Julien Bengui¹ Louphou Coulibaly²

¹Bank of Canada and CEPR

²University of Wisconsin-Madison and NBER

August 2022

The views expressed herein are those of the authors and not necessarily those of the Bank of Canada.

Motivation

- Inflation is back!
 - Phenomenon is broad based, (largely) unexpected, and forcing central banks worldwide to rethink their exit from ZLB/quantitative easing.
- When shock hits, usual for international macro to ask: do open financial accounts facilitate macro adjustment?
- Traditional, classical view is that answer is positive. But recently, views have become more nuanced.
- Yet, discussions of "excessive" capital flows has typically not incorporated notion of *output-inflation trade-off*, which seems relevant in current context.

This paper

- Use baseline open-economy New-Keynesian model to analyze constrained efficiency of free capital mobility regime when policy faces output-inflation trade-off.
- Find that high-inflation country over-borrows and capital flows are topsy-turvy.
- Novel macroeconomic externality associated with external borrowing and operating through economy's supply side:
- Increase in external borrowing shifts up labor supply → domestic firms' marginal costs rises.
- When economy operates below potential as result of central bank's attempt to fight off cost-push shock, externality worsens policy trade-off, hence creating inefficiency.

Relationship to literature

Macroeconomic externality resembles those stressed by two branches of recent literature in monetary and international macro:

- 1. AD externalities in economies with nominal rigidities
 - Farhi and Werning (2012, 2014, 2016, 2017), Korinek and Simsek (2016), Schmitt-Grohe and Uribe (2016), etc.
 - Constraints on price adjustments and monetary policy prevent goods-specific labor wedges to be closed.
 - Prescription: incentivize agents to shift wealth toward states of nature where their spending is high on goods whose provision is most depressed.
- 2. Pecuniary externalities under incomplete financial markets
 - Caballero and Krishnamurthy (2001), Korinek (2007, 2018), Bianchi (2011), Jeanne and Korinek (2010, 2019, 2020), Benigno et al. (2013, 2016), etc.
 - Incomplete markets or borrowing constraints prevent equalization of MRS across agents.
 - Prescription: distort financial choices to generate price movements that reduce incomplete markets wedges.

イロト イヨト イヨト イヨト ショコ りゅう

Sketch of model

Baseline open-economy New-Keynesian model

- Two countries, Armington preferences, no home bias (for presentation)
 Details
- Monopolistic competition and nominal rigidities (Calvo pricing), with producer currency pricing and law of one price
- Flexible exchange rate, cooperative monetary policy under commitment
- Complete financial markets, with capital flow taxes as potential welfare enhancing policy
- Cost-push shocks generating output-inflation trade-off

Equilibrium

Output determination

$$y_t = \frac{1}{2} \left(c_t + c_t^* + \eta s_t \right).$$
 (1)

International risk-sharing

$$c_t = c_t^* + \theta_t. \tag{2}$$

Inflation and marginal costs

$$\dot{\pi}_{H,t} = \rho \pi_{H,t} - \kappa m c_t, \qquad (3)$$

$$mc_t = (1+\phi)y_t - \frac{\eta - 1}{2}s_t + \frac{1}{2}\theta_t + u_t.$$
 (4)

Optimal monetary policy

Optimal monetary policy solves

$$\min_{\{y_t^D, \pi_t^D\}} \int_0^\infty e^{-\rho t} \left[\left(\frac{1}{\eta} + \phi \right) (y_t^D)^2 + \frac{\varepsilon}{\kappa} (\pi_t^D)^2 + \frac{1}{4} \left(\theta_t \right)^2 \right] dt$$

subject to

$$\rho \pi_t^D = \dot{\pi}_t^D + \kappa \left[\left(\frac{1}{\eta} + \phi \right) y_t^D + \frac{1}{2} \theta_t \right] + \kappa u_t^D.$$
 (NKPC D)

Optimal plan characterized by targeting rule

$$\dot{\mathbf{y}}_t^D + \boldsymbol{\varepsilon} \boldsymbol{\pi}_t^D \quad = \quad \mathbf{0}.$$

◊ Remark:

• Monetary policy is "inward looking" regardless of assumption on $\{\theta_t\}$.

Loss function
 World and difference formulation

Optimal policy

Optimal capital flow management (CFM) policy

Optimal policy now solves

$$\min_{\{y_t^D, \pi_t^D, \theta_t\}} \int_0^\infty e^{-\rho t} \left[\left(\frac{1}{\eta} + \phi \right) (y_t^D)^2 + \frac{\varepsilon}{\kappa} (\pi_t^D)^2 + \frac{1}{4} (\theta_t)^2 \right] dt$$

subject to

$$\rho \pi_t^D = \dot{\pi}_t^D + \kappa \left[\left(\frac{1}{\eta} + \phi \right) y_t^D + \frac{1}{2} \theta_t \right] + \kappa u_t^D. \tag{NKPC D}$$

Optimal plan characterized by

Decentralization with tax on CF

$$heta_t = 2y_t^D.$$
 $au_t^D = \eta \pi_t^D.$

Remarks:

- Free capital mobility regime is constrained inefficient.
- Optimal to redirect spending away from country with most depressed output.
- High-inflation country over-borrows.

Externality via firms' marginal costs

- Consider marginal reallocation of spending towards Home at *t*, starting from free capital mobility regime.
- Applying envelope theorem, change in loss function induced by perturbation is

♦ If (NKPC D) binds ($\varphi_t^D \neq 0$), perturbation has first-order welfare effect.

Topsy-turvy capital flows

- How do capital flows behave under free capital mobility vs. optimal CFM?
- Under free capital mobility, two neoclassical motives of inter-temporal trade compete (Cole-Obstfeld, 1991)
 - $_{\diamond}~$ Low output \rightarrow incentive to borrow,
 - $_{\diamond}~$ ToT appreciation \rightarrow incentive to save.
- Under optimal CFM, additional Keynesian motive of inter-temporal trade
 - $\circ~$ Relax output-inflation trade-off where it is the most stringent \rightarrow incentive to save.
- When $\eta > 1$, capital flows are *topsy-turvy* under free capital mobility.

$$nx_t = \frac{\eta - 1}{\eta} y_t^D.$$

$$nx_t = -\frac{1}{\eta} y_t^D.$$

1

- Optimal policy

Relaxing no home bias assumption ($\alpha < 1/2$)

$$\frac{\partial mc^{D}(y_{t}^{D}, \theta_{t})}{\partial \theta_{t}} = \frac{\alpha \chi}{\eta - (\eta - 1)(1 - 2\alpha)^{2}} \left[\underbrace{\frac{1}{\text{real wage effect}}}_{\text{real wage effect}} - \underbrace{\frac{(1 - 2\alpha)/\chi}{\text{purchasing power effect}}} \right]$$

- $\circ \chi$ is trade elasticity
- Shifting demand toward Home appreciates ToT, exercising counteracting force on marginal costs.
- For plausible calibrations, real wage effect dominates.

Adjustment to negative supply shock

Cost-push shock scenario

- Now consider (unanticipated, temporary) inflationary cost-push shock in Home, starting from symmetric steady-state of model
 - Home: $u_t = 2\bar{u} > 0$ for some $\bar{u} > 0$ for $t \in [0, T)$ and $u_t = 0$ for $t \ge T$
 - Foreign: $u_t^* = 0$ for $t \ge 0$

In terms of "world" and "differences":

$$u_t^W = u_t^D = \begin{cases} \bar{u} > 0 & \text{for} \quad t \in [0, T) \\ 0 & \text{for} \quad t \ge T. \end{cases}$$

- How does world economy adjust under free capital mobility vs. constrained efficient regime?
- Targeting rules + NKPC D form a dynamical system amenable for phase diagram analysis.

Adjustment to negative supply shock

Adjustment under free capital mobility

Adjustment to negative supply shock

Adjustment under optimal CFM

- Adjustment to negative supply shock

Impulse responses to cost-push shock in calibrated example Set $\rho = 0.04$, $\eta = 2$, $\alpha = 0.25$, $\phi = 0$, $\varepsilon = 7.66$, $\rho_{\delta} = 1 - 0.75^4$, with mean reverting Home cost-push shock matching annual autocorrelation of 0.65 (Groll and Monacelli, 2020).

- Adjustment to negative supply shock

Impulse responses to cost-push shock in calibrated example Set $\rho = 0.04$, $\eta = 2$, $\alpha = 0.25$, $\phi = 0$, $\varepsilon = 7.66$, $\rho_{\delta} = 1 - 0.75^4$, with mean reverting Home cost-push shock matching annual autocorrelation of 0.65 (Groll and Monacelli, 2020).

Conclusion

- Point to a macroeconomic externality operating via firms' marginal costs in open-economy model with nominal rigidities.
- When policy faces output-inflation trade-off, externality causes
 - Over-borrowing by high-inflation countries,
 - Topsy-turvy capital flows.
- Casts doubts on classical view that free capital mobility promotes macroeconomic adjustment, esp. in stagflationary context.
- Wider applicability: externality likely matters in other contexts with output-inflation tradeoffs and household heterogeneity (e.g., multi-sector closed economies).

Screen shot from BoC website on June 1st, 2022

BANK OF CANADA BANQUE DU CANADA			Q, FR
ABOUT THE BANK CORE FUNCTIONS MARKETS	BANK NOTES PUBLICATIONS RESEARCH	PRESS STATISTICS	
We are Canada's central bank. We work to preserve the value of money by keeping inflation low and stable.			
Policy Interest Rate 1.50% Jun 1, 2022	Total CPI Inflation 6.8% Apr 2022	CPI-trim 5.1% CPI-median 4.4% CPI-common 3.2%	Apr 2022 Apr 2022 Apr 2022

Households

- ♦ Preferences over consumption and labor supply $u_t = \ln C_t \frac{N_t^{1+\phi}}{1+\phi}$
- ♦ CES consumption $C \equiv \left[(1 \alpha)^{\frac{1}{\eta}} (C_H)^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} (C_F)^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$ where
 - $\circ~\alpha$ captures trade openness, for presentation focus on $\alpha=1/2$ (no home bias)
 - $\circ C_H, C_F$ Dixit-Stiglitz aggregates of goods produced in Home and Foreign with ES between varieties of ε .
- \diamond Can trade two types of nominal bonds, domestic D_t and international B_t

$$\dot{D}_t + \dot{B}_t = i_t D_t + (\underline{i_t} + \tau_t) B_t + W_t N_t - \int_0^1 P_{H,t}(l) C_{H,t}(l) dl - \int_0^1 P_{F,t}(l) C_{F,t}(l) dl + T_t.$$

Firms + International relative prices

Firms

- Produce differentiated goods with technology $Y_t(l) = N_t(l)$.
- ♦ $N_t(l)$ is composite of individual household labor, CES aggregator with ES among varieties ε_t^w , to generate cost-push shocks.
- Calvo (1983) price setting with producer currency pricing.

International relative price

◇ Terms of trade $S_t \equiv P_{F,t}/P_{H,t} = P_{F,t}^*/P_{H,t}^*$.

Details on firms' pricing

◇ Calvo (1983) price setting, opportunity to reset price P^r_{H,t}(j) when receives price-change signal (Poisson process w. intensity $\rho_{\delta} \ge 0$). Firm maximizes

$$\int_{t}^{\infty} \rho_{\delta} e^{-\rho_{\delta}(k-t)} \frac{\lambda_{k}}{\lambda_{t}} \left[P_{H,t}^{r}(j) - P_{H,k} M C_{k} \right] Y_{k|t} dk,$$

subject to demand $Y_{k|t} = (P_{H,t}^r/P_{H,k})^{-\varepsilon} Y_k$, with real marginal cost $MC_k \equiv (1 - \tau^N) W_k/P_{H,k}$.

Canonical formulation for "world" and "difference"

◊ Define

• "world" variables
$$y_t^W \equiv (y_t + y_t^*)/2, \pi_t^W \equiv (\pi_{H,t} + \pi_{F,t}^*)/2,$$

• "difference" variables $y_t^D \equiv (y_t - y_t^*)/2$, $\pi_t^D \equiv (\pi_{H,t} - \pi_{F,t}^*)/2$.

Terms of trade satisfies

$$2y_t^D = \eta s_t. \tag{ToT}$$

NKPCs

$$\dot{\pi}_t^W = \rho \pi_t^W - \kappa (1 + \phi) y_t^W - \kappa u_t^W, \qquad (\mathsf{NKPC} \mathsf{W})$$

$$\dot{\pi}_t^D = \rho \pi_t^D - \kappa \left[\left(\frac{1}{\eta} + \phi \right) y_t^D + \frac{1}{2} \theta_t \right] - \kappa u_t^D.$$
 (NKPC D)

Back

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

21/16

Welfare criterion

- Assume long-run distortions from monopolistic competition eliminated by labor subsidy.
- 2nd order approximation of (equally weighted) sum of households' utility around efficient steady state:

$$\mathbb{L}_t = \left[(1+\phi)(y_t^W)^2 + \frac{\varepsilon}{\kappa} (\pi_t^W)^2 \right] + \left[\left(\frac{1}{\eta} + \phi \right) (y_t^D)^2 + \frac{\varepsilon}{\kappa} (\pi_t^D)^2 \right] + \frac{1}{4} (\theta_t)^2.$$

 Remark: "world" variables separated from "difference" variables in both objective function and constraints, can study determination of both blocks separately Back-up slides

Loss function with home bias

♦ Loss function with $\alpha < 1/2$

$$\mathbb{L}_t = \left[(1+\phi)(y_t^W)^2 + \frac{\varepsilon}{\kappa} (\pi_t^W)^2 \right] + \left[(1+\phi)(y_t^D)^2 + \frac{\varepsilon}{\kappa} (\pi_t^D)^2 \right]$$
$$+ \alpha (1-\alpha) \left[(1-\eta)\eta(s_t)^2 + (\theta_t - (\eta-1)(1-2\alpha)s_t)^2 \right].$$

Back-up slides

Details on optimal monetary policy

Optimal monetary policy solves

$$\min_{\{y_t^W, \pi_t^W, y_t^D, \pi_t^D, s_t\}} \int_0^\infty e^{-\rho t} \left\{ \left[(1+\phi)(y_t^W)^2 + \frac{\varepsilon}{\kappa} (\pi_t^W)^2 \right] + \left[(1+\phi)(y_t^D)^2 + \frac{\varepsilon}{\kappa} (\pi_t^D)^2 \right] \right. \\ \left. + \alpha (1-\alpha) \left[(1-\eta)\eta(s_t)^2 + (\theta_t - (\eta-1)(1-2\alpha)s_t)^2 \right] \right\} dt.$$

subject to

$$\dot{\pi}_t^W = \rho \pi_t^W - \kappa (1 + \phi) y_t^W - \kappa u_t^W, \qquad (\text{NKPC W})$$

$$\begin{aligned} \dot{\pi}_t^D &= \rho \pi_t^D - \kappa \left[(1+\phi) y_t^D - \frac{\omega - 1}{2} s_t + \alpha \theta_t \right] - \kappa u_t^D, \end{aligned} \tag{NKPC D} \\ 2y_t^D &= \omega s_t + (1-2\alpha) \theta_t. \end{aligned} \tag{ToT}$$

Optimal plan characterized by targeting rules

$$\dot{y}_t^W + \varepsilon \pi_t^W = 0,$$

 $\dot{y}_t^D + \varepsilon \pi_t^D = 0.$

