t}\right) \\
& u_{1}\left(W_{t}, H_{t}, \xi_{t}\right)=(1-\alpha)\left(W_{t}-g\left(W_{t}, H_{t}, \xi_{t}\right)\right)-\frac{\psi}{1+\eta}\left(H_{t}\right)^{1+\eta} \quad W_{t} \geq g\left(W_{t}, H_{t}, \xi_{t}\right)
\end{aligned}
$$

- $\alpha>0$ controls the change in marginal utility at the reference point $g\left(W_{t}, H_{t}, \xi_{t}\right)$

Structural model: Reference point

- The flow utility is

$$
u\left(W_{t}, H_{t}, \xi_{t}, \varepsilon_{t}, a_{t}\right)= \begin{cases}u_{1}\left(W_{t}, H_{t}, \xi_{t}\right)+\varepsilon_{1 t} & a_{t}=1 \\ \varepsilon_{0 t} & a_{t}=0\end{cases}
$$

- The reference point is

$$
g\left(W_{t}, H_{t}, \xi_{t}\right)=f\left(W_{t}, H_{t}\right)+\xi_{t}
$$

- Several possibilities for f
- $f\left(W_{t}, H_{t}\right)=0 \forall W_{t}, H_{t}$
- $f\left(W_{t}, H_{t}\right)$ is a function of the expected end of shift income at $s_{t}=\left(W_{t}, H_{t}\right)$
- If both s and x were observable, the model would mirror the assumptions and setup of Rust (1987)

Structural model: Transition matrix

- The states s_{t} and x_{t} behave as a joint Markov process

Structural model: Transition matrix

- The states s_{t} and x_{t} behave as a joint Markov process

Structural model: Transition matrix

- The states s_{t} and x_{t} behave as a joint Markov process

Structural model: Transition matrix

- The states s_{t} and x_{t} behave as a joint Markov process

Structural model: Transition matrix

- The states s_{t} and x_{t} behave as a joint Markov process

Structural model: Transition matrix

- The states s_{t} and x_{t} behave as a joint Markov process

Structural model: Transition matrix

- The states s_{t} and x_{t} behave as a joint Markov process

Structural model: Transition matrix

- Formally, the transition probabilities can be stated as

$$
\begin{aligned}
& \operatorname{Pr}\left(s_{t+1}=j \mid s_{t}=k, a_{t}=0, x_{t}, x_{t+1}\right)=\operatorname{Pr}\left(s_{t+1}=j \mid s_{t}=k, a_{t}=0\right)= \begin{cases}\theta_{j k}^{S} & \text { if } j \geq k \\
0 & \text { otherwise }\end{cases} \\
& \begin{aligned}
\operatorname{Pr}\left(x_{t+1}=m \mid s_{t+1}=j, s_{t}=k, x_{t}=q, a_{t}=0\right) & =\operatorname{Pr}\left(x_{t+1}=m \mid s_{t+1}=j, x_{t}=q, a_{t}=0\right) \\
& =\theta_{m q j}^{x}
\end{aligned}
\end{aligned}
$$

- If $a_{t}=1$ then $x_{t+1}=1$ and $s_{t+1}=1$ Transtion Matix Eample

Parametric transition matrix

- For estimation I adopt a parametric structure for the evolution of the unobserved state

$$
\begin{array}{r}
\operatorname{Pr}\left(x_{t}, s_{t} \mid s_{t-1}, x_{t-1}, a_{t-1}=0\right)= \\
=\operatorname{Pr}\left(x_{t} \mid s_{t}, x_{t-1}, a_{t-1}=0\right) \operatorname{Pr}\left(s_{t} \mid s_{t-1}, a_{t-1}=0\right) \\
=\frac{\exp \left(h_{X}\left(x_{t}, x_{t-1}\right)+h_{S}\left(x_{t}, s_{t}\right)\right)}{\sum_{x^{\prime}} \exp \left(h_{X}\left(x_{t}^{\prime}, x_{t-1}\right)+h_{S}\left(x_{t}^{\prime}, s_{t}\right)\right)} \operatorname{Pr}\left(s_{t} \mid s_{t-1}, a_{t-1}=0\right)
\end{array}
$$

Functions

- Reference point transition probability depends on:
- past reference point
- current realization of observables

Likelihood

- The likelihood is

$$
L_{N}\left(\theta^{X}, \theta^{S}, \alpha, \psi, \eta\right)=\prod_{i=1}^{N} \int p\left(a_{i}, s_{i}, x_{i} \mid \theta^{X}, \theta^{S}, \alpha, \psi, \eta\right) d\left(x_{i}\right)
$$

where $a_{i}=\left\{a_{i, t}\right\}_{t=1}^{T_{i}}, s_{i}=\left\{s_{i, t}\right\}_{t=1}^{T_{i}}, x_{i}=\left\{x_{i, t}\right\}_{t=1}^{T_{i}}$

$$
\begin{aligned}
& p\left(a_{i}, s_{i}, x_{i} \mid \theta^{X}, \theta^{S}, \alpha, \psi, \eta\right)=\prod_{t=1}^{T_{i}} p\left(a_{i, t} \mid a_{i, t-1}, s_{i, t}, x_{i, t} ; \theta^{X}, \theta^{S}, \alpha, \psi, \eta\right) \\
& q\left(s_{i, t}, x_{i, t} \mid s_{i, t-1}, x_{i, t-1}, a_{i, t-1} ; \theta^{X}, \theta^{S}, \alpha, \psi, \eta\right)
\end{aligned}
$$

Particle Filter

- In order to calculate the integral I resort to particle filter

$$
\begin{aligned}
& \int p\left(a_{i}, s_{i}, x_{i} \mid \theta^{X}, \theta^{S}, \alpha, \psi, \eta\right) d\left(x_{i}\right) \\
& \approx \prod_{t=1}^{T_{i}} \frac{1}{M} \sum_{m=1}^{M} p\left(a_{i, t} \mid a_{i, t-1}, s_{i, t}, x_{i, t}^{m}\right) q\left(s_{i, t}, x_{i, t}^{m} \mid s_{i, t-1}, x_{i, t-1}^{m}, a_{i, t-1} ; \theta^{X}, \theta^{S}, \alpha, \psi, \eta\right)
\end{aligned}
$$

- Since x_{t} is discrete we can use a discrete filter taken from the Hidden Markov Models literature
- overcomes difficulties in choice of number of particles M Discrete PF

Estimation

- I take a fully Bayesian approach to estimation
- priors are (truncated) normals centered at 0 Priors
- Flury and Shephard (2011) unbiased likelihood approximations inside Metropolis-Hastings results in exact posterior
- Given the length of the sample for several individuals I estimate the model separately for each individual
- smaller state space
- characterizes heterogeneity within the sample

Estimation Procedure

- Initialize $\boldsymbol{y}=\left\{\alpha, \eta, \psi, \gamma_{1}, \ldots, \gamma_{6}\right\}$
- For $j=1: N$
- draw a candidate $y^{*} \sim q\left(\cdot \mid y^{j-1}\right)$
- solve DP for y^{*} with VFI and Newton-Kantorovich
- calculate likelihood with particle filtering
- set $y^{j}=y^{*}$ with probability

$$
\mu=\min \left\{1, \frac{p\left(y^{*}\right) / q\left(y^{*} \mid y^{j-1}\right)}{p\left(y^{j-1}\right) / q\left(y^{j-1} \mid y^{*}\right)}\right\}
$$

otherwise $y^{j}=y^{j-1}$

Impulse Response Functions

- I consider an individual chosen at random among those with more than 5,000 trips

```
Distribution Observations Estimates
```

- I simulate 100,000 shifts and plot
- the average reference point
- the average earned income at every trip
- the cumulative stopping probability
- I then introduce a shock in the earned income at different times of the shift
- study the evolution of the reference point and stopping probability after the shock
- I tackle two open questions in the literature
- how persistent are reference points over time?

Persistence

- do agent react differently to positive and negative shocks? Asymmetric response

Plot of MAP in the sample

- We consider individual with more than 5,000 trips and plot the kernel density of the Maximum a Posteriori for some parameters Utility (MAP
α : change in marginal utility

Conclusions

- It is possible to identify patterns in the formation and evolution of reference points using observational data
- more generally applicable to models with hidden states
- It is possible to test theories on reference point formation
- Future research:
- test in experimental setting, other applications (e.g. consumer choice)
- strategic interaction: evidence of reference-dependent preferences in sequential bargaining (coming soon!)

Appendix

Observable Transition Matrix

Suppose $a_{t} \in\{0,1\}, S_{t} \in\{A, B\}$ and $X_{t} \in\{a, b\}$

	${ }_{\text {a }}, S_{A}$	${ }_{\text {a }}, S_{B}$
${ }^{\text {a }}$, S_{A}	$+P_{A \theta^{S}}^{S} \theta_{A b A}^{X} P_{b A}^{\times}+P_{A b} \theta_{A A}^{S} \theta_{b b A}^{X} P_{b A}^{X}$	
${ }_{\text {a }}, S_{B}$	0	$P_{B a} \theta_{B A}^{S} \theta_{a A A}^{X} P_{a B}^{X}+P_{B 6} \theta_{B B}^{S} \theta_{a A}^{X} A^{X}{ }_{a B}^{X}$ $+P_{B a} \theta_{B A}^{S} \theta_{a A A}^{X} P_{b B}^{X}+P_{B b} \theta_{B A}^{S} \theta_{a b A}^{X} P_{a B}^{X}$

- Where
- $p_{A_{a}}$ is the CCP of $a_{t}=0$ if $x_{t}=a$ and $s_{t}=A$
- $\theta_{A B}^{S}$ is $\operatorname{Pr}\left(s_{t}=A \mid s_{t-1}=B, a_{t-1}=0\right)$
- $\theta_{a b A}^{X}$ is $\operatorname{Pr}\left(x_{t}=a \mid x_{t-1}=b, s_{t-1}=A, a_{t-1}=0\right)$
- $P_{a A}^{X}$ is $\operatorname{Pr}\left(x_{t-1}=a \mid s_{t-1}=A, a_{t-1}=0\right)$

Complete Transition Matrix

	a_{0}, S_{A}, x_{a}	a_{0}, S_{A}, x_{b}	a_{0}, S_{B}, x_{a}	a_{0}, S_{B}, x_{b}
a_{0}, S_{A}, x_{a}	$P_{A a} \theta_{A A}^{S} \theta_{a a A}^{X}$	$P_{A b} \theta_{A A}^{S} \theta_{b a A}^{X}$	$P_{B a} \theta_{B A}^{S} \theta_{a a A}^{X}$	$P_{B b} \theta_{B A}^{S} \theta_{a a A}^{X}$
a_{0}, S_{A}, x_{b}	$P_{A a} \theta_{A A}^{S} \theta_{a b A}^{X}$	$P_{A b} \theta_{A A}^{S} \theta_{b b A}^{X}$	$P_{B a} \theta_{B A}^{S} \theta_{a b A}^{X}$	$P_{B b} \theta_{B A}^{S} \theta_{a b A}^{X}$
a_{0}, S_{B}, x_{a}	0	0	$P_{B a} \theta_{B B}^{S} \theta_{a a B}^{X}$	$P_{B b} \theta_{B B}^{S} \theta_{a a B}^{X}$
a_{0}, S_{B}, x_{b}	0	0	$P_{B a} \theta_{B B}^{S} \theta_{a b B}^{X}$	$P_{B b} \theta_{B B}^{S} \theta_{a b B}^{X}$

Parametric Transition

$$
\begin{aligned}
& h_{X}=\gamma_{1} \mathbb{1}\left\{x_{t}-x_{t-1}<0\right\}\left|x_{t}-x_{t-1}\right|+\gamma_{2} \mathbb{1}\left\{x_{t}-x_{t-1}>0\right\}\left|x_{t}-x_{t-1}\right| \\
& h_{S}= \\
& \mathbb{1}\left\{f\left(s_{t}\right) \geq f\left(s_{1}\right)\right\}\left(\gamma_{3} \mathbb{1}\left\{g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)<0\right\}\left|g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)\right|+\gamma_{4} \mathbb{1}\left\{g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)>0\right\}\left|g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)\right|\right)+ \\
& \mathbb{1}\left\{f\left(s_{t}\right)<f\left(s_{1}\right)\right\}\left(\gamma_{5} \mathbb{1}\left\{g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)<0\right\}\left|g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)\right|+\gamma_{6} \mathbb{1}\left\{g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)>0\right\}\left|g\left(s_{t}, x_{t}\right)-f\left(s_{t}\right)\right|\right)
\end{aligned}
$$

Priors

- $\psi \sim \mathcal{N}(0,10) \mathbb{1}\{\psi>0\}$
- $\eta \sim \mathcal{N}(0,10) \mathbb{1}\{\eta>0\}$
- $\alpha \sim \mathcal{N}(0,10) \mathbb{1}\{\alpha \geq 0\}$
- $\left.\gamma_{1}, \ldots, \gamma_{6} \sim \mathcal{N}(0,10)\right)_{\text {Back }}$

Impulse Response Functions: Early Shock Back

- The reference point is not very persistent, the impact of the shock to observable disappears after few trips

Positive Shock

Negative Shock

Fixed Point

- Consider an example where $a \in\{0,1\}, s \in\{A, B, C, D\}$ and $x \in\{\alpha, \beta, \gamma\}$
- Write equation the system of equations as

$$
\begin{aligned}
\operatorname{Pr}\left(a_{t}=0 \mid s_{t}=A, s_{t-1}=A, a_{t-1}=0\right) & =P_{A \alpha}\left(\theta_{\alpha \alpha A}^{X} \Gamma_{A \alpha}+\theta_{\alpha \beta A}^{X} \Gamma_{A \beta}+\theta_{\alpha \gamma A}^{X} \Gamma_{A \gamma}\right)+ \\
& +P_{A \beta}\left(\theta_{\beta \alpha A}^{X} \Gamma_{A \alpha}+\theta_{\beta \beta A}^{X} \Gamma_{A \beta}+\theta_{\beta \gamma A}^{X} \Gamma_{A \gamma}\right)+P_{A \gamma}\left(\theta_{\gamma \alpha A}^{X} \Gamma_{A \alpha}+\theta_{\gamma \beta A}^{X} \Gamma_{A B}+\theta_{\gamma \gamma A}^{X} \Gamma_{A \gamma}\right)
\end{aligned}
$$

which can in turn be rewritten as

$$
\begin{aligned}
P_{A A}^{00}-P_{A \gamma} & =\left(P_{A \alpha}-P_{A \gamma}\right)\left(\theta_{\alpha \alpha A}^{X} \Gamma_{A \alpha}+\theta_{\alpha \beta A}^{X} \Gamma_{A \beta}+\theta_{\alpha \gamma A}^{X}\left(1-\Gamma_{A \alpha}-\Gamma_{A \beta}\right)\right) \\
& +\left(P_{A \beta}-P_{A \gamma}\right)\left(\theta_{\beta \alpha A}^{X} \Gamma_{A \alpha}+\theta_{\beta \beta A}^{X} \Gamma_{A \beta}+\theta_{\beta \gamma A}^{X}\left(1-\Gamma_{A \alpha}-\Gamma_{A \beta}\right)\right)
\end{aligned}
$$

where $\Gamma_{k q}=\frac{\operatorname{Pr}\left(a_{t-1}=0, s_{t-1}=k, x_{t-1}=q\right)}{\sum_{g} \operatorname{Pr}\left(a_{t-1}=0, s_{t-1}=k, x_{t-1}=g\right)}$

Fixed Point

Proposition Let F be a fixed point operator associated with the system represented by equation 1 and denote by J its Jacobian with respect to θ^{X}. If the highest eigenvalue of Jacobian matrix is smaller than 1 then the system of equations has a unique solution, and the estimator for θ^{X} is identified.

- The result follows from Banach's contraction theorem Back

Discrete Particle Filter

$$
\begin{aligned}
& \text { initialization } \begin{cases}\tilde{\pi}_{1} & =\pi_{1}=\operatorname{Pr}\left(a_{0}, s_{0}, x_{0}\right) \\
\log \rho_{1} & =0\end{cases} \\
& \text { iteration } \begin{cases}\pi_{t+1} & =\tilde{\pi}_{t} Q_{t+1} \\
\tilde{\pi}_{t+1} & =\frac{\pi_{t+1}}{\left\|\pi_{t+1}\right\|_{1}} \\
\log \rho_{t+1} & =\log \rho_{t}+\left\|\pi_{t+1}\right\|_{1}\end{cases}
\end{aligned}
$$

where $Q_{t+1, x x^{\prime}}=\mathbb{P}\left(x_{t+1}=x^{\prime}, s_{t+1}, a_{t+1} \mid x_{t}=x, s_{t+1}, a_{t+1}\right)$ i.e. the transition matrix of the unobserved state variable keeping fixed the observed state variables at the observed values.

Selection

- We can account for selection by forcing individuals to keep working Back

Positive Shock

Negative Shock

MAP: Change in reference point

γ_{1} : Negative path dependence

γ_{2} : Positive path dependence

MAP: Change observable lower than average

γ_{3} : Negative change

γ_{4} : Positive change

MAP: Change observable higher than average

γ_{5} : Negative change

γ_{6} : Positive change

Reference Points Matter Back

Impulse Response with Hours Back

Identification

- Follows Connault (2016)
- Relies on the following system of equations having a unique solution

$$
\begin{align*}
& \operatorname{Pr}\left(a_{t}=0 \mid, s=j, a_{t-1}=0, s_{t-1}=k\right) \\
& =\sum_{m} \operatorname{Pr}\left(a_{t}=0 \mid s_{t}=j, x_{t}=m, a_{t-1}=0, s_{t-1}=k\right) \operatorname{Pr}\left(x_{t}=m \mid s_{t}=j, a_{t-1}=0, s_{t-1}=k\right) \tag{1}\\
& =\sum_{m} P_{j m} \sum_{q}\left[\theta_{m q j}^{x} \frac{\operatorname{Pr}\left(a_{t-1}=0, s_{t-1}=k, x_{t-1}=q\right)}{\sum_{g} \operatorname{Pr}\left(a_{t-1}=0, s_{t-1}=k, x_{t-1}=g\right)}\right]
\end{align*}
$$

where $\theta_{j k}^{S}$ is observable and $P_{j m}$ is the Conditional Choice Probability which is a function of θ^{S} and θ^{X} Transition Matrix Example Fixed Point

- Identification relies on the unobserved state x influencing the CCPs, and CCPs depending in turn on
- utility parameters
- both observable and unobservable components of the transition matrix Back

Distribution of trips \mathbb{R}

Data Back

- NYC Taxi and Limousine Commission trip sheet data for 2013
- earnings
- start and end times of each trip
- Shift: consecutive trips of the same driver with less than 6 hours break
- Observed variables are cumulative earnings and hours worked within each shift
- Cumulative income is discretized at interval of $25 \$$ while cumulative hours worked at 1 hour intervals
- 165 million trips, 7 million shifts and 38,659 drivers

Summary Statistics: Observation per individual

Impulse Response Functions

- The reference point reacts much more to a positive shock in observable income than a negative one

Positive Shock

Negative Shock

Estimates \mathbb{R}

- Estimates for individual

Parameters	
ψ	0.425
η	$[0.021,0.581]$
	0.0912
α	$[0.017,1.608]$
	0.956
$\gamma_{\mathbf{1}}$	$[0.949,0.961]$
	-0.566
$\gamma_{\mathbf{2}}$	$[-0.668,-0.523]$
	-2.11
$\gamma_{\mathbf{3}}$	$[-2.242,-2.042]$
	0.364
$\gamma_{\mathbf{4}}$	$[0.327,0.467]$
	1.974
$\gamma_{\mathbf{5}}$	$[1.904,2.103]$
	-1.97
γ_{6}	$[-2.058,0.177]$
	-0.79

