Heterogeneous Risk Exposure and the Dynamics of Wealth Inequality

RICCARDO A. CIOFFI

Princeton University

EEA Congress - August 24, 2022

Understand what shapes the evolution of the wealth distribution

- Understand what shapes the evolution of the wealth distribution
- Rising interest in return heterogeneity for wealth inequality

- Understand what shapes the evolution of the wealth distribution
- Rising interest in return heterogeneity for wealth inequality
 - Theoretical: return heterogeneity key to generate high inequality level

- Understand what shapes the evolution of the wealth distribution
- Rising interest in return heterogeneity for wealth inequality
 - Theoretical: return heterogeneity key to generate high inequality level
 - Empirical: portfolio heterogeneity + asset price movements \Rightarrow wealth dynamics

- Understand what shapes the evolution of the wealth distribution
- Rising interest in return heterogeneity for wealth inequality
 - Theoretical: return heterogeneity key to generate high inequality level
 - Empirical: portfolio heterogeneity + asset price movements ⇒ wealth dynamics

This paper:

Propose a model for the dynamics of inequality based on heterogeneous exposure to aggregate risk in asset returns

- Understand what shapes the evolution of the wealth distribution
- Rising interest in return heterogeneity for wealth inequality
 - Theoretical: return heterogeneity key to generate high inequality level
 - Empirical: portfolio heterogeneity + asset price movements ⇒ wealth dynamics

This paper:

- Propose a model for the dynamics of inequality based on heterogeneous exposure to aggregate risk in asset returns
 - Generate large and persistent movements in inequality
 - Rationalize the observed evolution of US top wealth shares
 - Realized returns happened to be favorable for the portfolios of the wealthy

Some Relevant Facts

Fact 1: Large low-frequency movements in wealth inequality

• Top 10% wealth share increased by \approx 10p.p. in 25 years

Some Relevant Facts

Fact 1: Large low-frequency movements in wealth inequality

• Top 10% wealth share increased by \approx 10p.p. in 25 years

Fact 2: Portfolios differ along the wealth distribution

• Poor \rightarrow Safe; Middle-class \rightarrow Housing; Wealthy \rightarrow Equity

Some Relevant Facts

Fact 1: Large low-frequency movements in wealth inequality

• Top 10% wealth share increased by \approx 10p.p. in 25 years

Fact 2: Portfolios differ along the wealth distribution

- Poor \rightarrow Safe; Middle-class \rightarrow Housing; Wealthy \rightarrow Equity
- Fact 3: Rates of return systematically vary
 - a. Across asset classes
 - b. Over time

Some Relevant Facts

Fact 1: Large low-frequency movements in wealth inequality

• Top 10% wealth share increased by \approx 10p.p. in 25 years

Fact 2: Portfolios differ along the wealth distribution

• Poor \rightarrow Safe; Middle-class \rightarrow Housing; Wealthy \rightarrow Equity

Fact 3: Rates of return systematically vary

- a. Across asset classes
- b. Over time

Q: Can facts 2 and 3 help us explain fact 1?

Contribution

Contribution

> Develop a model of wealth inequality based on optimal portfolio choice

• Households choose portfolio shares in bonds, housing, and equity.

Contribution

- Households choose portfolio shares in bonds, housing, and equity.
- Housing as investment asset and necessary good crucial for portfolios
 - Investment: portfolio shares in housing
 - Non-homotheticity: portfolio shares in equity

Contribution

- Households choose portfolio shares in bonds, housing, and equity.
- Housing as investment asset and necessary good crucial for portfolios
 - Investment: portfolio shares in housing
 - Non-homotheticity: portfolio shares in equity
- Replicate observed portfolio heterogeneity

Contribution

- Households choose portfolio shares in bonds, housing, and equity.
- Housing as investment asset and necessary good crucial for portfolios
 - Investment: portfolio shares in housing
 - Non-homotheticity: portfolio shares in equity
- Replicate observed portfolio heterogeneity
- Model matches both level and dynamics of inequality:
 - 1. Increasing returns to wealth amplify the level of inequality
 - 2. Households are differently exposed to fluctuations in returns

Preview of results

Aggregate risk in asset returns

1. Has large and persistent effects on inequality

Preview of results

Aggregate risk in asset returns

- 1. Has large and persistent effects on inequality
- 2. Can explain rise in US top wealth shares:

Preview of results

Aggregate risk in asset returns

- 1. Has large and persistent effects on inequality
- 2. Can explain rise in US top wealth shares:
 - Feeding realized returns replicates increase in top shares

Preview of results

Aggregate risk in asset returns

- 1. Has large and persistent effects on inequality
- 2. Can explain rise in US top wealth shares:
 - Feeding realized returns replicates increase in top shares
 - Mainly driven by abnormal returns to equity

1. Model

2. Calibration

3. Results

4. Conclusion

Continuous time

- Households:
 - Die at constant rate ζ
 - Recursive preferences
 - Non-homothetic aggregator over consumption and housing
 - Trade financial assets (stocks and bonds) and illiquid housing

Assets returns follow an exogenous process subject to aggregate shocks

Household

Preferences

Non-homothetic (addilog) intra-temporal utility:

$$u(c,n) = \left((1-\omega) \frac{1-\varepsilon_h^{-1}}{1-\varepsilon_c^{-1}} c^{\frac{\varepsilon_c-1}{\varepsilon_c}} + \omega n^{\frac{\varepsilon_h-1}{\varepsilon_h}} \right)^{\frac{\varepsilon_h}{\varepsilon_h-1}}$$

where n is consumption of housing services.

- Nests CES ($\varepsilon_h = \varepsilon_c$) and separable ($\varepsilon_h = \psi$) cases
- Non-homotheticity: $\varepsilon_h < \varepsilon_c \Rightarrow$ expenditure share of housing falls in total consumption (Wachter and Yogo 2010)

Non-homotheticity

Implications

Poor households have a larger share of consumption expenditure in housing:

- Low EIS; high RRA
- Heavily invest in bonds (illiquidity of housing makes it inadequate for consumption smoothing)

Non-homotheticity

Implications

Poor households have a larger share of consumption expenditure in housing:

- Low EIS; high RRA
- Heavily invest in bonds (illiquidity of housing makes it inadequate for consumption smoothing)
- Rich households on the other hand
 - High EIS; low RRA
 - Invest in stocks to reap the high return

Entry/Exit decision in both housing and equity markets

Entry/Exit decision in both housing and equity markets

Borrowing only in bonds

Entry/Exit decision in both housing and equity markets

- Borrowing only in bonds
- Asset returns follow a correlated Brownian motion

- Entry/Exit decision in both housing and equity markets
- Borrowing only in bonds
- Asset returns follow a correlated Brownian motion
- Households' individual states are $\mathbf{x} = (a, p, h, z)$:
 - Financial wealth *a*

- Entry/Exit decision in both housing and equity markets
- Borrowing only in bonds
- Asset returns follow a correlated Brownian motion
- Households' individual states are $\mathbf{x} = (a, p, h, z)$:
 - Financial wealth a
 - Equity-market participation state p

- Entry/Exit decision in both housing and equity markets
- Borrowing only in bonds
- Asset returns follow a correlated Brownian motion
- Households' individual states are $\mathbf{x} = (a, p, \mathbf{h}, z)$:
 - Financial wealth a
 - Equity-market participation state p
 - Housing *h* (can also be rented)

Entry/Exit decision in both housing and equity markets

Borrowing only in bonds

Asset returns follow a correlated Brownian motion

• Households' individual states are $\mathbf{x} = (a, p, h, z)$:

- Financial wealth a
- Equity-market participation state p
- Housing h (can also be rented)
- Log earnings z
 - Follow an Ornstein-Uhlenbeck (AR-1) in logs

Distribution

Kolmogorov Forward Equation

PROPOSITION 1

The distribution of households over individual states, $g_t(\mathbf{x})$, solves the following KFE:

$$dg_t(\mathbf{x}) = \left\{ \mathcal{A}^* g_t(\mathbf{x}) + \zeta \left(\Psi(\mathbf{x}) - g_t(\mathbf{x}) \right) \right\} dt - \partial_{\mathbf{x}} \left\{ \left[\boldsymbol{\sigma}_{\mathbf{x}}(\mathbf{x}) d\mathbf{W}_t \right] g_t(\mathbf{x}) \right\}$$

where \mathcal{A}^* is the adjoint of the HJB operator.

Distribution

Kolmogorov Forward Equation

PROPOSITION 1

The distribution of households over individual states, $g_t(\mathbf{x})$, solves the following KFE:

$$dg_t(\mathbf{x}) = \left\{ \mathcal{A}^* g_t(\mathbf{x}) + \zeta \left(\Psi(\mathbf{x}) - g_t(\mathbf{x}) \right) \right\} dt - \partial_{\mathbf{x}} \left\{ \left[\boldsymbol{\sigma}_{\mathbf{x}}(\mathbf{x}) d\mathbf{W}_t \right] g_t(\mathbf{x}) \right\}$$

where \mathcal{A}^* is the adjoint of the HJB operator.

• **Implications:** in the presence of aggregate risk, the evolution of g_t will depend on:

Distribution

Kolmogorov Forward Equation

PROPOSITION 1

The distribution of households over individual states, $g_t(\mathbf{x})$, solves the following KFE:

$$dg_t(\mathbf{x}) = \left\{ \mathcal{A}^* g_t(\mathbf{x}) + \zeta \left(\Psi(\mathbf{x}) - g_t(\mathbf{x}) \right) \right\} dt - \partial_{\mathbf{x}} \left\{ \left[\boldsymbol{\sigma}_{\mathbf{x}}(\mathbf{x}) d\mathbf{W}_t \right] g_t(\mathbf{x}) \right\}$$

where \mathcal{A}^* is the adjoint of the HJB operator.

- **Implications:** in the presence of aggregate risk, the evolution of g_t will depend on:
 - 1. The specific path of shocks \mathbf{W}_t

Distribution

Kolmogorov Forward Equation

PROPOSITION 1

The distribution of households over individual states, $g_t(\mathbf{x})$, solves the following KFE:

$$dg_t(\mathbf{x}) = \left\{ \mathcal{A}^* g_t(\mathbf{x}) + \zeta \left(\Psi(\mathbf{x}) - g_t(\mathbf{x}) \right) \right\} dt - \partial_{\mathbf{x}} \left\{ \left[\boldsymbol{\sigma}_{\mathbf{x}}(\mathbf{x}) d\mathbf{W}_t \right] g_t(\mathbf{x}) \right\}$$

where \mathcal{A}^* is the adjoint of the HJB operator.

- **Implications:** in the presence of aggregate risk, the evolution of g_t will depend on:
 - 1. The specific path of shocks \mathbf{W}_t
 - 2. Exposure to aggregate risk (through $\sigma_{\mathbf{x}}(\mathbf{x})$)

Calibration

Calibration

Strategy

- Returns process directly from data
 - Return on bills and capital gains on housing from Jordà et al. (2019)
 - Equity returns from Kartashova (2014) (wgt. avg. of public and private)
- Use data on expenditure shares to pin down non-homotheticity
 - Target expenditure shares by expenditure decile
- Ask the model to match portfolio shares along wealth distribution
 - Target portfolio shares by wealth decile
 - Target avg. participation in equity and housing markets

Model Match

Expenditure Shares

Figure 1: Expenditure share of housing

Model Match

Portfolio Shares

Figure 2: Portfolio shares

Matches main fact: bonds at the bottom, housing in the middle, equity at the top

Missing some bond-holdings at the top

Model matches level of wealth inequality

• Decomposition exercise shows that return heterogeneity accounts for 50%

Model matches level of wealth inequality

- Decomposition exercise shows that return heterogeneity accounts for 50%
- ▶ Highlight the role of heterogeneous exposure for the dynamics of inequality:

Model matches level of wealth inequality

- Decomposition exercise shows that return heterogeneity accounts for 50%
- ▶ Highlight the role of heterogeneous exposure for the dynamics of inequality:
 - 1. Ergodic distribution

Model matches level of wealth inequality

• Decomposition exercise shows that return heterogeneity accounts for 50%

Highlight the role of heterogeneous exposure for the dynamics of inequality:

- 1. Ergodic distribution
- 2. IRF to shocks in asset returns

Model matches level of wealth inequality

- Decomposition exercise shows that return heterogeneity accounts for 50%
- Highlight the role of heterogeneous exposure for the dynamics of inequality:
 - 1. Ergodic distribution
 - 2. IRF to shocks in asset returns
 - 3. Feed the realized sequence of returns into the model

Distribution over time

- Plot top 10% wealth share along the ergodic distribution
 - Distribution is very disperse (st. dev. of top 10% share is 0.07)
 - Most of the time concentrated around mean, but long periods of high inequality

Figure 4: Wealth Inequality - Dynamics

Dynamics - Decomposition

Compute IRF to a one-time 1% excess return in each asset

- Equity shocks have a much larger, more persistent effect
 - All s.d. shock to equity returns implies an increase in the top 10% share of 1.3 p.p.

Figure 6: IRF to 1% excess return

Dynamics - Return Changes

- Compute IRF to a 1% excess return in equity every period. Either:
 - Sequence of unexpected returns
 - Change in the equity premium

Figure 7: IRF to 1% excess return to equity

Model vs. Data - Changes

- Feed the sequence of realized returns
 - The model generates all of the observed increase in wealth inequality

More

Figure 8: Top 10% wealth share - model and data

Counterfactuals

Keep returns to one asset at its historical average

• Almost all of the increase was explained by returns to equity

Future Evolution

- Simulate 100 paths into the future
 - Inequality slowly reverts back to long-run average
 - Wide range of plausible realizations

Year

Figure 10: Top 10% wealth share - Future

What I have done

- Model of portfolio choice consistent with observed behavior
 - Housing as a necessary good crucial to generate the correct equity shares
- Aggregate shocks in returns generates fluctuations in wealth inequality
 - Consistent with U.S. data; mostly driven by returns to equity

What I have done

- Model of portfolio choice consistent with observed behavior
 - Housing as a necessary good crucial to generate the correct equity shares
- Aggregate shocks in returns generates fluctuations in wealth inequality
 - Consistent with U.S. data; mostly driven by returns to equity

Main takeaways:

- Heterogeneous exposure to aggregate risk crucial for inequality dynamics
- Increased inequality does not need structural changes

Wealth Inequality and Asset Prices

Asset returns are a fundamental determinant of wealth inequality

• To understand inequality, need to understand prices

Wealth Inequality and Asset Prices

Asset returns are a fundamental determinant of wealth inequality

- To understand inequality, need to understand prices
- Does wealth inequality matter for asset prices too?

Wealth Inequality and Asset Prices

Asset returns are a fundamental determinant of wealth inequality

- To understand inequality, need to understand prices
- Does wealth inequality matter for asset prices too?

> Ongoing work. Preliminary results suggest it does (under some conditions)

- Increasing equity demand generates amplification from inequality to prices
- Intuitively, a positive shock to dividend increases equity demand, which raises prices and further boosts demand (and inequality)

Introduction

Contribution to Literature

Portfolio Choice and Preference Heterogeneity:

- Meeuwis (2020), Wachter and Yogo (2010), Gomez (2019), and Vestman (2019)
- Non-homotheticity: directly driven by housing, consistent with empirical evidence

Return Heterogeneity and Wealth Inequality:

- Theoretical: Benhabib and Bisin (2018), Gabaix et al. (2016), and Xavier (2020)
- Empirical: Bach et al. (2020), Kuhn et al. (2020), and Martinez-Toledano (2020)
- Endogenous portfolio heterogeneity and aggregate risk

Increased wealth inequality:

- Favilukis (2013), Hubmer et al. (2021), Greenwald et al. (2021), Gomez and Gouin-Bonenfant (2020), and Kacperczyk et al. (2019)
- Focus on role of aggregate risk: *unexpected* return realizations

Portfolio Shares

Data Definition

- Risky = Public Equity + Business Equity
 - Public Equity (total value of financal assets invested in stocks):
 - Directly held stocks
 - Stock mutual funds (includes proportion of mutual funds)
 - IRAs/Keoghs invested in stocks
 - Other managed assets with equity interest
 - Thrift-type retirement accounts invested in stocks
 - Business Equity (total value in which household has either active or non-active interest)
- Safe = Financial assets Risky
 - Financial assets
 - Liquid assets; Certificates of deposit, Pooled investment funds
 - Stocks; Bonds; Savings bonds
 - Quasi-liquid assets; whole life insurance; other managed assets; other financial assets
- Housing = Primary residence + Other residential RE + Non-residential RE

Model

Details

Returns are given by:

$$\mathrm{d}\mathbf{r}_t = \mathbf{r}\,\mathrm{d}t + \boldsymbol{\sigma}\,\mathrm{d}\mathbf{W}_t$$

- $\mathbf{r}: (r_B, r_S, r_H)$ expected returns
- $\mathbf{W}_t : (W_{1,t}, W_{2,t}, W_{3,t})$ aggregate shocks
- $\boldsymbol{\sigma}: 3 imes 3$ matrix of sensitivities

Model

Details

Returns are given by:

 $\mathrm{d}\mathbf{r}_t = \mathbf{r}\,\mathrm{d}t + \boldsymbol{\sigma}\,\mathrm{d}\mathbf{W}_t$

- $\mathbf{r}: (r_B, r_S, r_H)$ expected returns
- $\mathbf{W}_t: (W_{1,t}, W_{2,t}, W_{3,t})$ aggregate shocks
- $oldsymbol{\sigma}: 3 imes 3$ matrix of sensitivities
- Entry/Exit decision in both housing and equity markets
 - Housing market frictions:
 - Entry/exit shock at rate λ^h , pay cost $\kappa^h(h)$ to buy/sell a house

Model

Details

Returns are given by:

 $\mathrm{d}\mathbf{r}_t = \mathbf{r}\,\mathrm{d}t + \boldsymbol{\sigma}\,\mathrm{d}\mathbf{W}_t$

- $\mathbf{r}: (r_B, r_S, r_H)$ expected returns
- $\mathbf{W}_t: (W_{1,t}, W_{2,t}, W_{3,t})$ aggregate shocks
- $oldsymbol{\sigma}: 3 imes 3$ matrix of sensitivities
- Entry/Exit decision in both housing and equity markets
 - Housing market frictions:
 - Entry/exit shock at rate λ^h , pay cost $\kappa^h(h)$ to buy/sell a house
 - Equity market frictions:
 - Entry shock at rate λ_0^p , pay cost κ_0^p to enter the market
 - Exit shock at rate λ_1^p , pay cost κ_1^p to stay in the market

Simplified Problem

Equity Participation

- Abstract from housing, income risk and all other frictions
- Two participation states
 - State 0: can only invest in bonds; face entry shock at rate λ_0^p , can pay cost κ_0^p to enter the equity market
 - State 1: can invest in bonds and equity; face staying shock at rate λ_1^p , need to pay cost κ_1^p to stay in the equity market
- The household's HJB becomes:

$$\rho v_0(a) = \max_c u(c) + v'_0(a)(z + r_B a - c) + \\ + \lambda_0^p \left[\max \left\{ v_1(a - \kappa_0^p), v_0(a) \right\} - v_0(a) \right] \\ \rho v_1(a) = \max_{c,\theta} u(c) + v'_1(a)(z + r_B a + (r_S - r_B)\theta a - c) + v''_1(a)\frac{(\theta a \sigma)^2}{2} + \\ + \lambda_1^p \left[\max \left\{ v_1(a - \kappa_1^p), v_0(a) \right\} - v_1(a) \right]$$

Simplified Problem

Housing Participation

- Abstract from equity markets and from both income- and return-risk
- Two participation states
 - Renter: own 0 housing and rent at rate r^h ; face buying shock at rate λ^h , can pay cost $\kappa^h(h)$ to buy a house
 - Owner: face housing transaction costs and selling shock at rate $\lambda^h,$ can pay cost $\kappa^h(h)$ to sell the house
- The household's HJB becomes:

$$\rho v(a,0) = \max_{c,n} u(c,n) + v_a(a,0)(z+r_Ba-r^hn-c) + \lambda^h \left[\max\left\{ \max_{a',h'} v(a',h'), v(a,0) \right\} - v(a,0) \right] \\ \text{s.t.} \quad a'+h' = a - \kappa^h(h') \\ \rho v(a,h) = \max_c u(c,\chi h) + v_a(a,h)(z+r_Ba-c) + v_h(a,h)r_Hh + \lambda^h \left[\max\left\{ v(a,h), v\left(a+h-\kappa^h(h),0\right) \right\} - v(a,h) \right] \right]$$

State variables

Evolution

$$da = (z + r_B a + (r_S - r_B)\theta a - e + \mathbf{1}_{\{a < 0\}}\kappa^b(1 - \theta)a)dt$$
$$+ (1 - \theta)a\sigma_{1,1}dW_1 + \theta a(\sigma_{2,1}dW_1 + \sigma_{2,2}dW_2)$$
$$\frac{dh}{h} = r_H dt + \sum_{i=1}^3 \sigma_{3,i}dW_i$$
$$dz = \eta_z \left(\bar{z} - z\right)dt + \sigma_z d\tilde{W}^z$$
$$a \ge -\phi$$

Hamilton Jacobi Bellman

The HJB equation is:

$$0 = \max\left\{f(u(c,n),v) + \mathcal{A}v\right\}$$

where

$$\begin{split} \mathcal{A} &= \mathbf{1}_{\{p=0\}} \left(\mathcal{L}^0 + \mathcal{P}^0 \right) + \mathbf{1}_{\{p=1\}} \left(\mathcal{L}^1 + \mathcal{P}^1 \right) + \mathbf{1}_{\{h=0\}} \mathcal{H}^0 + \mathbf{1}_{\{h\neq 0\}} \mathcal{H}^+ + \mathcal{Z} + \frac{\partial}{\partial t} \\ \mathcal{L}^0 v &= \mu_a(\mathbf{x}) \frac{\partial}{\partial a} v \\ \mathcal{L}^1 v &= \left(\mu_a(\mathbf{x}) \frac{\partial}{\partial a} + \sigma_a(\mathbf{x})^2 \frac{1}{2} \frac{\partial^2}{\partial a^2} + \rho_z \sigma_a(\mathbf{x}) \sigma_z(z) \frac{\partial}{\partial a \partial z} \right) v \\ \mathcal{P}^0 v &= \lambda_0^p \left[\max \left\{ v(a - \kappa_0^p, h, z, 1 - p), v(a, h, z, p) \right\} - v(a, h, z, p) \right] \\ \mathcal{P}^1 v &= \lambda_1^p \left[\max \left\{ v(a - \kappa_1^p, h, z, p), v(a, h, z, 1 - p) \right\} - v(a, h, z, p) \right] \\ \mathcal{H}^0 v &= \lambda_B^h \max \left\{ \max v(a - h' - \kappa_B^h(h'), h', z, p) - v(a, 0, z, p), 0 \right\} \\ \mathcal{H}^+ v &= \lambda_S^h \max \left\{ v \left(a + h - \kappa_S^h(h), 0, z, p \right) - v(a, h, z, p), 0 \right\} + \mu_h(h) \frac{\partial}{\partial h} v(a, h, z, p) \\ \mathcal{Z} v &= \left(\mu_z(z) \frac{\partial}{\partial z} + \sigma_z(z) \frac{1}{2} \frac{\partial^2}{\partial z^2} \right) v \end{split}$$

KFE 29

Role of Aggregate Risk

A Special Case

- Briefly consider a (very) special case:
 - Two asset, one riskless, one risky
 - Housing only as a consumption asset ($\lambda^h = 0$)
 - No frictions
 - No income risk
 - No death

Households' wealth evolves according to:

$$\frac{\mathrm{d}w}{w} = \underbrace{\left[r_B + (r_S - r_B)\theta(w) - \frac{e(w)}{w}\right]}_{\mu(w)} \mathrm{d}t + \underbrace{\theta(w)\sigma_S}_{\sigma(w)} \mathrm{d}W_t$$

Role of Aggregate Risk

Top Shares

PROPOSITION 3

The share of wealth held by the top x-percent, $S_{x,t}$, evolve according to:

$$dS_{x,t} = \frac{1}{\bar{W}_t} \left\{ \int_{q_t}^{\infty} \mu(w)g_t(w) \, \mathrm{d}w - S_{x,t} \int_{-\infty}^{+\infty} \mu(w)g_t(w) \, \mathrm{d}w + \frac{1}{2}\sigma(q_t)^2 g_t(q_t) \right\} \mathrm{d}t + \frac{1}{\bar{W}_t} \left\{ \int_{q_t}^{\infty} \sigma(w)g_t(w) \, \mathrm{d}w - S_{x,t} \int_{-\infty}^{+\infty} \sigma(w)g_t(w) \, \mathrm{d}w \right\} \mathrm{d}W_t$$

COROLLARY 3.1

If utility is time-separable and homothetic, $\varepsilon_h = \varepsilon_c$, portfolio shares are constant ($\sigma(w) \propto w$) and wealth shares $S_{x,t}$ are independent of aggregate shocks.

Yet Another Fact

Expenditure Shares

Proposition 2
Results

Setup
Calibration

Asset Returns

Returns on bills and capital gains on housing from (Jordà et al. 2019)

- Rental rate fixed at its historical average
- Housing adjusted for leverage and cost of mortgages
- Equity returns from Kartashova (2014) (weighted average of public and private)

	В	S	Н
r	0.019	O.111	0.003
σ	0.022 -0.025 -0.006	0.095 0.03	0.0533

Table 1: Calibration - Returns

Calibration

Preferences

Parameter	VALUE	TARGET
$ \begin{array}{c} \rho \\ \zeta \\ \gamma \\ \chi \\ \omega \\ \varepsilon_h \\ \varepsilon_c \end{array} $	0.06 0.022 2 1.5 0.31 0.75 0.91	wealth-to-income ratio avg. working life portfolio shares avg. homeownership rate avg. housing expenditure share expenditure shares avg. expenditure elasticity

Table 2: Calibration - Preferences

- Directly target housing expenditure shares and elasticity
- Implied value of $\frac{1-\varepsilon_c^{-1}}{1-\varepsilon_b^{-1}}$ is 0.375:
 - RRA \in (1.375, 2) with average 1.47
 - EIS \in (0.61, 0.775) with average 0.7

Table 3: Calibration

Parameter	VALUE	Target	Source
$ \begin{aligned} & Frictions \\ & \phi \\ & \kappa^b \end{aligned} $	75% (avg. earnings) 0.06	median credit limit fraction with $a=0$	Heathcote et al. (2020) -
$egin{aligned} \lambda_0^p,\lambda_1^p \ \kappa_0^p \ \kappa_1^p \end{aligned}$	12, 365 0.0 1.5% (avg. earnings)	- avg. participation -	- - Vissing-Jørgensen (2002)
$\lambda^h \kappa^h_0 \kappa^h_1$	5.2 5.0% (avg. earnings) 5.5%	avg. search time housing shares -	Garriga and Hedlund (2020) - Yao and Zhang (2005)
Earnings Process			
\overline{z}	-0.75	normalization	-
η_z	0.03	autocorrelation	-
σ_z	0.3	variance of earnings changes	-

Level

- Compare average inequality in model and data
 - Model averages are from 10,000 years simulation

Table 4: Wealth Inequality - Average

	Bottom 60%	Next 30%	Top 10%	Top 1%	Gini
SCF (1989-2019)	7.0%	22.7%	70.3%	33.9%	0.827
Model	6.0%	31.1%	62.9%	27.1%	0.759

Level - Decomposition

Solve model with exogenous portfolio shares and shut off each channel

	Parameters			Gini	
Model	Rates of return	Risk	Mean	Std. dev.	
Baseline Earnings	r -	σ -	0.759 0.662	0.049	
No Ret. Heterogeneity, Homothetic Non-Homothetic Preferences Only Risk Only Ret. Heterogeneity All	$r_{j} = 5.3\%$ $r_{j} = 5.3\%$ $r_{j} = 5.3\%$ r r	$\sigma_{i,j} = 0$ $\sigma_{i,j} = 0$ σ $\sigma_{i,j} = 0$ σ	0.684 0.711 0.707 0.746 0.743	0.031 0.040	

Table 5: Wealth Inequality - Decomposition

Risk plays no role for the *level* of inequality

Return heterogeneity alone increases Gini by 4 p.p.

Impulse Responses

Figure 12: IRF to equity shock

Model vs. Data - Levels

Figure 13: Top 10% wealth share - model and data

Dynamics - Changes

Compute distribution of 25-years changes in inequality

- $\mathbb{P}(\Delta_{25}S_{0.1} \ge 13.6\%) = 2.3\%$ for Saez and Zucman (2016) (3.5% conditional)
- $\mathbb{P}(\Delta_{25}S_{0.1} \ge 10.6\%) = 6.1\%$ for Smith et al. (2021) (14.3% conditional)

Figure 14: Distribution of Changes

Price fluctuations

Figure 15: Wealth Inequality vs. Prices

