Labor Markets, Inequality and Hiring Selection Preliminary

Alessandra Pizzo, LED U Paris 8 (France) Benjamín Villena Roldán, IPP U Andrés Bello & MIPP(Chile)

EEA Conference Milan, August 23rd 2022

Pizzo & Villena-Roldán

Labor Mkts, Inequality and Hiring Selection

23/08/22 1/41

- Labor markets flows involve selection at different levels: hiring, poaching, separations.
- Highly productive workers not only earn more, but they also get jobs more often.

- Labor markets flows involve selection at different levels: hiring, poaching, separations.
- Highly productive workers not only earn more, but they also get jobs more often.
- Composition of employment is changed through worker flows.
- Selection has an important effect in shaping wage inequality.

- Labor markets flows involve selection at different levels: hiring, poaching, separations.
- Highly productive workers not only earn more, but they also get jobs more often.
- Composition of employment is changed through worker flows.
- Selection has an important effect in shaping wage inequality.
- In line with this idea, we document a relation between worker flows, unemployment rate and wage inequality.

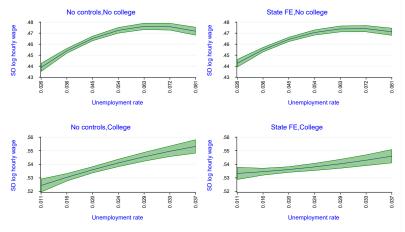
• We develop a framework to match these facts and to understand the impact of hiring selectivity and of the screening process on wage inequality, allowing for on-the-job search.

- We develop a framework to match these facts and to understand the impact of hiring selectivity and of the screening process on wage inequality, allowing for on-the-job search.
- We adopt a non-sequential modelling.
- Estimate model, GMM.
- Use model to understand what shocks generate the relation between unemployment & inequality as seen in data.
- Use the model to prescribe optimal policies.

- Non-sequential search: Burdett (1977), Blanchard and Diamond (1994), Moen (1999).
 - Non-sequential search in directed search models: Wolthoff (2017), Fernandez-Blanco and Preugschat (2018), Cai et al. (2021).
- Composition of employed-unemployed pool across cycle: Eeckout, Lindenlaub (2019), Engbom (2020), Bradley (2020).

Stylised fact I

• Wage dispersion vs Unempl. rate.



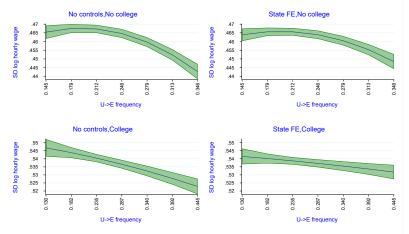
Sample 1976-2019. US real log hourly wages.

Pizzo & Villena-Roldán

Labor Mkts, Inequality and Hiring Selection

Stylised fact II

• Wage dispersion vs Job finding rate.



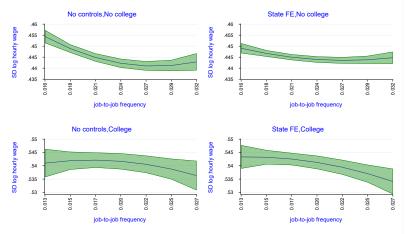
Sample 1976-2019. US real log hourly wages.

Pizzo & Villena-Roldán

Labor Mkts, Inequality and Hiring Selection

Stylised fact III

• Wage dispersion vs Job-to-Job transition rate.



Sample 1994-2019. US real log hourly wages.

Pizzo & Villena-Roldán

Labor Mkts, Inequality and Hiring Selection

- Time discrete, stationary economy.
- Workers are heterogenous in time-invariant productivity $\boldsymbol{\theta}$ and risk-neutral.
- Exogenous distribution of productivities $g(\theta)$.
- Employers are *ex ante* identical and risk-neutral.
- Separation is exogenous with probability η .
- Non-sequential, non directed search, general equilibrium.

Environment

- Each vacancy meets a random number of applicants K each period coming from $g_A(\theta)$.
- Large economy $K \sim \text{Poisson}(q = \mathcal{A}/\mathcal{V})$.
- Our conjecture is that employers want to hire the highest θ among interviewees (later verified *numerically*):

$$p(\theta;q) = \sum_{k=1}^{\infty} \frac{q^{k-1}e^{-q}}{(k-1)!} \underbrace{\mathcal{G}_{A}(\theta)^{k-1}}_{\text{Top of } k-1} = e^{-q(1-\mathcal{G}_{A}(\theta))}$$

• Hence, it is possible to write the probability of being hired as a function of q and the applicant's ranking $x = G_A(\theta)$ such that

$$p(x) = e^{-q(1-x)}$$

ヘロト 人間ト ヘヨト ヘヨト

Environment

- All the unemployed apply to a randomly picked job.
- A fraction λ ∈ [0, 1] of the employed apply to jobs or received job offers (on-the-job search).
- When the job value is only determined by θ , switching jobs is naturally random.

A B A A B A

Environment

- All the unemployed apply to a randomly picked job.
- A fraction λ ∈ [0, 1] of the employed apply to jobs or received job offers (on-the-job search).
- When the job value is only determined by θ , switching jobs is naturally random.
- Applicant pool is a mixture of employed and unemployed: $\mathcal{A} \equiv \mathcal{U} + \lambda(1 - \mathcal{U}).$
- Distribution of applicants is a mixture of distributions of unemployed and employed workers.

$$g_{\mathcal{A}}(heta) = rac{\mathcal{U} g_{\mathcal{U}}(heta) + \lambda(1-\mathcal{U}) g_{\mathcal{E}}(heta)}{\mathcal{U} + \lambda(1-\mathcal{U})}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Plugging the prob of being hired $p(G_A(\theta))$, we get the differential equation

$$g_A(\theta) = \frac{dG_A(\theta)}{d\theta} = \frac{(\eta + \lambda e^{-q(1-G_A(\theta))})g(\theta)}{\mathcal{A}(\eta + e^{-q(1-G_A(\theta))})}$$

< □ > < □ > < □ > < □ > < □ > < □ >

• Plugging the prob of being hired $p(G_A(\theta))$, we get the differential equation

$$g_A(\theta) = \frac{dG_A(\theta)}{d\theta} = \frac{(\eta + \lambda e^{-q(1-G_A(\theta))})g(\theta)}{\mathcal{A}(\eta + e^{-q(1-G_A(\theta))})}$$

- Separable differential equation with closed-form solution.
- Use border conditions such that G_A(0) = 0 and G_A(∞)=1.
 We get A to make density to integrate to 1.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Mapping between a quantile of the applicants $x = G_A(\theta)$ and a quantile of the population distribution $G(\theta)$:

$$G^{-1}(M(x;q)) = G_A^{-1}(x) = \theta$$

• Key result because we can bypass the unknown distribution of applicants G_A using the primitive G.

.

• Lifetime utility of employed:

$$W(heta) = w(heta) + eta [\underbrace{(1-\lambda)\eta}_{\eta^*} U + (1-\underbrace{(1-\lambda)\eta}_{\eta^*})W(heta)]$$

• Lifetime utility of unemployed:

$$U(\theta) = \rho\theta + \beta[\underbrace{p(\theta)}_{\mathsf{JF prob}} W(\theta) + (1 - p(\theta))U(\theta)]$$

• $J(\theta)$ is the firm's value obtained from a worker of type θ :

$$J(\theta) = \theta - w(\theta) + \beta [(1 - \lambda)\eta V + \lambda p(\theta) V + (1 - \lambda p(\theta) - (1 - \lambda)\eta) J(\theta)]$$

A B b A B b

• The firm has all the bargaining power:

$$w(heta) = (1 - eta)U =
ho heta$$

• The value of posting a vacancy is

$$V = -\kappa + eta \mathbb{E}_{K}[max\{H(k), V\}]$$
 with
 $H(k) = -\xi k + \int J(\theta) k G_{A}(\theta)^{k-1} dG_{A}(\theta)$

• The firm has all the bargaining power:

$$w(heta) = (1 - eta)U =
ho heta$$

• The value of posting a vacancy is

$$V = -\kappa + \beta \mathbb{E}_{K}[max\{H(k), V\}]$$
 with
 $H(k) = -\xi k + \int J(\theta) k G_{A}(\theta)^{k-1} dG_{A}(\theta)$

• Value of posting a vacancy:

$$-\kappa + \beta \left\{ \sum_{k=1}^{\infty} \frac{e^{-q}(q)^k}{k!} \left[-\xi k + \int_0^{\infty} J(v) k (G_A(v))^{k-1} g_A(v) dv \right] + e^{-q} V \right\} = V$$

where $\sum_{k=1}^{\infty} \frac{e^{-q}(q)^k}{k!}$ is the probability of receiving at least one application and e^{-q} is the probability of receiving zero applications.

- Entry condition: $V = \chi > 0$
- Finally, we get

$$\kappa + \beta \xi q + \chi (1 - \beta e^{-q}) = \beta \int_0^1 J(G^{-1}(M(x;q))) q e^{-q(1-x)} dx$$

A D N A B N A B N A B N

Taking the model to the data

- In labor surveys such as monthly CPS since 1994, we directly observe
 - Wage distribution
 - Unemployment rate ${\cal U}$
 - Job finding frequency (UE) \overline{p}_U
 - Separation frequency (EU) η^*
 - Job-to-job frequency (JJ) $\lambda \overline{p}_E$
- We assume the exogenous distribution $G(\theta)$ is log-normal.
- Estimation via GMM using moments given by each percentile of the wage distribution x, unempl rate, j-t-j and separations.

4 1 1 4 1 1 1

Estimation plan

- We map the distribution of employed workers G_E to the population and applicant distributions, G and G_A .
- Quantile mapping recover the population type distribution G if we observed the application distribution G_A .

$$\begin{split} \min_{\eta,\lambda,q,\mu,\sigma,\rho} & Q = \left\{ [\mathcal{U}(\lambda,q,\eta) - \tilde{\mathcal{U}}]^2 + \varphi_1 [\lambda \overline{p}_E(\lambda,q,\eta) - \tilde{\mathcal{J}}\mathcal{J}]^2 \\ & + \varphi_2 \left[\int_0^1 \left(\rho G^{-1}(\mathcal{M}(x;q,\eta,\lambda)) - \hat{\mathbf{w}}(x) \right)^2 dx \right] \\ & + \varphi_3 \left[\eta (1-\lambda) - \tilde{E}\mathcal{U} \right]^2 \right\} \end{split}$$

where
$$\hat{w}(x) = \widehat{G}_{w}^{-1}\left(\frac{M(x;\lambda,q,\eta) - \mathcal{A}(\lambda,q,\eta)x}{(1-\lambda)(1-\mathcal{U}(\lambda,q,\eta))}\right).$$

Details of wage-productivity link

・ロト ・ 同ト ・ ヨト ・ ヨト

Table: Parameters' estimation			
	Baseline		
Parameter	College	Non College	
η	0.007	0.017	
λ	0.045	0.057	
q	2.465	2.867	
μ	3.976	3.447	
σ	0.533	0.440	
ho	0.330	0.397	
Min fun	0.418	0.893	

↓ ■ ● ■ 少へで
23/08/22 18/41

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Estimation results: data vs model

Table: Data vs. Model generated moments

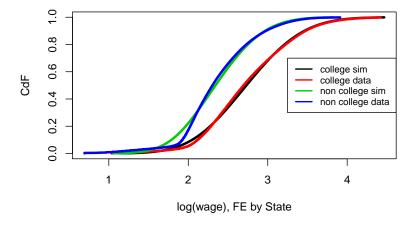
	Baseline	
Statistic	College	Non college
Unempl. rate data	0.027	0.065
Unempl. rate model	0.026	0.064
Job-to-job trans. data	0.019	0.023
Job-to-job trans. model	0.019	0.024
Separation rates data	0.006	0.014
Separation rates model	0.007	0.016
Median wage in \$ data	17.267	12.251
Median wage in \$ model	15.361	10.403

Remember that $JJ = \lambda \bar{p}_E$ and $EU = \eta(1 - \lambda)$.

Pizzo & Villena-Roldán

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Estimation results: CdF log wages



Labor Mkts, Inequality and Hiring Selection

23/08/22 20/41

< 3 >

• Combining with some extra information on β, κ and ξ , we find χ with the free-entry condition:

$$\kappa + \beta \xi \hat{q} + \chi (1 - \beta \hat{q}) = \beta \hat{q} \int_0^1 J \left(G^{-1} \left(M(x; \hat{\eta}, \hat{q}, \hat{\lambda}); \hat{\rho}, \widehat{\Gamma}, \chi \right) \right) e^{-\hat{q}(1-x)} dx$$

< ⊒ >

4 E b

Closing the model

Vacancy posting and screening costs

- We consider online job posting fees as flow cost: between 200\$ and 375\$ per ad per month \rightarrow we consider $\kappa = 300$ \$ per month.
- We use the National Employer Survey 1997 (NES97) to compute the average monetary cost that year for recruiting activities (ξ).
- We adapt the idea of Landais et al. (2017) and compute adaption factor ϕ : $\xi_{1997} = \phi \times \text{wage recruiters}_{1997}$

Closing the model

Vacancy posting and screening costs

- We consider online job posting fees as flow cost: between 200\$ and 375\$ per ad per month \rightarrow we consider $\kappa = 300$ \$ per month.
- We use the National Employer Survey 1997 (NES97) to compute the average monetary cost that year for recruiting activities (ξ).
- We adapt the idea of Landais et al. (2017) and compute adaption factor ϕ : $\xi_{1997} = \phi \times \text{wage recruiters}_{1997}$
- Fixed costs χ are of important magnitude (around 200,000 USD and 98,000 USD for college and non college).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

What can we learn?

Still work in progress

- Do labor market frictions amplify or reduce ex ante inequality?
 - It can be shown that

$$\underbrace{\mathcal{G}_{E}^{-1}(\overline{z}) - \mathcal{G}_{E}^{-1}(\underline{z})}_{\approx \text{wage gap}} = \frac{g(G^{-1}(z))}{g(G_{E}^{-1}(z))} \frac{1 - \mathcal{U}}{\mathcal{E}(x(z,q),q)} \underbrace{\left(\mathcal{G}^{-1}(\overline{z}) - \mathcal{G}^{-1}(\underline{z})\right)}_{\text{productivity gap}}$$

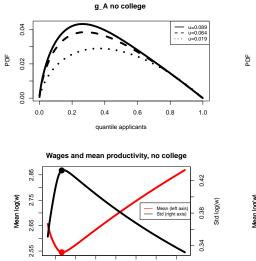
where \underline{z} and \overline{z} are two quantiles, x(z,q) is the quantile corresponding to the mean value z and $\mathcal{E}(x(z,q)) = \frac{p(x(z,q),q)}{\eta + p(x(z,q),q)}$.

• The quantile gap $(\underline{z}, \overline{z})$ can be amplified or reduced by the economy, and it depends on the unemployment rate level.

- We run counterfactuals and get impacts on wage inequality of:
 - Changes in the mean of productivity distribution.
 - 2 Changes in both mean and spread of productivity distribution.
 - Changes in screening costs ξ .

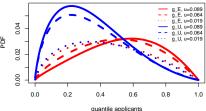
Counterfactual I

Effects of an increase in average productivity (constant spread)

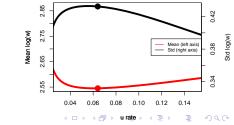


Mean productivity

g_E, g_U no college



Wages and unemployment, no college



Pizzo & Villena-Roldán

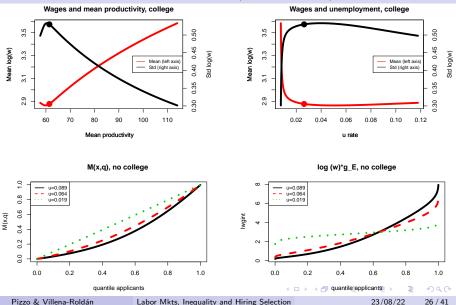
34 36 38

Labor Mkts, Inequality and Hiring Selection

23/08/22 25/41

Counterfactual I

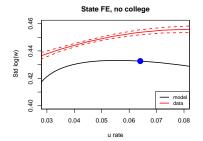
Effects of an increase in average productivity (constant spread)

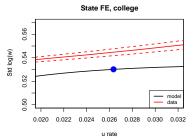


Counterfactual I

Effects of an increase in average productivity (constant spread)

• Changes in mean, constant spread





• Standard approach: the Social Planner (SP) is subject to the same frictions as the market economy.

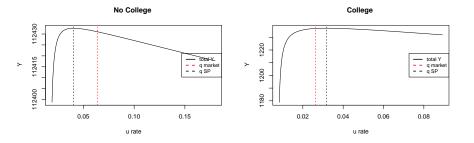
$$\max_{q} Y(q) = \beta(1 - \mathcal{U}) \int_{0}^{\infty} \theta g_{E}(\theta) d\theta + \beta \mathcal{U} \int_{0}^{\infty} \rho \theta g_{U}(\theta) d\theta + -\underbrace{\left[(1 - e^{-q})\beta \xi \mathcal{A}(q) + \chi + \kappa \mathcal{V}\right]}_{\text{Premising certs}}$$

Recruiting costs

< ∃ ►

4 E b

Efficiency analysis

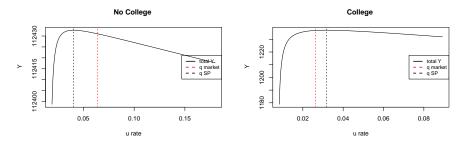


Labor Mkts, Inequality and Hiring Selection

 ▲ ■
 ■
 • ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

イロト イヨト イヨト イヨト

Efficiency analysis



- Is there a tax/subsidy $\tau(x; q)$ that restores efficiency?
- Consider a typical tax schedule in public finance: $T(y) = y - \tau_0 y^{1-\tau_1}$ and apply it to the profit function of the firm.

23/08/22 29/41

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• The net value of a filled job becomes: $(1 - \tilde{t}(\theta))J(\theta)$, where $\tilde{t}(\theta)$ is the average tax rate paid for productivity level θ .

•
$$\tilde{t}(heta) = 1 - au_0 heta^{- au_1}$$

• By applying our usual change of variable: $\overline{t}(x) = 1 - \tau_0 (G^{-1}(M(x;q)))^{-\tau_1}$

A B A A B A

Efficiency analysis

• The modified free entry condition:

$$\kappa + \beta \xi q(1 - e^{-q}) + \chi(1 - \beta e^{-q}) = \beta \int_0^1 J(G^{-1}(M(x;q))(1 - \overline{t}(x))e^{-q(1-x)}dx)$$

• Additional condition: Balanced Government budget.

$$(1-\mathcal{U}(q))\int_0^\infty ilde{t}(heta) heta dG_{E}(heta)=0$$

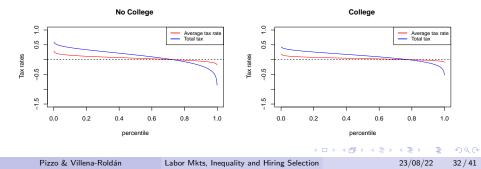
 Check ex-post that Coincidence Ranking condition is respected: (J(G⁻¹(M(x; q))(1 - t̄(x)))' > 0

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Efficiency analysis

- Optimal values for non college: $\tau_0 = 0.396$ and $\tau_1 = -0.726$, implying a regressive tax and transfer scheme.
- Optimal values for college: $\tau_0 = 0.523$ and $\tau_1 = -0.451$, implying a regressive tax and transfer scheme.

Figure: Tax and transfer schedule



Interpretation of normative issues

- High type workers/matches are the prime reason why employers post vacancies.
- High θ workers/matches generate a positive externality to low types: they spur vacancy posting and decrease selectivity.
- Hence, they are subsidized!

- Labor market agents make screening decisions every day, with impact on inequality.
- We develop a model to study those issues on top of well-known search and matching models.
- Some more work to do:
 - Understand better the mechanisms, analytical measure of relation between *ex ante* and *ex post* inequality.
 - Dive deeper into the differences college/non-college.

Thank you!

Pizzo & Villena-Roldán

Labor Mkts, Inequality and Hiring Selection

 ▲ ■ ▶ ■
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒

 ⇒
 <t

< □ > < □ > < □ > < □ > < □ >

Appendix

Pizzo & Villena-Roldán

Labor Mkts, Inequality and Hiring Selection

 ▲ ■
 ■
 • ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</t

<ロト <問ト < 目ト < 目ト

Linking to the wage distribution

Given the quantile mapping

$$\theta = G_A^{-1}(x) = G^{-1}(M(x; q, \eta, \lambda); \Gamma)$$
, we get

$$G_E(\theta) = \frac{G(\theta) - \mathcal{A}G_A(\theta)}{(1 - \lambda)(1 - \mathcal{U})}$$

$$G_E(G^{-1}(M(x; q, \eta, \lambda))) = \frac{M(x; q, \eta, \lambda) - \mathcal{A}x}{(1 - \lambda)(1 - \mathcal{U})}$$

- G_E is not observed, but we have the wage distribution \widehat{G}_w (CPS-ORG data).
- Moreover, wage and productivity rankings are the same (CRE)

$$G_E\left(G^{-1}(M(x;q,\eta,\lambda))
ight)=\widehat{G}_w(\widetilde{w}(x))=rac{M(x;q,\eta,\lambda)-\mathcal{A}x}{(1-\lambda)(1-\mathcal{U})}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- We need a wage-setting model to link productivity and wages. In our case, it is simply $\tilde{w} = \rho \theta$.
- Using the quantile mapping, we get

$$\widetilde{w}(x) = \rho G^{-1}(M(x; q, \eta, \lambda)) = \widehat{G}_{w}^{-1}\left(\frac{M(x; q, \eta, \lambda) - \mathcal{A}x}{(1 - \lambda)(1 - \mathcal{U})}\right)$$

Back

- 3 →

Key result: Quantile Mapping

• It can be shown that

$$g_U(heta) = rac{g(heta) rac{\eta}{(\eta + p(heta))}}{\mathcal{U}}$$

• Therefore, the density of the employed is

ć

$$\mathsf{g}_{\mathsf{E}}(heta) = rac{g(heta)rac{m{p}(heta)}{(\eta+m{p}(heta))}}{(1-\mathcal{U})}$$

• Hence, the distribution of applicants received by firms is

$$g_A(heta) = rac{(\eta + \lambda p(heta))g(heta)}{\mathcal{A}(\eta + p(heta))}$$

with $\mathcal{A} \equiv \mathcal{U} + \lambda(1 - \mathcal{U}).$

• Mapping between a quantile of the applicants $x = G_A(\theta)$ and a quantile of the population distribution $G(\theta)$:

$$G^{-1}(M(x;q)) = G_A^{-1}(x) = \theta$$

with $M(x,q) \equiv \frac{m(x,q) - m(0,q)}{m(1,q) - m(0,q)}$
and $m(x,q) \equiv x + \frac{1-\lambda}{\lambda q} \left(\log \left(\eta + \lambda e^{-q(1-x)} \right) \right)$

• Key result because we can bypass the unknown distribution of applicants *G*_A using the primitive *G*.

Unemployment rate

- Key relation between applicants and unemployed is $\mathcal{A} = \mathcal{U} + \lambda(1 \mathcal{U})$, the unemployment rate is
- Hence $\mathcal{A} = (m(1,q) m(0,q))^{-1}$ and $\mathcal{U} = \frac{\mathcal{A} \lambda}{1 \lambda}$
- The unemployment rate converges (L'Hôpital rule) to a well-known formula when $\lambda \to 0$

$$\lim_{\lambda \to 0} \mathcal{U} = \frac{\eta}{\eta + \frac{1 - e^{-q}}{q}}$$

where $\frac{1-e^{-q}}{q}$ is the average prob of being hired when there is no on-the-job search.