Optimal Fiscal Policy in a Second-Best Climate Economy Model with Heterogeneous Agents

Thomas Douenne

University of Amsterdam

Albert Jan Hummel

Marcelo Pedroni

University of Amsterdam

University of Amsterdam

EEA

August 2022

- Two key challenges for the 21st century: economic inequality and environmental degradation.
- Economists' favored solution: fiscal policy.
- If these two issues are linked, environmental and redistributive instruments should be determined jointly.
- Two important questions:
 - > Do inequalities call for more/less stringent environmental policies?
 - > Do environmental policies increase/decrease inequalities?

• Introduce a dynamic second-best climate-economy model with heterogeneous agents (HA).

> Extension of Barrage (2019)'s representative agent's model.

- Solve Ramsey planner's problem to determine optimal linear taxes on labor, capital and pollution.
- Calibrate to Nordhaus' DICE model to study optimal carbon taxes.
- Examine several policy scenarios and multiple sources of households' heterogeneity.

 \rightarrow Contributes to literature on 1) optimal pollution taxation and 2) household heterogeneity in environmental economics. \blacktriangleright See more

Model

- Households: heterogeneous in productivity e_i , experience utility from consumption c, labor h, and the environment Z. See more
- Firms: two sectors, final good uses energy produced in second sector.
- Abatement: energy production pollutes, costly abatement Θ(μ, E).
 See more
- Pollution: stock depends on history of emissions. See more
- Government: finances expenses G_t and transfers T_t using taxes on labor and capital income $(\tau_H \text{ and } \tau_K)$, energy (τ_I) , and pollution (τ_E) . • See more

 \rightarrow Can then define a competitive equilibrium and set the Ramsey planner problem. \bigodot Definition

Let $\lambda \equiv \{\lambda_i\}$ be the planner's welfare weight. Ramsey planner problem:

$$\max_{\substack{\{c_{t}, H_{1,t}, H_{2,t}, K_{1,t}, K_{2,t}, \\ E_{t}, Z_{t}, \mu_{t}\}_{t=0}^{\infty}, T, \varphi}} \sum_{t,i} N_{t} \beta^{t} \pi_{i} \lambda_{i} u \Big(c_{i,t}^{m} \big(c_{t}, h_{t}; \varphi \big), h_{i,t}^{m} \big(c_{t}, h_{t}; \varphi \big), Z_{t} \Big)$$

subject to

$$\begin{aligned} U_{c,0} \left(R_0 N_0 a_{i,0} + T \right) &\geq \sum_{t=0}^{\infty} N_t \beta^t \left(U_{c,t} c_{i,t}^m \Big(c_t, h_t; \varphi \Big) + U_{h,t} e_i h_{i,t}^m (c_t, h_t; \varphi) \right), \quad \forall \ i, \\ N_t c_t + G_t + K_{t+1} + \Theta_t \left(\mu_t, E_t \right) &= (1 - D\left(Z_t\right) \right) A_{1,t} F\left(K_{1,t}, H_{1,t}, E_t \right) + (1 - \delta) K_t, \\ E_t &= A_{2,t} G\left(K_{2,t}, H_{2,t} \right), \\ Z_t &= J\left(S_0, E_0^M, \dots, E_t^M, \eta_0, \dots, \eta_t \right), \\ K_{1,t} + K_{2,t} &= K_t, \\ H_{1,t} + H_{2,t} &= N_t h_t. \end{aligned}$$

First constraint: implementability condition, derived using method in Werning (2007). See more

Optimal taxes

- Optimal income taxes as in Werning (2007), optimal energy tax as in Barrage (2019). ◆ See more
- First best pollution tax: equal to social cost of externality, Pigouvian principle:

$$\tau_{E,t} = \sum_{j=0}^{\infty} \beta^{j} \left(\frac{V_{c,t+j}}{V_{c,t}} D'_{t+j} A_{1,t+j} F_{t+j} - \frac{N_{t+j} V_{Z,t+j}}{V_{c,t}} \right) J_{E_{t}^{M},t+j}$$

Optimal taxes

- Optimal income taxes as in Werning (2007), optimal energy tax as in Barrage (2019). ◆ See more
- First best pollution tax: equal to social cost of externality, Pigouvian principle:

$$\tau_{E,t} = \sum_{j=0}^{\infty} \beta^{j} \left(\frac{V_{c,t+j}}{V_{c,t}} D'_{t+j} A_{1,t+j} F_{t+j} - \frac{N_{t+j} V_{Z,t+j}}{V_{c,t}} \right) J_{E_{t}^{M},t+j}$$

• Second best pollution tax, modified Pigouvian rule that accounts for marginal costs of public funds (MCF):

$$\tau_{E,t} = \sum_{j=0}^{\infty} \beta^{j} \Biggl(\frac{V_{c,t+j} + \cos(\theta_{i}; IC_{c,i,t+j})}{V_{c,t} + \cos(\theta_{i}; IC_{c,i,t})} D'_{t+j} A_{1,t+j} F_{t+j} - \frac{N_{t+j} V_{Z,t+j}}{V_{c,t} + \cos(\theta_{i}; IC_{c,i,t})} \Biggr) J_{E_{t}^{M},t+j},$$

with MCF_t = 1 +
$$\frac{\text{cov}\left(\theta_{i;IC_{c,i,t}}\right)}{V_{c,t}}$$
.

$$\tau_{E,t} = \sum_{j=0}^{\infty} \beta^{j} \left(\frac{V_{c,t+j} + \cos(\theta_{i}; IC_{c,i,t+j})}{V_{c,t} + \cos(\theta_{i}; IC_{c,i,t})} D'_{t+j} A_{1,t+j} F_{t+j} - \frac{N_{t+j} V_{Z,t+j}}{V_{c,t} + \cos(\theta_{i}; IC_{c,i,t})} \right) J_{E_{t}^{M},t+j}$$

The 2nd-best tax may differ from 1st-best for three reasons:

- Tax distortions:
 - ➤ under some conditions, covariance always null;
 - > main specification: fluctuates around 0. \bigcirc Plot MCF
- Distribution of individual allocations:

$$\succ V_{c,t} = \sum_{i} \pi_i \lambda_i \frac{c_{i,t}}{c_t} u_{c,i,t};$$

- ▶ inequalities reduce the tax iff IES < 1.
- Path of aggregate variables.

- We apply our framework to the taxation of carbon.
- Climate model: DICE 2016 (Nordhaus, 2017).
- Economic and fiscal model: calibrated to the U.S., scaled up to match global GDP and emissions.
- Thought experiment: optimal fiscal policy of the U.S. if they internalize externalities abroad and assume ROW behaves identically.

Carbon tax decomposition

Link with MCF Plot tax levels

- Second best tax (black) almost equal to the SCC (red) \rightarrow tax distortions do not justify significant deviations from Pigou.
- Without inequalities (blue), SCC $\approx 4\%$ higher.
- With higher damages: similar figures. High damages scenario

- How does carbon taxation affect the economy?
- We compare outcome of the optimal policy with policy of "climate-skeptic" planner.
- Sets policies optimally taking path of Z as given (exogenous climate change).

	Re	venue Sou	rce	Revenue Use					
	Labor	Capital	Carbon	Gov. Cons.	Transfer	Interest			
No Carbon Tax	33.5%	0.6%	0.0%	17.2%	14.6%	2.3%			
Optimal Carbon Tax	32.9%	0.6%	1.0%	17.1%	15.1%	2.3%			
Change	-0.6%	0.0%	1.0%	-0.1%	0.5%	0.0%			

Note: Numbers represent the present value of each component of the government budget constraint divided by the present value of GDP.

• Carbon tax revenue about equally split between increasing transfers and reducing labor income tax.

Welfare gains

										-						
1st	0.9	-0.2	-0.8	-1.3	-1.6	-1.6	-1.3	-0.6	0.7	2.6	5.3	8.9	13.5	19.3	26.7	35.9
2nd	0.4	-0.6	-1.3	-1.7	-2	-2	-1.7	-1	0.3	2.2	4.9	8.5	13.2	19.1	26.5	35.7
3rd	0.2	-0.8	-1.5	-1.9	-2.2	-2.2	-1.9	-1.2	0.1	2.1	4.8	8.5	13.2	19.1	26.7	36.1
4th	0	-1	-1.6	-2.1	-2.3	-2.3	-2	-1.3	0.1	2	4.8	8.5	13.3	19.3	26.9	36.5
Decile 5th	-0.1	-1.1	-1.8	-2.2	-2.4	-2.5	-2.1	-1.3	0	2	4.8	8.6	13.4	19.5	27.3	37
emoon 6th	-0.2	-1.2	-1.9	-2.3	-2.5	-2.5	-2.2	-1.4	0	2	4.9	8.7	13.6	19.8	27.7	37.7
— 7th	-0.3	-1.3	-2	-2.4	-2.6	-2.6	-2.3	-1.5	-0.1	2	4.9	8.8	13.8	20.2	28.3	38.5
8th	-0.4	-1.4	-2.1	-2.5	-2.7	-2.7	-2.3	-1.5	-0.1	2.1	5.1	9.1	14.2	20.8	29.1	39.6
9th	-0.5	-1.6	-2.2	-2.6	-2.8	-2.8	-2.4	-1.5	0	2.2	5.3	9.5	14.9	21.7	30.4	41.4
10th	-0.8	-1.8	-2.5	-2.8	-3	-2.9	-2.3	-1.3	0.5	3.2	6.9	11.8	18.2	26.4	37	50.6
2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 21 Generation											2170					

Figure: Period Welfare Gains (%)

• Negative and progressive welfare effects before 2100, positive and regressive after.

We examine the following:

- Third best policies: fixed capital/labor tax
- Initial asset heterogeneity.
- Two goods, the most polluting being a necessity.
- Heterogeneous preferences for the dirtiest good, heterogeneous exposure to environmental damages.
- Alternative preferences for the planner.

- **Theoretically**, second-best pollution tax is a modified Pigouvian rule that accounts for the marginal cost of funds (MCF)...
- ...which fluctuates around 1 in the optimal tax system, pushing the tax temporarily above/below the Pigouvian level.
- Inequalities matter: reduce Pigouvian tax iff IES below 1.
- Quantitatively, MCF plays a negligible role, but inequalities reduce the tax by 4% in the baseline.
- Carbon tax revenue optimally divided about equally between increasing transfers and reducing labor income taxes.
- Welfare effects from carbon taxation mostly negative and progressive in the 21st century, positive and regressive after.

Supplementary Material

- Pigou (1920): pollution should be taxed at its social cost.
- Double dividend literature (e.g. Sandmo, 1975; Bovenberg and de Mooij, 1994; Bovenberg and van der Ploeg, 1994): distortionary taxes should be adjusted (downward) to account for MCF.
- Barrage (2019): generalizes previous result to richer DGE framework linked to DICE. Again, MCF calls for lower taxes.
- Papers accounting for HA (e.g. Kaplow, 2012; Jacobs and de Mooij, 2015; Jacobs and van der Ploeg, 2019): second best tax should be Pigouvian.

This paper: uses Werning (2007) to extend Barrage (2019) to HA. Jointly studies inequality and environmental issues + micro-found tax distortions.

- Large literature on heterogeneous financial burden from pollution taxation.
- Carbon tax alone regressive on the use side (Pizer and Sexton, 2019), ambiguous impact on the source side (e.g. Rausch et al., 2011; Fullerton and Monti, 2013; Goulder et al., 2019; Känzig, 2021).
- Distribution of gains highly depends on revenue recycling (e.g. Williams et al., 2015; Fried et al, 2018; Goulder et al, 2019).
- Also depends on distribution of environmental benefits (between regions, Hassler and Krusell, 2012; Krusell and Smith, 2015; between generations, Leach, 2009; Kotlikoff et al., 2021).

This paper: Jointly studies economic and environmental impacts from optimal pollution taxation over time and between HA.

◀ Back

Households

• Continuum of households *i* of size π_i and total population N_t , with preferences over consumption (*c*), labor (*h*), and the environment (*Z*):

$$\sum_{t=0}^{\infty} \beta^t N_t u\left(c_{i,t}, h_{i,t}, Z_t\right).$$

- For simplicity, we assume strict separability between (c, h) and Z.
- Agents differ in two ways:
 - > labor productivity e_i ;
 - > initial asset holdings $a_{i,0}$.
- Agent *i* budget constraint:

$$\sum_{t=0}^{\infty} p_t N_t \Big(c_{i,t} - (1 - \tau_{H,t}) \, w_t e_i h_{i,t} \Big) \le R_0 N_0 a_{i,0} + T$$

• Final good sector produces output (Y) from capital (K), labor (H), and energy (E) with constant returns to scale

$$Y_{1,t} = (1 - D(Z_t))A_{1,t}F(K_{1,t}, H_{1,t}, E_t).$$

- $D(Z_t)$: production damages from environmental degradation Z.
- First order conditions of the firm:

$$r_{t} = (1 - D(Z_{t})) A_{1,t}F_{K,t}$$
$$w_{t} = (1 - D(Z_{t})) A_{1,t}F_{H,t}$$
$$p_{E,t} = (1 - D(Z_{t})) A_{1,t}F_{E,t}$$

• Energy sector produces energy (E) from capital (K) and labor (H) with constant returns to scale

$$E_t = A_{2,t} G(K_{2,t}, H_{2,t})$$

- Energy production generates emissions $E_t^M = (1 \mu_t)E_t$, with μ_t fraction of pollution abated at total costs $\Theta_t(\mu_t, E_t)$.
- With τ_I and τ_E the energy and emission taxes, profits are

$$\Pi_{t} = (p_{E,t} - \tau_{I,t}) E_{t} - \tau_{E,t} (1 - \mu_{t}) E_{t} - w_{t} H_{2,t} - r_{t} K_{2,t} - \Theta_{t} (\mu_{t}, E_{t})$$

• First order conditions:

$$r_{t} = (p_{E,t} - \tau_{I,t} - \tau_{E,t}(1 - \mu_{t}) - \Theta_{E,t}) A_{2,t} G_{K,t}$$
$$w_{t} = (p_{E,t} - \tau_{I,t} - \tau_{E,t}(1 - \mu_{t}) - \Theta_{E,t}) A_{2,t} G_{H,t}$$
$$\tau_{E,t} = \frac{\Theta_{\mu,t}}{E_{t}}$$

- Government spending: exogenous expenses G_t , lump-sum transfers T_t .
- Government revenue: proportional income taxes on capital $\tau_{K,t}$ and labor $\tau_{H,t}$, energy taxes $\tau_{I,t}$, emissions taxes $\tau_{E,t}$, and profit taxes $\tau_{\pi,t}$.
- Simplifying assumption: profits from energy sector (if any) taxed at confiscatory rate: $\tau_{\pi,t} = 1$.
- Government's intertemporal budget constraint

$$R_{0}B_{0} + T + \sum_{t} p_{t}G_{t} = \sum_{t} p_{t} \Big(\tau_{H,t}w_{t}H_{t} + \tau_{K,t} (r_{t} - \delta) K_{t} + \tau_{I,t}E_{t} + \tau_{E,t}E_{t}^{M} + \Pi_{t} \Big).$$

▲ Back

• Environmental variable affected by history of pollution emissions E_t^M , exogenous shifters η_t , and initial conditions S_0 :

$$Z_t = J\left(S_0$$
 , E_0^M , $..., E_t^M$, η_0 , $..., \eta_t
ight)$.

◀ Back

Definition

Given a distribution of assets $\{a_{i,0}\}$, aggregate capital K_0 and aggregate bond holdings B_0 , a competitive equilibrium is a policy $\{\tau_{H,t}, \tau_{K,t}, \tau_{I,t}, \tau_{E,t}, T_t\}_{t=0}^{\infty}$, a price system $\{p_t, w_t, r_t, p_{E,t}\}_{t=0}^{\infty}$ and an allocation $\{(c_{i,t}, h_{i,t})_i, Z_t, E_t, K_{1,t}, K_{2,t}, K_{t+1}, H_{1,t}, H_{2,t}, H_t\}_{t=0}^{\infty}$ such that: (i) agents choose $\{(c_{i,t}, h_{i,t})_i\}_{t=0}^{\infty}$ to maximize utility subject to their budget constraint taking policies and prices (that satisfy $p_t = R_{t+1}p_{t+1}$) as given; (ii) firms maximize profits; (iii) the government's budget constraint holds; (iv) markets clear.

Market clearing conditions

Characterization problem

- Linear tax rates: all agents face same MRS between consumption and leisure → individual allocations efficient *given* aggregates.
- Following Werning (2007), denote by $\varphi \equiv \{\varphi_i\}$ a set of market weights.
- Characterize individual allocations from aggregates by solving the following static sub-problem for each period *t*:

$$U(c_t, h_t, Z_t; \varphi) \equiv \max_{c_{i,t}, h_{i,t}} \sum_i \pi_i \varphi_i u(c_{i,t}, h_{i,t}, Z_t),$$

s.t. $\sum_i \pi_i c_{i,t} = c_t$ and $\sum_i \pi_i e_i h_{i,t} = h_t.$

• Obtain implementability conditions based on aggregates and market weights only. For all *i*,

$$U_{c,0}(R_0 N_0 a_{i,0} + T) \ge \sum_{t=0}^{\infty} N_t \beta^t \bigg(U_{c,t} c_{i,t}^m(c_t, h_t; \varphi) + U_{h,t} e_i h_{i,t}^m(c_t, h_t; \varphi) \bigg).$$

Climate model

• S^{At} , S^{Up} , and S^{Lo} represent **carbon concentration** in the atmosphere, upper oceans and biosphere, and deep oceans. They evolve according to:

$$S_{j,t} = b_{0,j}(E_t^M + E_t^{\text{land}}) + \sum_{i=1}^3 b_{i,j}S_{i,t-1},$$

• Atmospheric carbon concentration increases radiative forcing, *i.e.* the net radiation received by the earth:

$$\chi_t = \kappa \left(\ln(S_t^{At} / S_{1750}^{AT}) / \ln(2) \right) + \chi_t^{\text{ex}}.$$

• Mean temperature of atmosphere (Z_t^{At}) and deep oceans (Z_t^{Lo}) determined by

$$Z_t^{At} = Z_{t-1}^{At} + \zeta_1 \left(\chi_t - \zeta_2 Z_{t-1}^{At} - \zeta_3 (Z_{t-1}^{At} - Z_{t-1}^{Lo}) \right),$$

$$Z_t^{Lo} = Z_{t-1}^{Lo} + \zeta_4 (Z_{t-1}^{At} - Z_{t-1}^{Lo}).$$

• All parameters taken from DICE 2016.

• We also model production damages as in DICE 2016, with

$$D(Z_t) = a_1 Z_t^{At} + a_2 (Z_t^{At})^{a_3}$$

- We follow Barrage (2019) and split damages between production and utility: 74% of damages at +2.5°C assigned to output, 26% to utility.
- We also consider an alternative "high damages" scenario: same damage at current warming, but cubic instead of quadratic exponent.

▲ Back

Households

• We take the per period utility function from Barrage (2019)

$$u(c_i, h_i, Z) = \frac{(c_i(1 - \varsigma h_i)^{\gamma})^{1 - \sigma}}{1 - \sigma} + \frac{(1 + \alpha_0 Z^2)^{-(1 - \sigma)}}{1 - \sigma}.$$

- We follow DICE and set $\beta = 1/1.015$ and $\sigma = 1.45$.
- γ and ς set to match Frisch elasticity of 0.75 (Chetty et al, 2011) and average labor supply of 0.277 (Survey of Consumer Finances, 2013).
- Joint distribution of productivity and wealth computed from hourly wages and net worth data from SCF 2013. See table
- Population growth: follow DICE. Population level: match U.S. GDP per capita.

Production

• Cobb-Douglas technology for both sectors

 $F(K_{1,t}, H_{1,t}, E_t) = K_{1,t}^{\alpha} H_{1,t}^{1-\alpha-\nu} E_t^{\nu}$ with $\alpha = 0.3$, and $\nu = 0.04$ (Golosov et al, 2014), and $G(K_{2,t}, H_{2,t}) = K_{2,t}^{1-\alpha_E} H_{2,t}^{\alpha_E}$.

with $\alpha_E = 0.403$ (Barrage, 2019).

• Abatement cost function taken from DICE

$$\Theta(\mu_t, E_t) = c_{1,t} \mu_t^{c_2} E_t,$$

where $c_{1,t}c_2 = P_t^{\text{backstop}}$ the backstop price calibrated as in DICE 2016.

- Tax rates on capital and labor income taken from Trabandt and Uhlig (2012). For the US:
 - > capital income tax rate: $\tau_K = 41.1\%$;
 - > labor income tax rate: $\tau_H = 25.5\%$.
- As in Barrage (2019), set $\tau_I = 0$, but follow DICE 2016 to set $\tau_E = \$2.01/tCO_2$ such that $\mu_0 = 3\%$.
- Debt (2011-15 average): difference between total liabilities and financial assets from the U.S. government's balance sheet: $B_0/Y_{1,0} = 110\%$.
- U.S. government expenses from IMF (2011-15 average): consumption is $G_0^C/Y_{1,0} = 15.8\%$, transfers are $G_0^T/Y_{1,0} = 14.5\%$.

▲ Back

Optimal income taxes

- Optimal capital income tax quickly converges to 0.
- Optimal labor income tax quickly converges to 49%.
- With higher damages: same figures. High damages scenario

Optimal carbon tax

Figure: Optimal Carbon Taxes (\$/tCO₂)

• Similar path to DICE. High damages scenario: close to 3 times higher.

Market clearing conditions

• Final good resource constraint:

 $N_t c_t + G_t + K_{t+1} + \Theta_t (\mu_t, E_t) = (1 - D(Z_t)) A_{1,t} F(K_{1,t}, H_{1,t}, E_t) + (1 - \delta) K_t.$

• Energy resource constraint:

$$E_t = A_{2,t} G(K_{2,t}, H_{2,t}).$$

• Labor and capital market clearing:

$$K_{1,t} + K_{2,t} = K_t,$$

 $H_{1,t} + H_{2,t} = N_t h_t$

• Environmental constraint:

$$Z_t = J\left(S_0, E_0^M, ..., E_t^M, \eta_0, ..., \eta_t
ight)$$
 .

Derivation implementatibility conditions

• Household i budget constraint:

$$\sum_{t=0}^{\infty} p_t N_t \Big(c_{i,t} - (1 - \tau_{H,t}) \, w_t e_i h_{i,t} \Big) \le R_0 N_0 a_{i,0} + T.$$

• Applying the envelope theorem to the characterization problem and using consumers' first order conditions:

$$\begin{aligned} \frac{U_{h,t}}{U_{c,t}} &= \frac{u_{h,i,t}}{u_{c,i,t}e_i} = -w_t \left(1 - \tau_{H,t}\right), \\ \frac{U_{c,t}}{U_{c,0}} &= \frac{u_{c,i,t}}{u_{c,i,0}} = \frac{p_t}{\beta^t}. \end{aligned}$$

• Substituting:

$$U_{c,0}(R_0 N_0 a_{i,0} + T) \ge \sum_{t=0}^{\infty} N_t \beta^t \bigg(U_{c,t} c_{i,t}^m(c_t, h_t; \varphi) + U_{h,t} e_i h_{i,t}^m(c_t, h_t; \varphi) \bigg).$$

Definitions

We define the pseudo-utility function as

$$W(c_t, h_t, Z_t; \boldsymbol{\varphi}, \theta, \lambda) \equiv V(c_t, h_t, Z_t; \boldsymbol{\varphi}, \lambda) + \sum_i \pi_i \theta_i IC_i(c_t, h_t, \boldsymbol{\varphi}),$$

with

$$V(c_t, h_t, Z_t; \boldsymbol{\varphi}, \lambda) \equiv \sum_i \pi_i \lambda_i u\left(c_{i,t}^m(c_t, h_t; \boldsymbol{\varphi}), h_{i,t}^m(c_t, h_t; \boldsymbol{\varphi}), Z_t\right),$$

the aggregate utility based on the planner's weights,

$$IC_i(c_t, h_t, arphi) \equiv U_{c,t}c^m_{i,t}(c_t, h_t; arphi) + U_{h,t}e_ih^m_{i,t}(c_t, h_t; arphi)$$
 ,

the difference between agent *i* consumption and labor income in period *t*, and $MIC_{i,t} \equiv (\partial IC_{i,t}/\partial c_t)$.

Define the marginal cost of funds (MCF) as

$$\begin{aligned} \text{MCF}_t &\equiv \frac{\nu_{1,t}}{V_{c,t}} \\ &= \frac{W_{c,t}}{V_{c,t}} = 1 + \frac{\sum_i \pi_i \theta_i MIC_{i,t}}{V_{c,t}} \end{aligned}$$

We can also write the ratio of MCFs as

$$\frac{\mathrm{MCF}_{t+j}}{\mathrm{MCF}_t} = \prod_{k=1}^j \frac{R_{t+k}}{R_{t+k}^*}$$

Denote Δ_{t+s} the share of marginal production damages at t+s due to marginal change in emissions at t. Then

$$\tau_{E,t} = \sum_{j=0}^{\infty} \frac{\mathrm{MCF}_{t+j}}{\mathrm{MCF}_{t}} \Delta_{t+j} \left. \tau_{E,t}^{\mathrm{Pigou}, Y} \right|_{SB} + \left. \frac{\tau_{E,t}^{\mathrm{Pigou}, U} \right|_{SB}}{\mathrm{MCF}_{t}} \ .$$

▲ Back

- MCF is on average 1, small temporary deviations.
- Second best tax follows similar trajectory relative to Pigouvian level.

The general formulas (without functional form for utility) are

$$\tau_{H,t} = 1 - \frac{U_{h,t}}{U_{c,t}} \frac{W_{c,t}}{W_{h,t}},$$

and

$$\frac{R_{t+1}}{R_{t+1}^*} = \frac{W_{c,t+1}}{W_{c,t}} \frac{U_{c,t}}{U_{c,t+1}}.$$

Using our functional form for utility we get

$$\tau_{H,t} = \frac{\Psi\varsigma \left(1 - \varsigma H_t\right)^{-1}}{\Phi + \Psi\varsigma \left(1 - \gamma \left(1 - \sigma\right)\right) \left(1 - \varsigma H_t\right)^{-1}},$$

and

$$\frac{R_{t+1}}{R_{t+1}^*} = = \frac{\Phi - \Psi_{\varsigma} \gamma \left(1 - \sigma\right) \left(1 - \varsigma H_{t+1}\right)^{-1}}{\Phi - \Psi_{\varsigma} \gamma \left(1 - \sigma\right) \left(1 - \varsigma H_t\right)^{-1}},$$

with

$$\Phi = \sum_{j} \pi_{j} \frac{\lambda_{j}}{\varphi_{j}} + (1 - (1 + \gamma)(1 - \sigma)) \operatorname{cov}(\lambda_{i}/\varphi_{i}, \omega_{i}),$$

$$\Psi = -\frac{\operatorname{cov}(\lambda_{i}/\varphi_{i}, e_{i})}{\varsigma},$$

where $\forall t, \omega_i = c_{i,t}/C_t$.

• Back

Table: Distribution of households hourly wages and net worth by productivity deciles (rows) and net worth deciles (columns), controlling for generational differences.

	Net worth deciles											
		1st	2nd	3rd	4th	5th	6th	$7 \mathrm{th}$	8th	9th	10th	Hourly wage
Productivity deciles	1st	-4.59e+04	-7.00e+03	1.22e+03	7.45e+03	$1.79e{+}04$	$3.25e{+}04$	$6.44e{+}04$	1.12e+05	2.18e+05	1.10e+06	6.44e + 00
	2nd	-2.99e+04	-1.97e+03	4.89e+03	1.23e+04	2.50e+0.4	3.97e + 04	$6.46e{+}04$	1.03e+05	1.83e+05	1.04e+06	$1.11e{+}01$
	3rd	-4.13e+04	-6.00e+03	3.72e+03	1.29e+04	2.76e+0.4	4.47e + 04	7.69e+04	1.09e+05	2.01e+05	7.19e+05	1.42e+01
	4th	-4.56e+04	-2.65e+03	1.44e+04	$3.31e{+}04$	5.38e+04	7.48e+04	1.01e+05	1.50e+05	2.67e+05	7.64e+05	1.73e+01
	5th	-4.94e+04	-2.15e+03	1.55e+04	$3.58e{+}04$	6.72e + 04	$9.53e{+}04$	1.40e+05	2.07e+05	2.98e+05	1.10e+06	2.05e+01
	6th	-3.82e+04	$1.21e{+}04$	3.94e + 04	7.26e+04	1.14e+05	1.60e + 05	2.13e+05	2.88e+05	4.60e+05	1.75e+06	2.41e+01
	$7 \mathrm{th}$	-2.41e+04	3.79e+04	6.75e+04	1.03e+05	1.54e+05	2.06e + 05	2.63e+05	3.58e+05	5.32e+05	1.23e+06	2.86e+01
	8th	-2.93e+04	3.00e+04	7.10e+04	1.34e+05	2.11e+05	2.80e + 05	$3.90e{+}05$	5.04e+05	6.94e + 05	2.57e+06	3.48e+01
	9th	4.38e+03	6.86e + 04	1.44e+05	2.11e+05	3.07e+05	$4.20e{+}05$	5.53e+05	7.45e+05	1.08e+06	3.50e+06	4.47e+01
	$10 \mathrm{th}$	-8.53e+04	1.40e+05	2.77e+05	4.43e+05	6.38e+05	8.55e + 05	1.29e+06	2.14e+06	3.45e+06	1.00e+07	1.01e+02

Optimal income taxes alternative damages

(a) Optimal Capital-Income Taxes

(b) Optimal Labor-Income Taxes

▲ Back

Optimal carbon tax alternative damages

Figure: Optimal Carbon Taxes (CO_2)

- Baseline peak temperature: +4.5°C
- High damages peak temperature: +2.5°C
- Temperatures
 A Back

Temperature alternative damages

▲ Back

Tax formula

• Second best tax:

$$\tau_{E,t} = \sum_{j=0}^{\infty} \beta^{j} \left(\frac{V_{c,t+j} + \sum_{i} \pi_{i} \theta_{i} MIC_{i,t+j}}{V_{c,t} + \sum_{i} \pi_{i} \theta_{i} MIC_{i,t}} D'_{t+j} A_{1,t+j} F_{t+j} - \frac{N_{t+j} V_{Z,t+j}}{V_{c,t} + \sum_{i} \pi_{i} \theta_{i} MIC_{i,t}} \right) J_{E_{t,t+j}^{M,t+j}}$$

• Second best tax ignoring MCF (SCC):

$$\tau_{E,t} = \sum_{j=0}^{\infty} \beta^{j} \left(\frac{V_{c,t+j}}{V_{c,t}} D'_{t+j} A_{1,t+j} F_{t+j} - \frac{N_{t+j} V_{Z,t+j}}{V_{c,t}} \right) J_{E_{t}^{M},t+j}$$

• Second best tax ignoring MCF and inequalities:

$$\tau_{E,t} = \sum_{j=0}^{\infty} \beta^{j} \left(\frac{V_{c,t+j}}{V_{c,t}} D'_{t+j} A_{1,t+j} F_{t+j} - \frac{N_{t+j} V_{Z,t+j}}{V_{c,t}} \right) J_{E_{t}^{M},t+j}$$

 \rightarrow Same formula as before, different allocation.

Carbon tax decomposition alternative damages

◀ Back