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Motivation

• Key assumption in labor supply models: inter-temporal maximization (MaCurdy 1981)

• Consider a taxi driver choosing how many hours to work
• decision depends on target income
• target income depends on expectations

• Daily labor supply studies show evidence of income targeting (Camerer et al. 1997)

• Utility of outcomes is experienced relative to some point of reference
• changes not just levels matters
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Motivation

• Reference-dependent preferences have become widely used in economics
• Labor supply (Camerer et al. 1997, Farber 2008, Farber 2015, Thakral and Tô 2021)
• Job search (Della Vigna et al. 2017)
• Consumer choice (Koszegi and Rabin 2006)
• Housing market (Genesove and Mayer 2001)

• Reference points are not observed by the econometrician and may vary over time
• Specific parametric forms of reference point often assumed a priori
• Several theories on formation and evolution of reference points

• Status quo (Kahneman and Tversky 1979)
• Forward-looking rational expectations (Koszegi and Rabin 2006)
• Slow adjusting (Thakral and Tô 2021)
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This Paper

• Estimate the evolution of the reference point in a structural model of daily labor
supply directly from observational data

• Estimate a DDCM with a latent state unobserved by econometrician
• observed and unobserved variables are modeled as a joint Markov process
• parsimonious model for the transition matrix

• Apply the model to the daily labor supply decisions of NYC taxi drivers

• Tackle open questions on reference point formation
• how persistent are reference points over time?
• do agents react differently to positive and negative shocks?(Arkes et al. 2008 and Arkes et al.

2010)
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Application

• I consider the daily labor supply decisions of NYC taxi drivers

• I estimate a structural dynamic discrete choice model
• hours worked and income earned are observed state variables

• reference point for income is an unobserved state variable

• utility is time separable and each shift is identical to the next (Camerer et al. 1997)

• 165 million trips, 7 million shifts and 38, 659 drivers Data
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Structural model: Dynamic programming

• Consider an infinite horizon discrete choice model where V is the agent’s lifetime
utility from time t onwards

V (st , xt , εt) = max
at

E

 ∞∑
j=0

βju (st+j , xt+j , εt+j , at+j) |st , xt , εt , at


• at is a binary action, at = 1 corresponds to ending the shift

• st is a state variable observable by both the agent and the econometrician

• xt is a state variable observable only by the agent

• εt is an unobservable distributed as an EV1
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Structural model: Reference point

• The flow utility is

u (st , xt , εt , at) =

u1 (st , xt) + ε1t at = 1

ε0t at = 0

• st = s (Wt ,Ht), xt = ξt and

u1 (Wt ,Ht , ξt) = (1 + α) (Wt − g(Wt ,Ht , ξt))− ψ
1+η (Ht)

1+η Wt < g(Wt ,Ht , ξt)

u1 (Wt ,Ht , ξt) = (1 − α) (Wt − g(Wt ,Ht , ξt))− ψ
1+η (Ht)

1+η Wt ≥ g(Wt ,Ht , ξt)

• α > 0 controls the change in marginal utility at the reference point g (Wt ,Ht , ξt)

α
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Structural model: Reference point

• The flow utility is

u (Wt ,Ht , ξt , εt , at) =

u1 (Wt ,Ht , ξt) + ε1t at = 1

ε0t at = 0

• The reference point is

g(Wt ,Ht , ξt) = f (Wt ,Ht) + ξt

• Several possibilities for f
• f (Wt ,Ht) = 0 ∀Wt ,Ht

• f (Wt ,Ht) is a function of the expected end of shift income at st = (Wt ,Ht)

• If both s and x were observable, the model would mirror the assumptions and setup
of Rust (1987)
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Structural model: Transition matrix

• The states st and xt behave as a joint Markov process

xt−1

xt−1 xt xt+1

at−1 at = 1

st−1

st−1 st st+1
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Structural model: Transition matrix

• Formally, the transition probabilities can be stated as

Pr (st+1 = j |st = k , at = 0, xt , xt+1) = Pr (st+1 = j |st = k , at = 0) =

θSjk if j ≥ k

0 otherwise

Pr (xt+1 = m|st+1 = j , st = k, xt = q, at = 0) = Pr (xt+1 = m|st+1 = j , xt = q, at = 0)

= θXmqj

• If at = 1 then xt+1 = 1 and st+1 = 1 Transition Matrix Example
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Parametric transition matrix

• For estimation I adopt a parametric structure for the evolution of the unobserved
state

Pr (xt , st |st−1, xt−1, at−1 = 0) =

= Pr (xt |st , xt−1, at−1 = 0) Pr (st |st−1, at−1 = 0)

=
exp (hX (xt , xt−1) + hS (xt , st))∑
x ′ exp (hX (x ′t , xt−1) + hS (x

′
t , st))

Pr (st |st−1, at−1 = 0)

Functions

• Reference point transition probability depends on:
• past reference point
• current realization of observables
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Likelihood

• The likelihood is

LN

(
θX , θS , α, ψ, η

)
=

N∏
i=1

∫
p
(
ai , si , xi |θX , θS , α, ψ, η

)
d (xi )

where ai = {ai ,t}Ti
t=1,si = {si ,t}Ti

t=1,xi = {xi ,t}Ti
t=1

p
(
ai , si , xi |θX , θS , α, ψ, η

)
=

Ti∏
t=1

p
(
ai ,t |ai ,t−1, si ,t , xi ,t ; θ

X , θS , α, ψ, η
)

q
(
si ,t , xi ,t |si ,t−1, xi ,t−1, ai ,t−1; θ

X , θS , α, ψ, η
)

12



Particle Filter

• In order to calculate the integral I resort to particle filter

∫
p
(
ai , si , xi |θX , θS , α, ψ, η

)
d (xi )

≈
Ti∏
t=1

1
M

M∑
m=1

p
(
ai ,t |ai ,t−1, si ,t , x

m
i ,t

)
q
(
si ,t , x

m
i ,t |si ,t−1, x

m
i ,t−1, ai ,t−1; θ

X , θS , α, ψ, η
)

• Since xt is discrete we can use a discrete filter taken from the Hidden Markov
Models literature
• overcomes difficulties in choice of number of particles M Discrete PF
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Estimation

• I take a fully Bayesian approach to estimation
• priors are (truncated) normals centered at 0 Priors

• Flury and Shephard (2011) unbiased likelihood approximations inside
Metropolis-Hastings results in exact posterior

• Given the length of the sample for several individuals I estimate the model separately
for each individual
• smaller state space
• characterizes heterogeneity within the sample
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Estimation Procedure

• Initialize y = {α, η, ψ, γ1, . . . , γ6}
• For j = 1 : N

• draw a candidate y∗ ∼ q
(
·|y j−1

)
• solve DP for y∗ with VFI and Newton-Kantorovich
• calculate likelihood with particle filtering
• set y j = y∗ with probability

µ = min

{
1,

p (y∗) /q
(
y∗|y j−1

)
p (y j−1) /q (y j−1|y∗)

}

otherwise y j = y j−1
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Impulse Response Functions

• I consider an individual chosen at random among those with more than 5, 000 trips
Distribution Observations Estimates

• I simulate 100, 000 shifts and plot
• the average reference point
• the average earned income at every trip
• the cumulative stopping probability

• I then introduce a shock in the earned income at different times of the shift
• study the evolution of the reference point and stopping probability after the shock

• I tackle two open questions in the literature
• how persistent are reference points over time? Persistence

• do agent react differently to positive and negative shocks? Asymmetric response
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Impulse Response Functions CDF Hours Plot
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Impulse Response Functions CDF Hours Plot
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Plot of MAP in the sample

• We consider individual with more than 5, 000 trips and plot the kernel density of the
Maximum a Posteriori for some parameters Utility MAP

α: change in marginal utility
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Conclusions

• It is possible to identify patterns in the formation and evolution of reference points
using observational data
• more generally applicable to models with hidden states

• It is possible to test theories on reference point formation

• Future research:
• test in experimental setting, other applications (e.g. consumer choice)
• strategic interaction: evidence of reference-dependent preferences in sequential

bargaining (coming soon!)
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Appendix



Observable Transition Matrix

Suppose at ∈ {0, 1}, St ∈ {A,B} and Xt ∈ {a, b}

a0,SA a0,SB

a0,SA PAaθ
S
AAθ

X
aaAPX

aA+PAbθ
S
AAθ

X
baAPX

aA

+PAaθ
S
AAθ

X
abAPX

bA+PAbθ
S
AAθ

X
bbAPX

bA

PBaθ
S
BAθ

X
aaAPX

aA+PBbθ
S
BAθ

X
aaAPX

aA

+PBaθ
S
BAθ

X
abAPX

bA+PBbθ
S
BAθ

X
abAPX

aA

a0,SB 0 PBaθ
S
BAθ

X
aaAPX

aB+PBbθ
S
BAθ

X
aaAPX

aB

+PBaθ
S
BAθ

X
abAPX

bB+PBbθ
S
BAθ

X
abAPX

aB

• Where
• pAa is the CCP of at = 0 if xt = a and st = A

• θSAB is Pr (st = A|st−1 = B, at−1 = 0)
• θXabAis Pr (xt = a|xt−1 = b, st−1 = A, at−1 = 0)
• PX

aA is Pr (xt−1 = a|st−1 = A, at−1 = 0)
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Complete Transition Matrix

a0,SA,Xa a0,SA,Xb a0,SB ,Xa a0,SB ,Xb

a0,SA,Xa PAaθ
S
AAθ

X
aaA PAbθ

S
AAθ

X
baA PBaθ

S
BAθ

X
aaA PBbθ

S
BAθ

X
aaA

a0,SA,Xb PAaθ
S
AAθ

X
abA PAbθ

S
AAθ

X
bbA PBaθ

S
BAθ

X
abA PBbθ

S
BAθ

X
abA

a0,SB ,Xa 0 0 PBaθ
S
BBθ

X
aaB PBbθ

S
BBθ

X
aaB

a0,SB ,Xb 0 0 PBaθ
S
BBθ

X
abB PBbθ

S
BBθ

X
abB

Back Structure Back Identification
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Parametric Transition

hX = γ11 {xt − xt−1 < 0} |xt − xt−1|+ γ21 {xt − xt−1 > 0} |xt − xt−1|

hS =

1 {f (st) ≥ f (s1)} (γ31 {g (st , xt)− f (st) < 0} |g (st , xt)− f (st)|+ γ41 {g (st , xt)− f (st) > 0} |g (st , xt)− f (st)|)+

1 {f (st) < f (s1)} (γ51 {g (st , xt)− f (st) < 0} |g (st , xt)− f (st)|+ γ61 {g (st , xt)− f (st) > 0} |g (st , xt)− f (st)|)

Back MAP

22



Priors

• ψ ∼ N (0, 10)1 {ψ > 0}
• η ∼ N (0, 10)1 {η > 0}
• α ∼ N (0, 10)1 {α ≥ 0}
• γ1, . . . , γ6 ∼ N (0, 10) Back
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Impulse Response Functions: Early Shock Back

• The reference point is not very persistent, the impact of the shock to observable
disappears after few trips

Positive Shock Negative Shock
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Fixed Point

• Consider an example where a ∈ {0, 1}, s ∈ {A,B,C ,D} and x ∈ {α, β, γ}
• Write equation the system of equations as

Pr(at=0|st=A,st−1=A,at−1=0) = PAα(θXααAΓAα+θ
X
αβAΓAβ+θ

X
αγAΓAγ)+

+PAβ(θXβαAΓAα+θ
X
ββAΓAβ+θ

X
βγAΓAγ)+PAγ(θXγαAΓAα+θ

X
γβAΓAβ+θ

X
γγAΓAγ)

which can in turn be rewritten as

P00
AA−PAγ = (PAα−PAγ)(θXααAΓAα+θ

X
αβAΓAβ+θ

X
αγA(1−ΓAα−ΓAβ))

+(PAβ−PAγ)(θXβαAΓAα+θ
X
ββAΓAβ+θ

X
βγA(1−ΓAα−ΓAβ))

where Γkq = Pr(at−1=0,st−1=k,xt−1=q)∑
g Pr(at−1=0,st−1=k,xt−1=g)
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Fixed Point

Proposition Let F be a fixed point operator associated with the system represented by
equation 1 and denote by J its Jacobian with respect to θX . If the highest eigenvalue of
Jacobian matrix is smaller than 1 then the system of equations has a unique solution,
and the estimator for θX is identified.

• The result follows from Banach’s contraction theorem Back
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Discrete Particle Filter

initialization

π̃1 = π1 = Pr (a0, s0, x0)

log ρ1 = 0

iteration


πt+1 = π̃tQt+1

π̃t+1 = πt+1
∥πt+1∥1

log ρt+1 = log ρt + ∥πt+1∥1

where Qt+1,xx ′ = P (xt+1 = x ′, st+1, at+1 | xt = x , st+1, at+1) i.e. the transition matrix
of the unobserved state variable keeping fixed the observed state variables at the
observed values. Back
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Selection

• We can account for selection by forcing individuals to keep working Back

Positive Shock Negative Shock
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MAP: Change in reference point

Transition Back

γ1: Negative path dependence γ2: Positive path dependence
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MAP: Change observable lower than average

Transition Back

γ3: Negative change γ4: Positive change
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MAP: Change observable higher than average

Transition Back

γ5: Negative change γ6: Positive change
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Reference Points Matter Back

32



Impulse Response with Hours Back
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Identification

• Follows Connault (2016)
• Relies on the following system of equations having a unique solution

Pr(at=0|,s=j ,at−1=0,st−1=k)

=
∑

m Pr(at=0|st=j ,xt=m,at−1=0,st−1=k) Pr(xt=m|st=j ,at−1=0,st−1=k) (1)

=
∑

m Pjm
∑

q

[
θXmqj

Pr(at−1=0,st−1=k,xt−1=q)∑
g Pr(at−1=0,st−1=k,xt−1=g)

]

where θSjk is observable and Pjm is the Conditional Choice Probability which is a
function of θS and θX Transition Matrix Example Fixed Point

• Identification relies on the unobserved state x influencing the CCPs, and CCPs
depending in turn on
• utility parameters
• both observable and unobservable components of the transition matrix Back 34



Distribution of trips IR
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Data Back

• NYC Taxi and Limousine Commission trip sheet data for 2013
• earnings
• start and end times of each trip

• Shift: consecutive trips of the same driver with less than 6 hours break

• Observed variables are cumulative earnings and hours worked within each shift
• Cumulative income is discretized at interval of 25$ while cumulative hours worked at 1

hour intervals

• 165 million trips, 7 million shifts and 38, 659 drivers
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Summary Statistics: Observation per individual
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Impulse Response Functions Back

• The reference point reacts much more to a positive shock in observable income than
a negative one

Positive Shock Negative Shock
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Estimates IR

• Estimates for individual

Parameters

ψ 0.425
[0.021,0.581]

η 0.0912
[0.017,1.608]

α 0.956
[ 0.949,0.961]

γ1 -0.566
[-0.668,-0.523]

γ2 -2.11
[-2.242,-2.042]

γ3 0.364
[ 0.327,0.467]

γ4 1.974
[1.904 ,2.103]

γ5 -1.97
[-2.058 ,0.177]

γ6 -0.79
[-1.13 ,-0.541]
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