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Abstract

I derive a robust condition for the optimality of capital income tax rates that

holds across a battery of benchmark macroeconomic models. Applying my theo-

retical results to US data and disciplining the tax elasticity of wealth with recent

quasi-experimental evidence, I find high optimal Rawlsian tax rates of about 90%,

because capital tax increases raise the gross return on capital, mitigating the excess

burden. At the same time, capital tax hikes depress wages, resulting in lower op-

timal tax rates from the perspective of households with substantial labor income,

the status quo being optimal for households around the 70th income percentile.
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1 Introduction

The current high degree of economic inequality has spurred the public debate on what
the appropriate level of redistribution through the tax system should be. Due to its
high concentration at the top, the optimal taxation of capital receives particular atten-
tion in this context. Yet, despite a large existing economics literature on this topic, it
would be a difficult task to summarize its conclusions to policy makers because the
policy prescriptions vary greatly across studies and generally depend on the underly-
ing modeling framework within which they are derived.

In this paper, I derive policy prescriptions that are robust. Within a very rich dy-
namic general equilibrium environment that nests a battery of important benchmark
models as special cases (Judd, 1985; Chamley, 1986; Aiyagari, 1994; Piketty and Saez,
2013; Saez and Stantcheva, 2018), I first show theoretically that the welfare effect of a
change in the capital tax rate can always be parsimoniously decomposed as the dif-
ference between two components: (i) a ‘normative’ component, to which I refer as the
equity effect; it maps the choice of social welfare function to the redistributional gain
from capital tax increases; and (ii) a component commonly referred to as the marginal
excess burden, which is independent of the choice of social welfare function and mea-
sures the revenue loss through agents’ responses in investment and labor supply. I
transparently illustrate the contribution of general equilibrium effects to each of the
two welfare components. Given the choice of social welfare function, the capital tax
rate is then optimal when the difference between these two components is zero. Con-
sequently, I obtain an intuitive and robust condition for the optimality of capital tax
rates.

I apply my theoretical results to US income and wealth data and I discipline the tax-
elasticity of households’ wealth with most recent quasi-experimental evidence. I find
that the endogenous response in the gross return to capital substantially reduces the
marginal excess burden, resulting in a high optimal Rawlsian tax rate – which max-
imizes the welfare of households who live exclusively from government transfers –
of about 90%. However, due to the wage depressing effect, middle class households,
whose main income source are labor earnings, prefer much lower capital tax rates.
The status quo tax rate, calibrated to 41.5%, turns out to be optimal for households in
about the 70th percentile of the US income distribution.

To obtain these conclusions, I combine the approaches of two – so far rather discon-
nected – literatures on optimal capital taxation. The first literature studies capital tax-
ation in parameterized dynamic general equilibrium environments. The aforemen-
tioned large variation in policy prescriptions across frameworks can be most easily
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manifested by a short summary of some of its main contributions. The seminal pa-
pers by Judd (1985) and Chamley (1986) prescribe zero optimal capital tax rates in the
long run, while Atkeson, Chari, and Kehoe (1999) find that this zero capital tax result
holds not only assymptotically but more generally, leading them to conclude that tax-
ing capital is “a bad idea”.1 Straub and Werning (2020), on the other hand, show that
in the very same environments, under certain conditions on parameters, the optimal
capital tax rate may be positive forever. In environments with incomplete markets,
Aiyagari (1995) shows theoretically that the optimal long-run capital tax rate is strictly
positive, while Conesa, Kitao, and Krueger (2009) find that it is quantitatively large,
leading them to conclude that taxing capital is in fact “not a bad idea after all”. Simi-
larly, Domeij and Heathcote (2004), taking into account the welfare effects emanating
from transitional dynamics, find large welfare losses from the elimination of capital
taxes and an optimal tax rate of about 40%, close to the status quo in the US. Most
recently, allowing policy instruments to vary with time, Dyrda and Pedroni (2022) as
well as Açıkgöz, Hagedorn, Holter, and Wang (2022) find optimal capital tax rates that
are very high in the beginning, at their exogenously set upper bound of 100%, before
gradually declining to about 20-25% in the very long run.

Partially motivated by the large variation in results across studies, a different, second,
literature emerged, which aims to derive conditions for optimal capital tax rates that
are invariant to the assumed structure of the economy (Piketty and Saez, 2012, 2013;
Golosov, Tsyvinski, and Werquin, 2014; Saez and Stantcheva, 2018). Following the
‘sufficient statistics’ approach (Saez, 2001; Chetty, 2009), the welfare effects derived
in this literature are not expressed in terms of deep (unmeasured) model primitives
but in terms of elasticities that can be directly estimated in the data and thus do not
rely on precise modelling assumptions. The optimal tax formulas obtained in these
studies highlight the equity-efficiency trade-off around which much of the public de-
bate evolves. Specifically, these studies provide a transparent mapping from social
welfare weights to the corresponding ‘optimal’ tax rates. However, in contrast to the
papers in the parametric macroeconomics literature, they assume that factor prices are
exogenously given and consequently invariant to tax changes.

My framework keeps the dynamic general equilibrium structure of the macroeco-
nomics literature. Specifically, capital and labor enter complementary in production
and factor markets are required to clear, implying that wages and interest rates re-
spond endogenously to tax changes. At the same time, in line with the goal of suffi-

1 Jones, Manuelli, and Rossi (1997) and Chari, Nicolini, and Teles (2020) provide further generaliza-
tions and refinements of the zero capital tax result in complete markets environments. Similarly,
Robert Lucas finds that eliminating capital income taxes altogether would lead to “the largest gen-
uinely free lunch [he has] seen in 25 years in business” (Lucas, 1990, p.314).
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cient statistics literature, I derive robust tax formulas that are not expressed in terms
of model dependent primitives but in terms of elasticities, factor shares, and some
distributional statistics that can be directly estimated in the data. The robustness of
my theoretical and quantitative results is partially achieved by requiring the policy
instruments to be time-invariant. Specifically, I assume an exogenous labor tax sched-
ule, which can take an (almost) arbitrary functional form. The capital tax is linear and
allowed to be changed once and for all. The revenue raised through these taxes is par-
tially used to finance an exogenously given spending requirement. Every revenue in
excess of this requirement is redistributed lump-sum and equally to all agents.

The exogenous factor price case is nested in my framework as the special case, where
capital and labor are perfect substitutes (Piketty and Saez, 2013; Saez and Stantcheva,
2018). In this case the demand for capital is perfectly elastic such that the whole inci-
dence of capital tax increases is borne by the suppliers of capital, that is by savers and
investors. As mentioned above, the welfare effect of a marginal increase in the capital
tax rate is the difference of two components. In the case with exogenous factor prices,
the equity effect simply aggregates the mechanical change in net capital- and trans-
fer income of each agent, weighted by the chosen collection of social welfare weights.
The marginal excess burden is mostly or – absent income effects on labor supply – fully
given by the loss in revenue due to a reduction in agents’ investment. The optimal tax
formula hence balances a classical equity-efficiency trade-off.

By contrast, when capital and labor are complements, a lower capital stock increases
the marginal product of capital but reduces the marginal product of labor. Conse-
quently, firms’ factor demand is no longer perfectly elastic. Specifically, an increase in
the capital income tax rate that reduces the supply of capital ceteris paribus causes an
excess demand for capital and an excess supply of labor. To restore market clearing,
in general equilibrium the (gross) return on capital increases, while wages fall. These
price responses, in turn, redistribute across agents with different income compositions,
contributing to the equity effect. Specifically, they reduce the income of a large middle
class, whose main income source are wages, a ‘trickle down’ mechanism that reduces
optimal capital tax rates if the planner assigns high weight on wage workers.

Importantly, the endogenous price responses also affect the marginal excess burden in
three ways: First, and most importantly, increasing (gross) interest rates mitigate the
fall in the net return to capital and thus moderate the investment decline. This force re-
duces the excess burden. Second, falling wages affect labor supply; if the substitution
effect dominates the income effect, they reduce labor supply, leading to lower labor
income tax revenue and thus to an increase in the excess burden. Finally, the factor
price changes themselves have a direct impact on revenue. Specifically, when capital
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is taxed at a higher rate than labor, the simultaneous rise in interest rate and fall in
wages increases revenue and thus reduces the marginal excess burden.

The statistics entering these effects can be either directly taken from the data or can
be expressed in terms of other statistics for which there exists readily available evi-
dence. An important statistic of the latter category is the net-of-tax elasticity of the
equilibrium capital stock. This statistic is a “policy elasticity” in the sense of Hen-
dren (2016). It summarizes the overall reaction of the equilibrium capital stock to tax
changes, taking all responses to simultaneous changes in transfers and factor prices
into account. I discipline this unmeasured policy elasticity by deriving a one-to-one
mapping to recent quasi-experimental estimates of net-of-tax-elasticities of individual
wealth, which capture agents’ savings responses to tax changes holding transfers and
prices fixed (Jakobsen, Jakobsen, Kleven, and Zucman, 2020).

I then move on to a quantitative application of my theoretical results. Using US income
and wealth data from the Survey of Consumer Finances 2019, I apply my condition to
a sequence of social welfare functions, each of which concentrates the whole welfare
weight at one particular percentile of the total income distribution. I compare the
policy prescriptions of my optimality condition with the standard condition of the
nested exogenous price framework.

I find strong quantitative and qualitative discrepancies between the two cases. Assum-
ing that factor prices are exogenous, one finds that the status quo capital taxes in the
US are close to optimal, perhaps slightly too low, for a large part of the US population,
about the bottom 60 percent of the income distribution. Absent responses in wages,
the welfare effects of capital tax changes are quite homogeneous within this part of the
population since even those around the 60th percentile earn very little capital income,
which is concentrated among the very high earners.

By contrast, taking into account the endogeneity of factor prices, one finds that the bot-
tom 60 percent of the US income distribution would experience high gains from cap-
ital tax increases because endogenous factor price responses significantly reduce the
marginal excess burden, from 88 to only 13 cents per dollar of revenue raised mechan-
ically. Most of this reduction is due to the fact that in general equilibrium the above
mentioned rise in the gross return to capital significantly mitigates the investment de-
cline. Specifically, the (average discounted) net-of-tax-elasticity of the aggregate cap-
ital stock declines from 1.24 in partial- to 0.39 in general equilibrium. Consequently,
I find a high optimal Rawlsian tax rate – which maximizes the welfare of households
who finance their consumption exclusively through government transfers – of above
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90%.2 Furthermore, rather than being homogeneous, due to their depressing effect
on wages, households’ welfare gains from capital tax increases are strongly declining
in their labor income. For households around the 70th income percentile, the nega-
tive effect of the decline in wages just offsets the positive effect of higher government
transfers, rendering the satus quo tax rate about optimal for these households.

I contribute to both of the aforementioned literatures. With regards to the ‘sufficient
statistics’ literature, the just described discrepancies reveal that truly robust optimality
conditions for capital tax rates require to account for the endogeneity of factor prices.
The second self-proclaimed goal of this literature is to “better connect the theory of
optimal capital taxation to the policy debate” (Stantcheva, 2020, p.9.21f). However,
by treating factor prices as exogenous, this literature assumes away a mechanism that
is emphasized in almost every public policy debate on capital taxation. In particu-
lar, proponents of ‘trickle down’ theory advocate the idea that low taxes on the rich
may actually benefit the poor. In line with the mechanism described above, they ar-
gue that lowering taxes on capital encourages investment, which in turn increases the
demand for labor. The resulting increase in wages would benefit poorer households,
who tend to receive predominantly labor income. Given that the practical relevance
of this mechanism is subject to extensive political discussion, a theory that aims to
connect well to the public debate should capture it.

With regards to the macroeconomics literature, I contribute by deriving policy pre-
scriptions that are transparent and robust across a variety of benchmark models. Fur-
thermore, rather than imposing a particular single welfare objective – papers in the
macroeconomics literature typically employ the utilitarian objective – I consider a gen-
eral set of social welfare functions and thus provide a transparent mapping from re-
distributional preferences to ‘optimal’ capital tax rates. This provides a more complete
picture and more comprehensively informs the policy debate. Finally, my theoretical
results inform the calibration of parameterized models by identifying statistics that
are relevant for the welfare impact of capital tax changes but to date largely neglected
in the parametric macroeconomics literature on optimal capital taxation. For example,
virtually all of the papers studying optimal capital taxation in dynamic general equi-

2 Given that the elasticities, which are estimated locally around the current tax system, may change
with such large tax increases, I complement my sufficient statistics analysis with a global solution
method using a nested parametric model that is calibrated to (locally) replicate all the relevant statis-
tics. I then compute optimal tax rates using global solution methods, taking into account transitional
dynamics (as in Domeij and Heathcote, 2004). For most social welfare functions, which prescribe
optimal tax rates in the range of 10-85%, the sufficient statistics approach approximates the so ob-
tained tax rates remarkably well. However, outside this range there are slight discrepancies. For
example, the optimal Rawlsian tax rate according to the sufficient statistics approach is 98%, while
the (more accurate) global solution method prescribes a Rawlsian tax rate of 91%. See Section 5.3
and Appendix E for details.
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librium models (implicitly) assume a capital-labor substitution elasticity equal to one.3

I show that the optimal capital tax rate crucially depends on precisely this elasticity,
empirical estimates of which span a broad range with most of it significantly lower
than one.4

Related Literature

My paper relates to various other strands of the public finance and macroeconomics
literature. The importance of endogenous factor price responses is emphasized in a
growing recent literature that studies optimal income taxation in frameworks where
output is produced with complementary production factors (Rothschild and Scheuer,
2013; Scheuer, 2014; Ales, Kurnaz, and Sleet, 2015; Scheuer and Werning, 2017; Sachs,
Tsyvinski, and Werquin, 2020). While in my framework these factors are capital and
labor, the latter of which is perfectly substitutable across agents, these models abstract
from capital and instead consider different types of labor input that are imperfectly
substitutable. All of these papers study optimal income taxation in static Mirrleesian
environments, abstracting from the dynamic accumulation process of production fac-
tors, in particular of capital.

The New Dynamic Public Finance (NDPF) literature instead considers dynamic Mir-
rleesian settings with savings (Golosov, Kocherlakota, and Tsyvinski, 2003; Farhi and
Werning, 2013). Slavik and Yazici (2014) take explicit account of the complementarity
between different types of capital and labor and the implications of general equilib-
rium spillover effects on wages for optimal capital taxes. In related settings, Thümmel
(2020) and Guerreiro, Rebelo, and Teles (2022) study the optimal taxation of robots.
Contrary to the present paper, in their numerical applications these papers specify
and calibrate concrete parametric functions for model primitives. They do not derive
formulas in terms of estimable sufficient statistics as my paper does.

Finally, a paper very similar in spirit to mine is the one by Badel and Huggett (2017),
who derive a robust formula for revenue maximizing income tax rates. As the present
paper, they find important interaction effects of one tax rate with other tax bases re-
quiring to adjust standard formulas that neglect these interactions.

3 An exception is Kina, Slavik, and Yazici (2020), who study optimal capital taxation in a framework
with capital-skill complementarity.

4 See Antras (2004), Chirinko (2008) and, more recently, Gechert, Havranek, Irsova, and Kolcunova
(2022).
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2 The Framework

The theoretical results I derive, hold for a very general framework. Both, to save space
and for pedagogical reasons, I present a special case of this model in the main text.
Specifically, the model I present here is simplified as much as possible such that it still
captures all the relevant economic effects of capital tax changes. In particular, the local
welfare effects as well as the optimality condition for capital tax rates will be identical
to the one in the more general framework for a large set of social welfare functions,
including the most often used utilitarian objective.

The model in the main text nests the economic environments studied in the seminal
papers of Judd (1985) and Chamley (1986) as special cases. In addition to their models,
here agents have heterogeneous labor productivity. The more general model, in which
both working- and investment ability are subject to uninsurable idiosyncratic risk, can
be found in Appendix B.

2.1 Households

There is a continuum of infinitely lived agents (dynasties) of measure one. In the
simplified model, agents differ only in their initial wealth endowment k0 and in their
working ability η ∈ [η, η̄]. Furthermore, in contrast to the more general framework
in Appendix B, here ability is assumed to be perfectly persistent. I denote the joint
distribution over initial individual states by Γ(k0, η).

Given their initial endowment k0, agents solve

max
ct≥0,kt+1≥0,lt≥0

∞

∑
t=0

βtu(ct, lt),

subject to the sequence of budget constraints for t ∈ {0, 1, 2, ...},

kt+1 + ct =kt + (1− τk,t) rtkt︸︷︷︸
yk

t (k0,η)

+ wtηlt︸ ︷︷ ︸
yl

t(k0,η)

−τl(wtηlt) + Tt.

Existing capital is denoted by kt. The income from capital yk
t (k0, η) is taxed at a lin-

ear rate τk,t, which has a time index because I allow the planner to perform a one-off
change in this rate. The agents’ gross labor income yl

t(k0, η) is the product of the wage
rate wt, her working ability η and her labor supply lt. The function τl(.) is assumed to
be twice continuously differentiable and maps gross labor income into labor tax pay-
ments. Finally, Tt denotes a lump-sum transfer from the government, which has a time
index since I require it to adjust in response to capital tax changes in a way to ensure
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government budget balance.

The utility function satisfies the following standard assumption.

Assumption 1. The Bernoulli utility function u(., .) is twice continuously differentiable in
both arguments. For all (c, l) ≥ 0 it satisfies the conditions uc(c, l) > 0, ucc(c, l) < 0,
ul(c, l) ≤ 0 and ull(c, l) < 0.

2.2 Firms

In the simplified model, there is a representative price-taking firm, which maximizes
profits by choosing capital Kt and labor Lt

max
Kt≥0,Lt≥0

{F(Kt, Lt)− (rt + δ)Kt − wtLt},

where δ ∈ (0, 1) is the depreciation rate of capital and the technology F(.) satisfies the
following assumption.

Assumption 2. Denote by k and l effective capital and effective labor, respectively. The
production function F(k, l) is twice continuously differentiable and has constant returns to
scale. It satisfies for all (k, l) ≥ 0 the conditions Fk(k, l) > 0, Fl(k, l) > 0, Fkk(k, l) ≤ 0,
Fll(k, l) ≤ 0 and Fkl(k, l) ≥ 0.

Equilibrium factor prices are characterized by firms’ optimal demand for capital and
labor, in particular

Fk(Kt, Lt)− δ = rt and Fl(Kt, Lt) = wt.

The sufficient statistics literature on optimal capital taxation assumes that factor prices
are invariant to policy changes. Within a general equilibrium framework, where out-
put is produced with capital and labor, this can only be rationalized if the two pro-
duction factors are assumed to be perfect substitutes. My model captures this special
case. Specifically, when Fkl(k, l) = 0 for all (k, l) my model collapses to the frame-
works of Piketty and Saez (2013) and Saez and Stantcheva (2018), allowing for a direct
comparison.

2.3 Government

The endogenous policy instruments are a linear capital income tax rate τk and a lump-
sum transfer T. In addition, there is an exogeneous, twice continuously differentiable
labor income tax schedule τl(.) that maps gross labor income into labor tax payments.
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Finally, some of the generated tax revenue needs to be allocated to finance a constant
stream of government expenditure G > 0.

As Saez and Stantcheva (2018), I consider different pre-announcement periods. Specif-
ically, at time t = 0 the government announces a change in the capital income tax rate
τk, which comes into effect after the announcement period ta ≥ 0 passed. Formally,
the capital income tax rate in period t is given by

τk,t =

τb
k for t < ta

τr
k for t ≥ ta,

where τb
k denotes the pre-existing tax rate in place before the reform, while τr

k denotes
the tax rate after the reform comes into effect. As is standard in the literature, the
government is assumed to be able to commit not to change the tax rate again. Agents
have perfect foresight from time t = 0 on. During the transition to a new steady state,
the transfer Tt is required to adjust in order to ensure period-by-period government
budget clearing.

Of course, the ‘optimal’ allocation which can be achieved depends on the policy instru-
ments which the government has at its’ disposal. In particular, different admissible
sets of policy instruments may lead to different ‘optimal’ allocations. The restrictions
I impose on the policy instruments have the advantage of resulting in policy prescrip-
tions that are largely invariant to the underlying modelling framework, allowing me
to highlight key mechanisms that affect optimal capital tax rates across many differ-
ent environments and across general sets of economic primitives such as preferences
and technology. I view this approach complementary to those which instead allow
for very rich sets of policy instruments and study how the policy prescriptions vary
across frameworks and what the reasons behind these variations are.5

2.4 Equilibrium and Steady State

The equilibrium conditions are standard and a formal definition for the most general
framework is presented in Appendix B. Here I focus on the most important elements.

First, both the capital and the labor market need to clear. In particular, in each period
t ∈ {0, 1, 2, ...} factor markets need to clear, that is

Kt =
∫

kt(k0, η)dΓ, and Lt =
∫

ηlt(k0, η)dΓ.

5 See, for example, Chari et al. (2020), who allow for a very rich set of policy instruments and discuss
the conditions on modeling primitives under which the optimal inter-temporal distortion is zero.
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Furthermore, the government budget needs to clear,

Tt + G = τk,trtKt +
∫

τl(ηwtlt(k0, η))dΓ. (1)

In equilibrium, total production of firms Ỹt and total household income Yt are given
by, respectively,

Ỹt = (rt + δ)Kt︸ ︷︷ ︸
Ỹk

t

+wtLt︸︷︷︸
Yl

t

and Yt = rtKt︸︷︷︸
Yk

t

+wtLt︸︷︷︸
Yl

t

.

They differ to the extent that capital depreciates. The distinction between gross- and
net factor shares, that is factor shares before and after capital deprecation, is going to
be important and shall therefore be made very explicit.

Definition 1. Factor Shares. Firms’ expenditure shares on capital and labor are defined by,
respectively,

α̃k
t =

Ỹk
t

Ỹt
=

(rt + δ)Kt

(rt + δ)Kt + wtLt
and α̃l

t =
Yl

t
Ỹt

=
wtLt

(rt + δ)Kt + wtLt
.

Households’ shares of capital and labor income are given by, respectively,

αk
t =

Yk
t

Yt
=

rtKt

rtKt + wtLt
and αl

t =
Yl

t
Yt

=
wtLt

rtKt + wtLt
.

Steady State. In this simplified environment a steady state is simply given when
kt(k0, η) = k0 is time-constant for all (k0, η).6 In the analysis below, I follow Saez
and Stantcheva (2018) and restrict attention to situations, in which the economy is
originally in steady state, as this considerably simplifies the analysis.7

Assumption 3. In period t = −1 the economy is in a stationary equilibrium.

In the following variables without time index refer to their value in the initial steady
state.

6 This is obviously more complicated in the general environment, where productivities are stochastic
and time-varying. There, a steady state requires time-invariance of the distribution over individual
states. See Definition B.1 in Appendix B.

7 I refer to their framework in the second part of their paper with concave utility in consumption (their
Section 5), which is nested as special case of mine. In the first part of their paper Saez and Stantcheva
(2018) assume preferences that are linear in consumption and concave in wealth, implying an imme-
diate jump to the new steady state following a tax change, a behaviour that is inconsistent with the
evidence on consumption smoothing (see e.g. Browning and Lusardi, 1996; Browning and Crossley,
2001; Havranek and Sokolova, 2020).
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2.5 Special Cases

My general framework nests several important benchmark models as special cases.
To some of those I will refer to in the description of the optimality condition as they
facilitate the understanding of the most general case. The special cases that are already
covered in the simplified model of the main text include:

i. the exogenous factor price model of Section 5 in Saez and Stantcheva (2018):
Fkl(K, L) = 0 for all (K, L);

ii. the dynastic exogenous factor price model of Section 3 in Piketty and Saez (2013):
Fkl(K, L) = 0 for all (K, L);

iii. the neoclassical growth framework of Section 3 in Chamley (1986): degenerate
Γ;

iv. the neoclassical growth model with heterogeneous initial wealth in Section 4 of
Judd (1985): η = η̄;

The more general environment in Appendix B further nests

v. the standard incomplete markets model of Aiyagari (1994);

vi. an incomplete markets model with investment risk on top of labor income risk
(Benhabib, Bisin, and Zhu, 2015).

As already discussed, the results presented here carry over to the most general frame-
work for a very broad set of social welfare criteria that includes the utilitarian objec-
tive, which is most commonly used in the quantitative macroeconomics literature.

3 Optimal Capital Taxation

Given a collection of Pareto weights ω̄ = {ω(k0, η)} the social planner solves

(P) max
τk≤1

W(ω̄) =max
τk

∫
ω(k0, η)

∞

∑
t=0

βtu
(
ct(k0, η), lt(k0, η)

)
dΓ.

Following the sufficient statistics literature, I denote the marginal social welfare
weights by g(k0, η) = ω(k0, η)uc(c0(k0, η), l0(k0, η)). Without loss of generality the
Pareto weights are normalized such that

∫
g(k0, η)dΓ = 1. Hence, g(k0, η) is the plan-

ner’s relative valuation of a marginal dollar in the hand of agents with characteristics
(k0, η) vs. the equal distribution of this dollar to the whole population.
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3.1 Preliminaries

Before studying the welfare effects of tax changes and the condition for the capital tax
rate to be optimal, it is useful to define some recurring objects.

Definition 2. Income Weighted Marginal Social Welfare Weights. The capital- and labor
income weighted marginal social welfare weights are defined by, respectively,

ḡk =

∫
g(k0, η)k0dΓ

K
and ḡl =

∫
g(k0, η)yl(k0, η)dΓ

Yl .

Average marginal social welfare, weighted by labor income and marginal net-of-labor-tax rates
is given by

g̃l =

∫
g(k0, η)(1− τ′l (y

l(k0, η))yl(k0, η)dΓ
(1− τ̄′l )Y

l ,

where

τ̄′l,t =

∫
yl

t(k0, η)τ′l
(
ηyl

t(k0, η)
)
dΓ

Yl
t

is the labor income weighted average marginal labor tax rate.

The latter definition turns out to be useful when the labor tax schedule is non-linear.
However, the intuition of most of the economic effects goes through with linear labor
taxes, in which case g̃l = ḡl.

Definition 3. Policy Elasticities. The elasticity and semi-elasticity of any period-t equi-
librium variable xt with respect to the (reformed) net-of-capital tax rate 1− τr

k are given by,
respectively,

εxt,1−τk =
d ln xt

d ln(1− τr
k )

and εxt,1−τk =
d ln xt

d(1− τr
k )

.

The discounted average elasticities and semi-elasticities of x with respect to the (reformed) net-
of-capital tax rate 1− τr

k are given by, respectively,

ε̄x,1−τk = (1− β)
∞

∑
t=0

βtεxt,1−τk and ε̄x,1−τk = (1− β)
∞

∑
t=0

βtεxt,1−τk

All these elasticities are what Hendren (2016) refers to as “policy elasticities”, which
measure the causal effect of a concrete policy experiment. For example, εKt,1−τk

(εKt,1−τk) measures the relative change in the equilibrium capital stock in period t fol-
lowing an increase in the net-of-tax rate 1− τk by one percent (one percentage point).
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I define both elasticities ε and semi-elasticities ε because sometimes the formulas can
be expressed more economically with one and sometimes with the other definition.
Note, however, that they can be easily translated since

εx,1−τk = (1− τk)εx,1−τk .

Since the interpretation of none of the economic effects is qualitatively affected by
which of the two concepts one uses, I employ different versions of the same greek letter
(ε and ε) and I may, in the following, loosely refer to either of them as “elasticity”.8

3.2 Local Welfare Effects and Globally Optimal Taxes

I now turn to the discussion of tax policy. A main contribution of this paper is the
transparent decomposition of the total welfare effect of capital tax changes. Each com-
ponent has a clear and intuitive economic interpretation. Generally, the separate com-
ponents can be grouped into positive and normative ones, depending on whether the
respective welfare effect is or is not invariant to the choice of welfare weights.

In particular, the change in welfare due to a marginal increase in the capital tax rate
can be written as

dW =
[
EQ−MEB

]
Ykdτk.

The overall change in welfare is a cardinal measure that is not directly interpretable.
I therefore define its components in terms of money metric utilities, as fraction of the
additional tax revenue raised “mechanically” each period. Specifically Ykdτk is the
additional tax revenue that would be raised if agents were to keep their investment
and labor supply unchanged. The marginal excess burden MEB measures how much,
per mechanically raised dollar, the government loses in revenue due to individuals’
behavioral responses (and their induced equilibrium effects). The equity effect EQ
measures the planner’s valuation of the tax induced change in the distribution of util-
ities. While the marginal excess burden MEB is a purely positive measure, the equity
effect EQ depends on the particular choice of social welfare weights. A necessary con-
dition for the existing tax rate τk to be optimal is

dW
dτk

= 0 ⇐⇒ EQ = MEB,

that is the share of the mechanically raised revenue that is lost through changes in

8 The distinction becomes important when a constant-elasticity assumption in used to extrapolate
effects away from the current tax system. I will come back to this issue in Section 5.3.
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agents’ behaviour needs to be exactly offset by the distributional gain.

3.2.1 Standard Welfare Effects and Optimal Taxation with Exogenous Prices

I discuss first the welfare effects that are present also with exogenous factor prices, a
case that is nested in my framework when capital and labor are assumed to be perfect
substitutes (Fkl = 0).

Mechanical Redistribution. In that case the equity effect is exclusively given by the
welfare change of mechanical redistribution

EQM = βta(1− ḡk).

Everything else equal, the government redistributes from capital income earners,
whom it values by ḡk, to the general population, whom it values by ḡ = 1. Since
redistribution happens only after the pre-announcement period ta past, the effect is
discounted by βta .

Excess Burden through Investment Decline. An increase in the capital tax rate dis-
courages investment and thereby reduces capital tax revenue. The effect

MEBK = τk ε̄K,1−τk

measures how much, per mechanical dollar raised, the government loses in capital
income tax revenue through through this channel. If labor supply was inelastic, this
would be the only effect on the excess burden and the optimality condition would
satisfy

EQM = MEBK ⇐⇒ τk =
βta(1− ḡk)

ε̄K,1−τk

. (2)

If optimal, the capital income tax rate balances a classical equity-efficiency trade-off
that follows the standard inverse elasticity rule. Given the redistributive preferences of
the planner (captured parsimoniously by ḡk), the optimal tax rate is higher, the lower
the (discounted average) net-of-tax-elasticity of capital. The optimal capital tax rate is
declining in the announcement periods ta because, while the redistributive gains are
achieved only once the reform comes into effect, households will adjust their savings
behaviour prior to that. Specifically, an increase in τk will split revenue more equally
only from ta on, but it reduces the raised revenue already from t = 1 onwards.

Excess Burden through Labor Supply Response. With elastic labor supply, one needs
to correct this condition for the fact that changes in the capital income tax rate may
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affect labor supply and hence the excess burden of capital taxation. The welfare effect

MEBL =
αl

αk ε̄L,1−τk

[
EΓ[τ

′
l ] + CovΓ

(
τ′l ,

yl

Yl

ε̄ l,1−τk

ε̄L,1−τk

)]
measures how much, per dollar in capital tax revenue raised mechanically, the gov-
ernment loses in labor income tax revenue. When factor prices are assumed to be
constant, and wages hence invariant to capital tax changes, such changes affect labor
supply only through potential income effects. Specifically, a reduction in the capital
tax rate induces (i) a positive income effect due to the increase in net capital income
(1− τk)yk and (ii) a negative income effect through a reduction in the transfer T. The
sign of MEBL is therefore ambiguous.

With a linear labor income tax code, that is with τ′l (yl) = τl for all yl, we have
MEBL = αl

αk ε̄L,1−τk τl. The revenue effect through changing labor supply depends pro-
portionally on the responsiveness of effective aggregate labor supply, captured by the
semi-elasticity ε̄L,1−τk , as well as on the extent to which a given unit of labor supply
change translates into a change in revenue. The latter is captured by the product of
the labor tax rate τl and the ratio of taxable labor over taxable capital income αl/αk. In
this case the optimality condition boils down to the condition in Saez and Stantcheva
(2018),9

EQM = MEBK + MEBL ⇐⇒ τk =
βta
(
1− ḡk)− ε̄L,1−τk

αl

αk τl

ε̄K,1−τk

. (3)

With a nonlinear tax schedule τl is replaced with the average marginal labor tax rate
EΓ[τ

′
l ]. Furthermore, since agents with different marginal tax rates may adjust their

labor supply differently, one needs to correct for the covariance (with respect to dis-
tribution Γ) of marginal tax rates and the labor income weighted elasticities of labor
supply.

9 Compare Propositions 8 and 9 in Saez and Stantcheva (2018) and note that condition (3) is equivalent
to

τk =
1− ḡk − τl

Yl

Yk β−ta
ε̄L,1−τk

1− ḡk + β−ta
ε̄K,1−τk

.
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3.2.2 Additional Welfare Effects and Optimal Taxation with Endogenous Prices

Consider now the more realistic case, in which capital and labor are complements in
production (Fkl > 0) or, equivalently, the substitution elasticity

σt ≡
d ln

(Kt
Lt

)
d ln

( Fl(Kt,Lt)
Fk(Kt,Lt)

) =
Fk(Kt, Lt)Fl(Kt, Lt)

F(Kt, Lt)Fkl(Kt, Lt)

is finite.

In that case the marginal products of the two production factors are no longer invariant
to tax changes. In particular, an increase in the capital tax rate, which reduces invest-
ment, will increase the marginal product of capital but reduce the marginal product of
labor. In turn, this increases the demand for capital but reduces the demand for labor,
causing a rise in the equilibrium interest rate but a decline in the equilibrium wage.
Depending on whether labor responds positively or negatively to capital tax changes,
this change in factor prices may be amplified or mitigated. In any case, the factor price
changes are characterized by the following Lemma.10

Lemma 1. Price Elasticities and the Capital-Labor Substitution Elasticity. Let As-
sumption 2 be satisfied. Then for all t ≥ 0 we have

εrt,1−τk = −
εKt,1−τk − εLt,1−τk

σt
α̃k

t
αl

t

αk
t

and εwt,1−τk =
εKt,1−τk − εLt,1−τk

σt
α̃k

t .

As a consequence the relative factor price changes are related through

αk
t εrt,1−τk = −αl

tεwt,1−τk .

Proof. See Appendix A.1.1.

The responsiveness of factor prices is directly proportional to the relative change in the
capital-labor ratio εKt,1−τk − εLt,1−τk but indirectly proportional to the substitution elas-
ticity σt. Higher complementarity between capital and labor (i.e. a lower σt) implies
a more inelastic demand for production factors resulting in stronger price movements
for any given change in factor supply. Furthermore, the elasticities of equilibrium
factor prices are proportional to firms’ expenditure share of the other factor. That

10 Contrary to the case with exogenous prices, labor supply may change even if one rules out income
effects. Specifically, the reduction in the equilibrium wage following a capital tax increase induces
a substitution effect that reduces labor supply. With general preferences the wage reduction further
induces a positive income effect, while the increase in the interest rate induces a negative income
effect on labor supply.
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is, the interest rate elasticity is proportional to the firms’ expenditure share on labor
α̃l = 1− α̃k, while the wage elasticity is proportional to the expenditure share on cap-
ital α̃k = 1− α̃l. Intuitively, if overall the firm spends very little on one factor, it is
accepting larger changes in the unit cost of that factor to maintain a certain level of
production.

The second part of the Lemma makes explicit that wage increases are accompanied by
proportional reductions in the interest rate and vice versa, allowing me to express the
welfare effect of factor price changes in terms of only one of these two elasticities.

The Welfare Effect of Changing Factor Prices. Factor price responses indirectly re-
distribute across agents with different income compositions and impact the marginal
excess burden. I call the overall effect of price changes on welfare the price effect

P =− 1
αk

[[
(1− τk)ḡk + τk

]
αk ε̄r,1−τk +

[
(1− τ̄′l )g̃l + τ̄′l

]
αl ε̄w,1−τk

]
.

The rise in the interest rate caused by a tax hike of dτk > 0 increases total capital
income. A fraction (1− τk) of this income increase remains with its earners, while a
fraction τk is taxed and hence increases the post-government income of all agents to
an equal extent. Whenever, the planner values redistribution and there is inequality in
capital income, she discounts the former by ḡk < 1. Analogously, the accompanying
decline in wages reduces total labor income, a fraction (1− τ̄′l ) of which is borne by its
earners, while a fraction τ̄′l is borne by the whole population through the reduction in
revenue and hence the transfer. In the presence of labor income inequality, the planner
discounts the former by g̃l < 1.11

Decomposing the Price Effect. One can hence decompose the price effect into a com-
ponent that affects the distribution of net income (EQP) and a component that affects
the marginal excess burden (MEBP),

P =EQP −MEBP

=
αl

αk

[
(1− τk)ḡk − (1− τ̄′l )g̃l

]
ε̄w,1−τk︸ ︷︷ ︸

EQP

− αl

αk

[
τ̄′l − τk

]
ε̄w,1−τk︸ ︷︷ ︸

MEBP

,

where I substituted out the interest elasticity ε̄r,1−τk using the proportionality result of
Lemma 1.

11 If labor income were to be taxed linearly, we would have g̃l = ḡl , that is g̃l would be equal to the
labor income weighted average marginal social welfare weight. With a progressive labor income tax
code and a concave welfare objective, we have g̃l > ḡl as agents with higher marginal social welfare
weight tend to have higher marginal retention rates.
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The distributional effect of price changes on welfare EQP depends on the planners’
valuation of proportionally distributing a marginal dollar to the earners of capital in-
come vs. distributing it to the earners of labor income (ḡk vs. g̃l). By contrast, the effect
of price changes on the excess burden MEBP is independent of social welfare weights.
It is proportional to the difference of the income weighted marginal tax rates on cap-
ital and labor income (τ̄′l − τk). Importantly, if τk > τ̄′l the interest rate increase and
wage reduction induced by an increase in the capital tax rate have a positive impact
on revenue and therefore reduce the marginal excess burden (MEBP < 0).

The following proposition summarizes the welfare decomposition of marginal tax in-
creases and the condition for optimality for the most general case.

Proposition 1. Local Welfare Effects and Optimal Capital Tax Rate. Let Assumptions 1
to 3 be satisfied. The effect of a marginal tax increase dτk > 0 on social welfare is given by

dW =
[

EQM + EQP︸ ︷︷ ︸
=EQ

−
(

MEBK + MEBL + MEBP
)︸ ︷︷ ︸

MEB

]
Ykdτk. (4)

Consequently, the pre-existing capital income tax rate τk < 1 is optimal only if it satisfies

τk =
βta

(1− ḡk)−MEBL + P
ε̄K,1−τk

. (5)

Proof. See Appendix A.1.2.12

3.3 Illustrating the Optimality Condition

To obtain a better understanding of condition (5), I will next discuss the optimal tax
rates for several important special cases. For simplicity, I focus on the case with a
linear labor income tax code, that is where τl(yl) = τlyl for all yl.

Homogenous Labor Income. As mentioned above, assuming η = η̄, a linear labor tax
code and inelastic labor supply (ε̄L,1−τk = 0), my framework nests the model of Judd
(1985), in which agents have heterogeneous initial wealth and therefore heterogeneous
capital income, while labor income is homogeneous.13 In this case g̃l = ḡl = 1 and the

12 Note that since the framework presented in the main text is a special case of the more general
model in the Appendix, this proposition follows in principle directly from Proposition B.1 in Ap-
pendix B.2.2, which derives the same condition for the general framework. However, for the
reader’s convenience, I present a separate (easier) proof for the model of the main text.

13 Note that my model only nests the framework of Section 4 in Judd (1985). However, the economic
environment in Section 3 of Judd (1985), where a part of the population is excluded from the capital
market, would yield the same tax formula.
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condition becomes

τk =
βta(1− ḡk)

ε̄K,1−τk

− αl

αk
α̃k

σ
(1− ḡk)(1− τk)︸ ︷︷ ︸

<0

. (6)

The first term is the same as in condition (2) with exogenous prices. The additional
term captures standard ‘trickle-down’ theory. A decrease in investment reduces wages
and increases capital returns. Since labor income is equally distributed while capital
income is unequally distributed across agents, the wage decrease associated with an
increase in capital taxes reduces social welfare and thus the optimal capital income tax
rate. The paper of Judd (1985) is mostly known for its famous result that capital income
taxes should be zero in the long run. However, the result refers to the infinite future,
derived in settings where the Ramsey planner is able to commit to a path of time-
varying taxes. In the short run, also Judd (1985) finds positive optimal capital tax rates
although “redistributive capital taxation is severely limited in its effectiveness since
it depresses wages” (Judd, 1985, p.59). When taxes are required to be time-invariant,
this depressing effect on wages is transparently captured by the additional negative
term in the optimality condition (6).

Note that the additional term is independent of the labor income tax rate τl because,
absent wage heterogeneity, any dollar of labor taxes paid ends up back in the hand of
the agent through an equal increase in her lump-sum transfer. Hence, the wage de-
crease, in and by itself, has an equally negative effect on all agents’ disposable income.
However, it is discounted by (1− ḡk) because the associated increase in the interest
rate benefits the earners of capital income, whom the government values by ḡk.

With elastic labor supply the condition becomes

τk =
βta(1− ḡk)− ε̄L,1−τk

αl

αk τl

ε̄K,1−τk

− αl

αk
α̃k

σ

(
1−

ε̄L,1−τk

ε̄K,1−τk

)
(1− ḡk)(1− τk). (7)

The first term is analogous to the one in condition (3) and has the same interpretation.
If labor supply declines in response to a capital tax increase, that is if ε̄L,1−τk > 0, the
excess burden of capital taxes is increased MEBL > 0, reducing the optimal capital tax
rate. However, at the same time the decline in labor supply mitigates the responsive-
ness in equilibrium factor prices and therefore the depressive effect of capital taxes on
wages, a force that is increasing the optimal capital tax rate. The opposite is the case
when ε̄L,1−τk < 0.

The optimality of a zero long-run capital tax in Judd (1985) – as the one in Chamley
(1986) – was recently revisited by Straub and Werning (2020), who show that, depend-
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ing on parameters, optimal tax rates on capital may remain positive forever. All three
papers assume that the Ramsey planner is able to set the whole path of time-varying
capital taxes. By contrast, as Piketty and Saez (2013) or Saez and Stantcheva (2018),
I only allow for a one-off change in the capital tax rate, after which it is required to
remain constant. While time-invariant taxes naturally result in a lower welfare opti-
mum than what could be achieved with time-varying taxes, this restriction induces a
robust solution.14

Heterogeneous Labor- and Capital Income. In reality, both capital- and labor income
are heterogeneous, in which case the optimal capital tax rate is implicitly given by

τk =
βta
(
1− ḡk)− ε̄L,1−τk

αl

αk τl

ε̄K,1−τk

+
αl

αk
α̃k

σ

(
1−

ε̄L,1−τk

ε̄K,1−τk

)[
(1− τk)ḡk︸ ︷︷ ︸

>0

−(1− τl)ḡl︸ ︷︷ ︸
<0

+τk − τl︸ ︷︷ ︸
?

]
.

The three terms in the squared bracket capture the welfare impact of tax induced fac-
tor price changes. The first term (1− τk)ḡk > 0 captures the gains through agents’ net
capital income increase, the second term −(1− τl)ḡl < 0 captures the loss through
agents’ net labor income decline, and the third term τk − τl captures the effect of in-
creasing interest rates and the associated reduction of wages on government revenue.
This last effect is positive if and only if τk > τl.

In the data capital income is much more concentrated than labor income. For ex-
ample, the poorer half of the US population earns basically zero capital income but
has substantial labor income. One may hence conclude that for the same reason as
above the wage reductions and interest increases accompanying capital tax increases
should reduce social welfare and thus call for a lower taxation of capital. The formula
shows why such an interpretation is wrong, or at least incomplete. Consider a planner
who cares only about the very lowest earners with neither labor- nor capital income
(ḡk = ḡl = 0). Since price changes do not have any impact on these agents’ net income
the distributional loss is zero, EQP = 0. However, at the same time these price changes
affect the marginal excess burden whenever capital and labor are taxed differently. If
τk > τl they reduce the excess burden, MEBP < 0, and thus call for a higher taxation

14 As demonstrated by Straub and Werning (2020), with time-varying taxes, along the optimal trajec-
tory, the economy often does not converge to an interior steady state, in which case the optimal
capital tax remains positive forever. Benhabib and Szőke (2021) derive conditions for positive long-
run capital taxes that are compatible with an interior steady state but where the capital tax rate
remains at its allowed upper limit, that is at the corner solution.
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of capital.15

Idiosyncratic Risk. As mentioned above – for a large set of social welfare functions –
the optimality condition (5) holds for a much more general framework (presented in
Appendix B), which nests models with uninsurable idiosyncratic risks to labor- and
capital income. In particular, it also holds for the standard incomplete markets model
of Aiyagari (1994). The generality of this condition may seem surprising in light of the
result in Aiyagari (1995), who shows that the optimal long-run capital income tax rate
in the standard incomplete markets model is positive, contrasting Judd (1985) and
Chamley (1986), who find zero optimal long-run tax rates in frameworks with com-
plete markets. The reason is again the time-invariance restriction on capital tax rates
imposed in the present paper. With such a restriction in place, equation (5) provides
a testable condition for optimality. That means, irrespective of whether the true data
generating process is better explained by one nested framework or another, as long as
the elasticities, factor shares and distributional statistics on the right hand side of the
condition are estimated accurately, the condition tells you whether the capital tax rate
is optimal, and if not, in which direction it should be adjusted.16

4 Recovering Unmeasured Policy Elasticities

In the interest of space, I from now on restrict the analysis to unannounced reforms
(ta = 0) and to preferences that do not exhibit income effects on labor supply. While
these assumptions are not necessary to perform the analysis, they considerably sim-
plify the exposition.

Assumption 4. Preferences exhibit no income effects on labor supply, that is the Bernoulli
utility function is of the form

u(c, l) = U(c− v(l)),

where U′(.) > 0, U′′(.) < 0, v(.)′ ≥ 0 and v(.)′′ > 0.

The equilibrium factor elasticities ε̄K,1−τk and ε̄L,1−τk are endogenous objects that de-

15 There is a close analogy between this analysis and the one in Sachs et al. (2020), who study tax
incidence and optimal income taxation in a static Mirrlees environment with complementary labor
types. In their environment, an increase in the progressivity of the tax system increases the wages
of top earners, whose labor input becomes more scarce, and decreases the wages of lower earn-
ers. Hence, the endogenous wage responses of further increasing the progressivity of an already
progressive tax system positively impacts government revenue.

16 In the following Section, I link the unmeasured net-of-tax elasticities of the equilibrium capital stock
to actually estimated capital supply elasticities. I create this link via the deterministic model of
the main text. I discuss in Appendix C.3 why idiosyncratic risk, and the associated precautionary
savings motive, does not matter much quantitatively in this context.
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pend in particular on the substitution elasticity σ. As discussed above, absent income
effects, labor supply is unaffected by capital tax changes (ε̄L,1−τk = 0) when labor and
capital are assumed to be perfect substitutes (σ = ∞). However, whenever the sub-
stitution elasticity is finite (σ < 0) an increase in the capital tax rate reduces wages,
which induces a negative substitution effect on labor supply (ε̄L,1−τk > 0).

More importantly, the more complementary capital and labor are, the stronger the in-
crease in the gross interest rate following a capital tax hike. This increase in the interest
rate mitigates the mechanical drop in the net return on capital and thus has a moder-
ating effect on the net-of-tax (semi-)elasticity of the equilibrium capital stock. In sum,
the sequencies of equilibrium capital elasticities {εKt,1−τk}∞

t=1 and equilibrium labor
elasticities {εLt,1−τk}∞

t=1 are “policy elasticities” in the sense of Hendren (2016). They
measure the causal effect of the concrete policy experiment performed in this paper
and they therefore capture all simultaneous equilibrium responses. Such elasticities
are hard, if not impossible, to estimate directly.

However, by exploiting agents’ optimality conditions together with market clearing,
one can recover these unmeasured policy elasticities from pure factor supply elastici-
ties that are actually estimated. The interested reader can find the detailed description
of this methodology in Appendix C, while I only briefly summarize it here.

4.1 Labor Supply

Abstracting from income effects, labor supply in any given period is only affected
through contemporaneous changes in the wage. Consider an individual with charac-
teristics (k0, η). The policy elasticity of her labor supply is given by

εlt(k0,η),1−τk
= ε̃lt(k0,η),wt εwt,1−τk ,

where ε̃lt(k0,η),wt denotes the pure supply elasticity, which measures the relative change
in labor supplied in period t if only the wage in that same period changes, keeping all
other prices, taxes and transfers fixed. Denoting by γl the Frisch elasticity and by

p(yl) = −
∂ ln(1− τ′l (y

l))

∂ ln(yl)
=

ylτ′′l (y
l)

1− τ′l (y
l)

the local rate of labor tax progressivity, the wage elasticity of labor supply is given by

ε̃lt(k0,η),wt =
∂ ln lt(k0, η)

∂ ln wt
=

γl
(
1− p(yl(k0, η))

)
1 + γl p(yl(k0, η))

.

With a linear labor tax schedule (p(yl) = 0 for all yl) a one percent increase in wages
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ceteris paribus increases labor supply by ε̃lt(k0,η),wt = γl percent. That is, the labor
supply response of each agent equals the Frisch elasticity. A progressive tax schedule
(p(yl) > 0) dampens the positive substitution effect of the wage increase on labor sup-
ply and therefore the labor supply elasticity. Aggregating up ε̃lt(k0,η),wt gives the pure
supply elasticity of aggregate labor ε̃Lt,wt , which is related to the policy elasticity in an
analogous way as the individual supply elasticities. Consequently, one can substitute

εwt,1−τk =
ε̃Lt,wt

εLt,1−τk

into the equation in Lemma 1 and solve for εLt,1−τk to obtain

εLt,1−τk =
α̃k ε̃Lt ,wt

σ

1 + α̃k ε̃Lt ,wt
σ

εKt,1−τk .

The net-of-capital-tax-rate elasticity of equilibrium aggregate labor supply is therefore
directly proportional to the net-of-capital-tax-rate elasticity of the equilibrium capital
stock. A reduction in the capital tax rate increases investment and hence the capital
stock. This increases the marginal product of capital and hence wages, thereby also en-
couraging labor supply. Observe that εLt,1−τk < εKt,1−τk . With an infinite substitution
elasticity, as in Piketty and Saez (2013), Golosov et al. (2014) or Saez and Stantcheva
(2018), we have εLt,1−τk = 0. In that case wages are invariant to capital tax changes,
which in the absence of income effects implies that also labor supply is unaffected.

In any case, the path of equilibrium effective labor elasticities {εLt,1−τk}∞
t=1 can be re-

covered from the path of equilibrium capital elasticities {εKt,1−τk}∞
t=1. The main diffi-

culty is to obtain the latter, an issue to which I turn next.

4.2 Capital Supply

One can recover the path of elasticities of the equilibrium capital stock from the path
of pure capital supply elasticities with respect to the net-of-capital tax rate,

ε̃Kt,1−τk =
∂ ln Kt

∂ ln(1− τk)
.

ε̃Kt,1−τk is again a ceteris-paribus elasticity (hence the partial derivative) that measures
the relative change in capital supply (wealth) with respect to a change in the net-of-
capital tax rate keeping all other variables fixed. In particular, it measures households’
response in wealth accumulation if only the tax rate would change but both prices and
transfers would remain constant. This elasticity is therefore the treatment effect of an
experiment that changes the capital tax rate for a small part of the population, whose
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behaviour has a negligible influence on the government budget and on equilibrium
prices.

Though sparse, we do have evidence on the elasticity of capital supply. Arguably the
best currently available estimates are those by Jakobsen, Jakobsen, Kleven, and Zuc-
man (2020), who use administrative Danish data. Their study is partially motivated
by the paper of Saez and Stantcheva (2018) and the therein stated lack of evidence for
this crucial elasticity. The authors exploit natural experiments emanating from a 1989
wealth tax reform, with which they estimate the elasticity of wealth with respect to
wealth taxes for eight years following the reform.17

As I prove in Lemma C.3 optimal savings behaviour dictates a tax-elasticity of wealth
that is linear in time. Specifically, denoting the intertemporal elasticity of substitution
by γc optimal savings behavior implies

ε̃Kt,1−τk = tβ
C
K

γc = tε̃K1,1−τk .

Consequently, a single observation, taken at any time after the reform, carries enough
information to recover the whole path of pure supply elasticities. The evidence in
Jakobsen et al. (2020) provides eight such data points, implying that ε̃Kt,1−τk is, in
principle, over-identified. To make use of all available evidence, I hence regress the
estimated tax elasticities of wealth on time. The black solid line in Figure 1 depicts the
estimates in Jakobsen et al. (2020), the red dotted line the regression. The theoretically
predicted linearity in time squares remarkably well with the data.18

However, as described above, in our experiment the government transfers {Ts}∞
s=0

adjust period-by-period in a budget neutral way. Furthermore, whenever capital and
labor are imperfect substitutes, a tax change induces factor prices {rs, ws}∞

s=0 to change
too. A change in any transfer Ts or wage ws induces an income effect on capital sup-
ply. A change in the (gross) return rs induces both a substitution and an income effect
similar to a change in the capital tax rate. The estimated tax-elasticities of capital sup-
ply pin down these income- and substitution effects, such that they are sufficient to
recover the capital supply responses to changes in transfers and factor prices, that is

17 Jakobsen et al. (2020) exploit two quasi-experiments that affected two different subsets of the pop-
ulation. In the main text I use their estimates on households between the 97.6th and the 99.3rd per-
centile of the wealth distribution. Their elasticity estimates of the top percentile are slightly higher.
I report those in Appendix C.

18 In the second part of their paper Jakobsen et al. (2020) employ a structural life-cycle model to
extrapolate the “long-run” wealth elasticity with respect to wealth taxes. They define the “long-run”
elasticity as the end-of-life elasticity. However, although the authors argue that there is a high tax-
elasticity of bequests, they abstract from the fact that when inheriting more, heirs also accumulate
more wealth. As do the heirs of heirs, and so on. That is, the finiteness of their long-run supply
elasticity is artificially introduced by the finite time horizon.
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Figure 1: Capital Supply Elasticity: data (solid line) from Jakobsen et al. (2020) Figure V (left
panel); treatment on the treated; net-of-wealth-tax elasticities are translated to net-of-capital-tax elastic-
ities using the return of r = 6.58%; model (dotted line), ε̃Kt ,1−τk = tε̃K1,1−τk .

{ε̃Kt,Ts , ε̃Kt,ws , ε̃Kt,rs}∞
s=0. The tax-elasticity of the equilibrium capital stock can then be

obtained by multiplying the various supply responses with changes in transfers and
factor prices {εTs,1−τk , εrs,1−τk , εws,1−τk}∞

s=0 that are consistent with government budget-
and factor market clearing in the respective period. Specifically, for each period t ≥ 0
the equilibrium capital stock can be decomposed as

εKt,1−τk = ε̃Kt,1−τk +
∞

∑
s=0

ε̃Kt,Ts εTs,1−τk +
∞

∑
s=0

ε̃Kt,rs εrs,1−τk +
∞

∑
s=0

ε̃Kt,ws εws,1−τk .

Solving this system of linear equations then gives the path of the desired unmeasured
policy elasticities {εKt,1−τk}∞

t=0.

Figure 2 plots the path of equilibrium capital elasticities for my benchmark finite sub-
stitution elasticity (blue dash-dotted line) as well as for the case where capital and la-
bor are assumed perfect substitutes, that is when prices are assumed to be invariant to
tax changes (red dashed line) along with the pure supply elasticities of Figure 1. When
the substitution elasticity is infinite (σ = ∞) the equilibrium capital elasticity grows
linearly in time, though the income effect from the budget neutral transfer mitigates
the savings response relative to the pure supply elasticity. However, whenever the
substitution elasticity is finite (σ < 0) the policy elasticity converges to a finite level.19

19 In Appendix D, I perform a sensitivity analysis with respect to the range of empirical estimates of σ.
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Figure 2: Capital Elasticities: black solid line and red dotted line as in Figure 1; red dashed line
(εex

Kt ,1−τk
): policy elasticity in the exogenous price case (σ = ∞); blue dash-dotted line line (εKt ,1−τk ):

policy elasticity with endogenous prices (σ = 0.6); Frisch elasticity of labor supply γl = 0.5.

The reason for this difference is that whenever the substitution elasticity is finite, a tax
cut that induces an increase in capital accumulation reduces the marginal product of
capital and thus the rental rate of capital, which firms are willing to pay to investors.
This decline in r mitigates the overall increase in the net return r̄ = (1− τk)r and thus
moderates the investment increase. Such a mechanism is absent when capital and la-
bor are assumed to be perfect substitutes. In that case, capital increases to infinity for
similar reasons as in the Ak model of economic growth. The implicit, counter-factual,
assumption behind this is that the marginal product of capital is constant.20 As we
will see below, these differences in the net-of-tax elasticities of equilibrium capital will
imply strong differences in the marginal excess burden of capital taxation.

5 Quantitative Application

I now move to the quantitative application of my theoretical results. For this means, I
first need to collect all the relevant statistics entering my formulas.

20 Saez and Stantcheva (2018) wrongly attribute the Chamley-Judd zero long run tax result to the
infinite long-run capital elasticity (limt→∞ εKt ,1−τk=∞) in their framework (see their Table 1 and the
discussion surrounding it). However, this elasticity only goes to infinity when one assumes perfect
substitutability in capital and labor, an assumption neither Judd (1985) nor Chamley (1986) make.
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5.1 Values of Sufficient Statistics

This section summarizes the benchmark estimates for the sufficient statistics, which I
use in the quantitative analysis of the main text. In Appendix D, I provide a sensitivity
analysis with respect to those statistics, for which the empirical range of estimates is
rather broad.

Factor Shares. The gross capital share of α̃k = 0.4 is relatively uncontroversial. How-
ever, only few studies estimate net income shares (after capital depreciation). One
exception is Rognlie (2015), who finds that the net capital share is 74% of the gross
share. Given the gross capital share of α̃ = 0.4 this implies αk = 0.296.

Capital- and Labor Income. The weighted marginal social welfare weights ḡk and
g̃l depend partially on the chosen welfare objective, but partially also on the distri-
bution of capital and labor income. I use income and wealth data from the Survey
of Consumer Finances 2019 (SCF), restricting the sample to prime-age workers (non-
retirees of age 64 and younger). Capital income is the return to net worth. While
single SCF waves do not include sufficient information on unrealized capital gains,
Xavier (2021) estimates returns in the US by combining the SCF waves from 1989 to
2019 with data on private business equity from the US Financial Accounts as well as
public equity- and real estate indices. She finds a wealth weighted average annual
return of 6.80%. Similarly, in their comprehensive cross-country analysis Jorda, Knoll,
Kuvshinov, Schularick, and Taylor (2019) find an annual post 1980 average return on
wealth of 6.58% for the US. I use their estimate in my analysis, which is very close to
their estimate for Denmark (6.62%), for which we have quasi-experimental evidence
on the capital supply elasticity. However, I provide robustness checks with lower and
higher capital returns (of r = 5% and r = 8%, respectively) in Appendix D.1.

Labor income comprises wage income and some of the income generated in privately
owned businesses and farms. It is known to be empirically difficult to disentangle
the capital- and labor component of the latter. To discipline this choice somewhat, I
calibrate that 62% of business and farm income is to be assigned as labor income, such
that for the (representative) population in the SCF the capital income share is α̃k =

0.296 with the benchmark return of r = 6.58%. This implies a reasonable depreciation
rate of δ = 3.85% per annum.

The left panel of Figure 3 depicts the data in a scatter plot with wealth on the x-axis and
labor income on the y-axis. The right panel shows the corresponding Lorenz curves
for labor income and wealth. As is well known, wealth is much more concentrated
than labor income. For example, while the poorest 60% of US households own only a
negligible amount of total US wealth, the bottom 60% of the labor income distribution
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Figure 3: Labor Income and Wealth: data from Survey of Consumer Finances 2019 (SCF); non-
retired households aged 64 or younger; 62% of business and farm income assigned to labor income; size
of scatter plot markers proportional to SCF sample weights.

earn almost 25% of total US labor income. Similarly, while the richest 10% US house-
holds own about 80% of total US wealth, the 10% highest labor income earners, receive
‘only’ about 40% of total US labor income. The corresponding Gini indices are 0.53 for
labor income and 0.86 for wealth. While the depicted Lorenz curves, or at least some
points on them, are often calibration targets in parametric quantitative studies, they
do not uniquely pin down the joint distribution of labor income and wealth.

An advantage of my approach is that I can apply my formulas directly to the data. In
particular, the data points in the scatter plot are the inputs for the computation of ḡk

and g̃l that enter my welfare effects. Thus, in contrast to the parametric literature, I
do not rely on any approximation of the true joint distribution of income and wealth.
Instead, I can use the exact distribution.

Taxes. Income taxes are not reported in the SCF. However, Heathcote, Storesletten,
and Violante (2017) document that, properly calibrated, the mapping

τl(yl) = yl − (1− τ0)(yl)1−p (8)

provides an exceptionally good fit of the data. I hence use this mapping and their pro-
gressivity parameter of p = 0.181. Their level parameter τ0 is neither scale invariant,
nor reported in their study. I calibrate it such that the labor income weighted average
marginal tax rate is τ̄′l = 0.225, as estimated by Trabandt and Uhlig (2012). This cali-
bration gives an average marginal labor tax of EΓ[τ

′
l ] = 0.07. From the latter study, I

also take the capital income tax rate in the status quo, τk = 0.415.

Labor Supply Elasticities. I take a benchmark Frisch elasticity of labor supply of
γl = 0.5. However, to account for the variation in empirical estimates estimates, I
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provide a sensitivity analysis in Appendix D. The constant Frisch elasticity together
with the constant rate of progressivity tax schedule imply a zero co-variance between
the marginal labor tax rate and the net-of-capital-tax elasticity of equilibrium labor
supply, that is CovΓ(τ

′
l , ε̄l,1−τk

) = 0.21

Substitution Elasticity. Empirical estimates of σ are vast. I use the most recent esti-
mate of σ = 0.6 from Oberfield and Raval (2021) as my benchmark value. For com-
parability, in the main text I also report to the case of capital and labor being perfect
substitutes (σ = ∞). Furthermore, in Appendix D.2, I report the results for the whole
range of empirical estimates of σ.

Discounted Average Tax-Elasticities of Capital and Labor. As explained above, the
discounted average elasticities of equilibrium capital and labor are endogenous to σ

and γl. With the benchmark values of σ = 0.6 and γl = 0.5 we have ε̄K,1−τk = 0.39 and
ε̄L,1−τk = 0.08, while under the assumption of exogenous prices, that is with σ = ∞,
we have ε̄K,1−τk = 1.24 and ε̄L,1−τk = 0, irrespective of γl. I report these elasticities
for different combinations of substitution- and Frisch elasticities in Table D.3 in Ap-
pendix D.2.

5.2 Welfare Decomposition of Local Tax Changes

In this section I perform a local welfare decomposition. That is, given the status quo
tax system, I consider a marginal increase in the capital tax rate dτk > 0 and I compute
the various components affecting the overall welfare change

dW =
[

EQM + EQP︸ ︷︷ ︸
=EQ

−
(

MEBK + MEBL + MEBP
)︸ ︷︷ ︸

MEB

]
Ykdτk.

5.2.1 The Marginal Excess Burden

I first consider the components that are invariant to the choice of the social welfare
function, that is the components that affect the marginal excess burden (MEB) of
capital taxation. Table 1 summarizes the three components of MEB. The first line
covers the case where capital and labor are perfect substitutes and factor prices are

21 Specifically, the individual net-of-capital-tax elasticities of equilibrium labor supply in period t are
given by

εlt(k0,η),1−τk
=ε̃lt(k0,η),wt

εwt ,1−τk =
γl(1− p)
1 + γl p

εwt ,1−τk

and are thus independent of the agents’ characteristics (k0, η) and hence constant across the popu-
lation.
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therefore constant. The exclusion of income effects implies that the decomposition
is trivial in this case. Specifically, absent changes in the equilibrium wage, a change
in the capital tax rate will not affect labor supply and hence keep labor income tax
revenue constant (MEBL = 0). Furthermore, assuming away factor price changes im-
plies that also MEBP = 0. Consequently, the total marginal excess burden consists
exclusively of the revenue loss due to a reduction in agents’ savings. This revenue
loss of MEB = MEBK = 0.88, however, is substantial. For each mechanical dollar
raised the government loses 88 cent due to the behavioral investment decline. Absent
counteracting responses in the equilibrium interest rate the net-of-tax elasticity of the
equilibrium capital stock is large (see Figure 2), implying a large tax distortion.

MEBK MEBL MEBP MEB

Exogenous prices (σ = ∞) 0.8775 0.0000 0.000 0.8775
Endogenous prices (σ = 0.6) 0.2589 0.0196 −0.1497 0.1287

Table 1: Decomposition of the Marginal Excess Burden: Components of the marginal excess
burden (MEB); numbers in dollar per mechanical dollar in capital tax revenue raised; MEBK: loss in
capital income tax revenue due to lower savings; MEBL: loss in labor income tax revenue due to lower
labor supply; MEBP: revenue impact of changing factor prices due to differential taxation of capital
and labor; Frisch elasticity: γl = 0.5

By contrast, when capital and labor are complements (σ = 0.6, second line) a rise in
the capital tax rate increases the gross return to capital. This mitigates the equilibrium
reduction in the net return (1− τk)r, which has a moderating effect on the investment
decline. Consequently, the capital tax revenue loss coming from the investment re-
duction, MEBK = 0.26, is much lower than in the case with exogenous prices. The tax
induced reduction in the wage lowers labor supply and thus negatively affects labor
income tax revenue. However, this effect of MEBL = 0.02 is quite small. More impor-
tantly, the factor price changes have a direct revenue impact. Specifically, since in the
status quo capital is taxed at a higher average rate than labor (τk > τ̄′l ), the increase
in the gross interest rate causes higher capital tax revenue gains than the reduction in
wages causes labor tax revenue losses. The overall price effect of MEBP = −0.15 sig-
nificantly reduces the excess burden of capital taxation. The total excess burden in the
realistic case is MEB = 0.13, only about one quarter of the excess burden one obtains
when naively assuming constant prices.

5.2.2 The Equity Effect

An increase in the capital tax rate affects the distribution of disposable income. The
welfare assessment of this redistribution requires a normative judgement, that is a
stand on how to value the relative consumption of different individuals. To be agnostic
and to explore the welfare effects across the distribution, I follow the strategy of Piketty
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and Saez (2013) by considering hundred different social welfare functions, each of
which concentrates the whole weight in a specific percentile of the total gross income
distribution. Formally, for each social welfare function indexed by pct ∈ {1, 2, ..., 100},
the corresponding marginal social welfare weights are given by

gpct(k0, η) =

100 if Γy(y(k0, η)) ∈ [pct− 1, pct)

0 else,

where Γy is the distribution of gross total income induced by the distribution Γ over
states (k0, η) and the agents’ optimal choices. In turn, this implies for each of these
welfare objectives that the capital (labor) income weighted marginal social welfare
weight for the social welfare function pct is simply the average capital (labor) income
within percentile pct of the income distribution divided by the mean capital (labor)
income of the whole population,

ḡk
pct =

∫
Γy(y(k0,η))∈[pct−1,pct)

yk(k0, η)

Yk dΓ and ḡl
pct =

∫
Γy(y(k0,η))∈[pct−1,pct)

yl(k0, η)

Yl dΓ

Similarly, g̃l = g̃l
pct is the (relative) average labor income weighted by the marginal

retention rate (1− τ′l (y
l)) within percentile pct.
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Figure 4: Weighted Average Marginal Social Welfare: ḡk
pct (ḡl

pct): average capital (labor)
income in percentile pct of the total income distribution as fraction of capital (labor) income in the
whole population; g̃l

pct: average net-of-marginal-tax-weighted labor income in percentile pct relative to
average in population.
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Figure 4 depicts ḡk
pct, ḡl

pct and g̃l
pct, with the percentiles pct on the x-axis. Since gross

income is naturally positively correlated with its components, both the labor- and the
capital income weighted average marginal social welfare weight are increasing in pct.
Observe that the 87th percentile of the gross income distribution owns average wealth
(ḡk

87 = 1), while the 65th percentile of the gross income distribution earns about aver-
age labor income (ḡl

65 = 1). Due to the progressivity of the labor tax code, however,
already the 32th percentile of the income distribution earns the net-of-marginal-tax-
rate weighted average labor income (g̃l

32 = 1).

Figure 5 plots the components of the equity effect EQ for each of these social wel-
fare functions, where the values pct on the horizontal axis again refer to the welfare
function that concentrates all welfare weight in percentile pct of the total income dis-
tribution. The left and right panels capture the cases with, respectively, exogenous and
endogenous prices.

Mechanical Redistribution. The solid black line depicts the mechanical effect

EQM = 1− ḡk,

which measures the change in welfare if agents’ consumption, savings and labor sup-
ply were to be fixed at their pre-reform level. Naturally, the mechanical effect is iden-
tical across the two cases, since absent behavioral responses, prices are unaffected.
The lower thirty percent of the gross income distribution do not earn any significant
capital income, implying that a planner who only values those individuals does not
discount the mechanically raised dollar, that is ḡk

pct ≈ 0 for pct < 30. As one moves up
the total gross income distribution, households earn more and more capital income,
implying that ḡk

pct is increasing in the percentile pct. However, since capital income
is concentrated at the very top, the decline in the mechanical effect EQM is relatively
modest until about income percentile 85, from which on households tend to have more
substantial wealth and hence capital income. The skewness of the wealth distribution
implies that the mean capital income is much higher than the median. Specifically,
the 87th percentile of the gross income distribution earns about the average capital
income, which is the reason why the mechanical effect crosses the x-axis at the 87th
percentile.

Effect of Redistributing Factor Price Changes. The overall equity effect comprises of
the mechanical effect and the redistributional effect of factor price changes,

EQ = EQM + EQP,
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Figure 5: The Equity Effect: different substitution elasticities σ and Frisch elasticities γl ; in USD
per dollar of revenue mechanically raised; EQM: mechanical effect (red solid line, same for all σ), EQP :
redistributional effect of factor price changes; value p on x-axis corresponds to the social welfare func-
tion that concentrates the whole welfare weight at percentile p of the total gross income distribution.

where the latter is given by

EQP = −(1− τk)ḡk ε̄r,1−τk︸ ︷︷ ︸
EQr

P≥0

−αl/αk(1− τ̄′l )g̃l ε̄w,1−τk︸ ︷︷ ︸
EQw

P≤0

.

I decompose this effect further into the welfare gain from the increase in interest rates
(EQr

P ≥ 0 since ε̄r,1−τk ≤ 0) and the welfare loss from a reduction in wages (EQw
P ≤ 0

since ε̄w,1−τk ≥ 0).

When capital and labor are perfect substitutes (left panel of Figure 5), prices do not
change, that is εw,1−τk = εr,1−τk = 0. Consequently, the price effect is zero (EQP = 0)
and the total equity effect comprises only of the mechanical effect, EQ = EQM.

By contrast, whenever capital and labor are complements (right panel of Figure 5), a
marginal increase in the capital tax rate reduces wages and increases interest rates,
which redistributes from households with mostly wage income to households with
mostly capital income. The dashed line adds to the mechanical effect the welfare gain
from increases in the (gross) return to capital r. The additional effect is almost zero
for the lower 30 percent of the income distribution, who earn basically zero capital
income. Since the increase in the gross interest rate mitigates the reduction in the net
return this effect is increasingly positive as further up the income distribution house-
holds receive more and more capital income. Yet, since capital income is concentrated
at the very top the additional gain is relatively modest throughout the bottom 80 per-
cent of the income distribution and starts to get significant only for the very highest
earners.
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Finally, the dotted line adds the welfare loss from the reduction in wages. Households
at the very bottom of the income distribution do not have any earned income, that is
neither capital- nor labor income. Hence for the bottom percentile the redistributive
price effect is zero. However, the wage reduction implies welfare losses for house-
holds in the broad middle class, who finance their consumption predominantly with
their net labor income. Furthermore, the adverse wage effect dominates the positive
interest rate effect for all but the top 3 percent of the income distribution, a conse-
quence of the fact that capital income is much more concentrated than labor income.
Consequently, the total equity effect (the dotted line) is lower than the mechanical ef-
fect for all welfare functions but those that value the top three percent of earners. In
sum, the decline in wages significantly reduces the mechanical redistributional gains
from higher capital taxes for a very large middle class, say the middle 90% of the gross
income distribution.

5.2.3 The Total Welfare Change

Simply adding the marginal excess burden to the equity effect gives the total welfare
change per mechanically raised dollar in revenue. Figure 6 again depicts the case of
exogenous prices on the left and the case with exogenous prices on the right. The
dotted lines depict the equity effect EQ and are identical to the total equity effect in
Figure 5. The solid lines add the marginal excess burden. As discussed above, the
marginal excess burden is independent of the choice of social welfare function. Hence
adding it results simply in a parallel downward downward shift along the y-axis.
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Figure 6: Welfare Change: in USD per dollar of revenue mechanically raised; EQ: equity effect,
MEB: marginal excess burden; value p on x-axis corresponds to the social welfare function that concen-
trates the whole welfare weight at percentile p of the total gross income distribution; Frisch elasticity of
labor supply: γl = 0.5.

In the case of exogenous prices (left panel), the marginal excess burden MEB = 0.88 is
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very large. Consequently, even for welfare objectives that value agents with about zero
capital income, say the bottom thirty percent of the income distribution, the total wel-
fare gains from capital tax increases is very small, while it is about zero for households
between income percentiles 30 and 50.

Consider next the case with endogenous prices (right panel). As discussed above, the
depressive effect of capital tax increases on wages causes the equity effect to decline
much sharper as one moves up the income distribution. However, the much smaller
excess burden of MEB = 0.13 implies that despite these depressive wage effect, the
lower half of the income distribution experiences significant gains from capital tax
increases, in stark contrast to the case with exogenous prices. The 69th income per-
centile finds the current tax rate just optimal. In Appendix D, I show that these results
are quite robust to the whole range of estimates for the substitution elasticity and the
wage elasticity of labor supply as well as to different assumptions on the return to
capital. Specifically, for the whole empirical range of estimates would the bottom 60
percent of the total income distribution gain from increases in the capital tax rate, while
the top 30 percent would lose.

5.3 Optimal Capital Tax Rates

In the absence of income effects on labor supply, the tax rate that satisfies condition (5)
is given by

τk =
1− ḡk − αl

αk

(
ε̄L,1−τkEΓ[τ

′
l ] +

[
g̃l − ḡk + (1− g̃l)τ̄′l

]
ε̄w,1−τk

)
ε̄K,1−τk + (1− ḡk)

(
1 + ε̄r,1−τk

) , (9)

while the corresponding tax rate assuming exogenous prices is

τex
k =

1− ḡk

ε̄K,1−τk + (1− ḡk)
. (10)

Figure 7 depicts these tax rates for each of the social welfare functions. The solid red
line depicts the case if one assumed that prices were exogenous (τex

k ), while the solid
blue line takes into account the endogeneity of factor prices (τk).

It has become the standard in the sufficient statistics literature to interpret these as the
“optimal” tax rates (Piketty and Saez, 2012, 2013; Saez and Stantcheva, 2018). How-
ever, such an interpretation implicitly assumes that the (endogenous) statistics that en-
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ter the right hand side of the formula are invariant to tax changes.22 It might thus lead
to distorted policy prescriptions, especially when the so obtained “optimal” tax rate is
far away from the existing one, around which the statistics are measured.23 To address
this problem, I also implement another, complementary, analysis. Specifically, I cali-
brate a parametric version of the model such that it replicates (around the status quo
tax system) all the statistics entering the above formula. Using global solutions meth-
ods analogous to the ones used in the parametric macroeconomics literature (Domeij
and Heathcote, 2004; Conesa et al., 2009; etc.) I then compute the full transitional
dynamics following one-off tax changes in τk. For each of these reforms, I compute
the welfare change for all individuals and hence obtain the ‘truly’ optimal capital tax
rate from the perspective of households in each percentile of the income distribution.
These tax rates are depicted by the dashed blue line in Figure 7. See Appendix E for
more details on this procedure.
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Figure 7: Optimal Capital Tax Rates: value p on the x-axis corresponds to the social welfare
function that concentrates the whole welfare weight at percentile p of the total gross income distribu-
tion; capital-labor substitution elasticities σ = 0.6 (endogenous prices) and σ = ∞ (exogenous prices);
benchmark Frisch elasticity of labor supply (γl = 0.5).

In any case, we observe that the sufficient statistics formula provides a very good ap-
proximation of the optimal tax rates. Only for objectives, which maximize the welfare

22 Note that the distinction between semi-elasticities and elasticities matters for such an analysis. In
line with the sufficient statistics literature, I assume that the elasticities ε̄x,1−τk , rather than the semi-
elasticities ε̄x,1−τk , are constant. As shown in Figure 7, this approximates the tax rates obtained
through global numerical optimization methods quite well.

23 For a more thorough discussion on this issue see, for example, Section 3.3 in Kleven (2021).
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of the bottom 10 percent, are the discrepancies somewhat significant. For example,
while the ‘true’ optimal Rawlsian tax rate is around 91%, the sufficient statistic for-
mula suggests that it is close to 98%.

Otherwise, we observe a similar pattern as with the local welfare analysis above.
Specifically, while the exogenous price case suggests that the current tax rate is approx-
imately optimal for the bottom 60% of the income distribution, taking into account
price endogeneity renders current tax rates too low for this part of the population.
The reason is, as discussed above, the significantly lower excess burden. Furthermore,
contrary to the exogenous price case, optimal tax rates are strongly decreasing in in-
come when prices are endogenous. For example, with exogenous prices, the “optimal”
tax rate from the perspective of the very bottom of the income distribution is around
44%, only 6-7% higher than what households in percentile 60 of the income distri-
bution would find optimal. By contrast, with endogenous prices, the corresponding
optimal tax rates decrease by almost 40%, from above 90% (Rawlsian) to about 53%
(welfare objective maximizing welfare of percentile 60). As explained above, the main
reason is the depressing effect of capital tax increases on wages. As one moves up the
income distribution the net income loss due to the decrease in wages tends to become
more and more important relative to the gain in transfer income. Households around
the 70th percentile find the current tax rate approximately optimal, while higher in-
come households would like to see capital tax reductions. Appendix D shows that
these results are quite robust to different assumptions on the return to capital as well
as to the range of empirical estimates for the capital-labor substitution elasticity and
the wage-elasticity of labor supply.

6 Conclusion

In this paper, I derive an intuitive, testable and robust condition for the optimality of
capital income tax rates. I apply my theoretical results to US income and wealth data
and find that the majority of the US population, at least the bottom 60% of the income
distribution, would benefit from significant capital tax increases relative to the status
quo. Due to their depressing effect on wages, however, the desired capital tax rates
across this part of the population are strongly declining in labor income.

While the condition I derive holds for a battery of standard macroeconomic models,
an interesting further generalization would be to allow for heterogeneous labor skill
types that exhibit different degrees of substitutability with capital. Since empirically
high-skilled labor exhibits higher complementarity with capital than low-skilled labor
(Krusell, Ohanian, Ríos-Rull, and Violante, 2000), in such an environment capital tax
increases should reduce the wages of low earners by less than those of higher earners.
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Relative to the quantitative results in this paper this should further increase optimal
capital tax rates for welfare objectives that assign high weight on households in the
lower middle class, i.e. households who finance their consumption mostly through
wages – rather than government transfers – but who do not earn particularly much.
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A Proofs

A.1 Proofs of Theoretical Results in the Main Text

A.1.1 Proof of Lemma 1

Proof. In equilibrium rt = Fk(Kt, Lt)− δ and wt = Fl(Kt, Lt). Hence

drt

d(1− τr
k )

= Fkk(Kt, Lt)
dKt

d(1− τr
k )

+ Fkl(Kt, Lt)
dLt

d(1− τr
k )

and

dwt

d(1− τr
k )

= Fkl(Kt, Lt)
dKt

d(1− τr
k )

+ Fll(Kt, Lt)
dLt

d(1− τr
k )

.

Since F is homogeneous of degree one, Fk and Fl are both homogeneous of degree zero, implying
that Fkk(Kt, Lt)Kt + Fkl(Kt, Lt)Lt = 0 and Fkl(Kt, Lt)Kt + Fll(Kt, Lt)Lt = 0. These conditions, in turn,
imply that Fkk(Kt, Lt) = − Lt

Kt
Fkl(Kt, Lt) and Fll(Kt, Lt) = −Kt

Lt
Fkl(Kt, Lt). Plugging these into the

conditions above gives

drt

d(1− τr
k )

=

[
− Lt

Kt

dKt

d(1− τr
k )

+
dLt

d(1− τr
k )

]
Fkl(Kt, Lt)

and

dwt

d(1− τr
k )

=

[
dKt

d(1− τr
k )
− Kt

Lt

dLt

d(1− τr
k )

]
Fkl(Kt, Lt),

which is equivalent to

εrt,1−τk =
LtFkl(Kt, Lt)

rt

[
− εKt,1−τk + εLt,1−τk

]
and

εwt,1−τk =
KtFkl(Kt, Lt)

wt

[
εKt,1−τk − εLt,1−τk

]
Using the fact that

σt =
Fk(Kt, Lt)Fl(Kt, Lt)

F(Kt, Lt)Fkl(Kt, Lt)
,

these expressions are, in turn, is equivalent to the desired expressions

εrt,1−τk =
α̃l

t
σ

rt + δ

rt

[
εLt,1−τk − εKt,1−τk

]
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and

εwt,1−τk =
α̃k

t
σ

[
εKt,1−τk − εLt,1−τk

]
.

Finally, observe that

εrt,1−τk =
α̃l

t
σ

(rt + δ)Kt

rtKt

[
εLt,1−τk − εKt,1−τk

]
=

α̃l
t

σ

α̃kỸ
αkY

[
εLt,1−τk − εKt,1−τk

]
=

wL
Y

α̃k

αk

[
εLt,1−τk − εKt,1−τk

]
=αl α̃k

αk

[
εLt,1−τk − εKt,1−τk

]
.

A.1.2 Proof of Proposition 1

Proof. For convenience, I use the shorthand notation

ux,t(k0, η) ≡ ux
(
ct(k0, η), lt(k0, η)

)
for x ∈ {c, l, cc, ll, cl} throughout this proof.

I will also make use of the households’ optimality conditions, that is the intra-temporal labor supply
condition,

ηwt
(
1− τ′l (ηwtlt(k0, η))

)
uc,t(k0, η) = −ul,t(k0, η),

and the intertemporal Euler equation

uc,t(k0, η) = β[1 + (1− τk,t+1)r]uc,t+1(k0, η).

The planner solves

max
τr

k≤1
W = max

τr
k≤1

∫
ω(k0, η)

∞

∑
t=0

βtu
(
ct(k0, η), lt(k0, η)

)
dΓ

The first order condition with respect to 1− τr
k is

dW
d(1− τr

k )
=
∫

ω(k0, η)
∞

∑
t=0

βt
[

uc,t(k0, η)
dct(k0, η)

d(1− τr
k )

+ ul,t(k0, η)
dlt(k0, η)

d(1− τr
k )

]
dΓ = 0.
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The households’ budget constraint is given by

ct(k0, η) + kt+1(k0, η) =[1 + (1− τk,t)rt]kt(k0, η) + ηtwtlt(k0, η)− τl(ηtwtlt(k0, η)) + Tt.

Deriving with respect to (1− τr
k ) gives

dct(k0, η)

d(1− τr
k )

=− dkt+1(k0, η)

d(1− τr
k )

+ 1t≥tartkt(k0, η) +
(
1 + (1− τk,t)rt

)dkt(k0, η)

d(1− τr
k )

+ (1− τk,t)
drt

d(1− τr
k )

kt(k0, η) + ηtwt
(
1− τ′l (ηtwtlt(k0, η))

) dlt(k0, η)

d(1− τr
k )

+ ηtlt(k0, η)
(
1− τ′l (ηtwtlt(k0, η))

) dwt

d(1− τr
k )

+
dTt

d(1− τr
k )

,

where 1t≥ta denotes an indicator function that takes the value one if t ≥ ta and the value zero
otherwise. The government transfer in period t is given by

Tt + G = τk,trtKt +
∫

τl(ηwtlt(k0, η))dΓ.

Deriving it with respect to (1− τr
k ) gives

dTt

d(1− τr
k )

=− rtKt1t≥ta + τk,trt
dKt

d(1− τr
k )

+ τk,tKt
drt

d(1− τr
k )

+
∫

τ′l (ηwtlt(k0, η))

[
ηwt

dlt(k0, η)

d(1− τr
k )

+ ηlt(k0, η)
dwt

d(1− τr
k )

]
dΓ.

Plugging the expression for dct(k0,η)
d(1−τr

k )
into the first order condition of the planner then gives

dW
d(1− τr

k )
=

∞

∑
t=0

βt
∫

ω(k0, η)uc,t(k0, η)

{
rt
(
kt − Kt

)
1t≥ta + (1− τk,t)

drt

d(1− τk)
kt(k0, η) + τk,tKt

drt

d(1− τk)

+ ηlt(k0, η)
(
1− τ′l (ηwtlt(k0, η))

) dwt

d(1− τr
k )

+
∫

τ′l (ηwtlt(k0, η))ηlt(k0, η)
dwt

d(1− τr
k )

dΓ

+ τk,trt
dKt

d(1− τr
k )

+
∫

τ′l (ηwtlt(k0, η))ηwt
dlt(k0, η)

d(1− τr
k )

dΓ
}

dΓ = 0.

Note that the derivatives dkt(k0,η)
d(1−τr

k )
and dlt(k0,η)

d(1−τr
k )

all drop out because of households’ optimization be-
havior (envelope conditions).

By Lemma 1 we have

drt

d(1− τr
k )

=
Lt

Kt

dwt

d(1− τr
k )

.
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Hence, the first order condition can be further simplified to

dW
d(1− τr

k )
=

∞

∑
t=0

βt
∫

ω(k0, η)uc,t(k0, η)

{
rt
(
kt − Kt

)
1t≥ta +

dwt

d(1− τr
k )

[
− Lt(1− τk,t)

kt(k0, η)

Kt
− τk,tLt

+ ηlt(k0, η)
(
1− τ′l (ηwtlt(k0, η))

)
+
∫

τ′l (ηwtlt(k0, η))ηlt(k0, η)dΓ
]

+ τk,trt
dKt

d(1− τr
k )

+
∫

τ′l (ηwtlt(k0, η))ηwt
dlt(k0, η)

d(1− τr
k )

dΓ
}

dΓ = 0.

Assumption 3 implies that we can evaluate this condition at the initial steady state.A.1 Hence,

dW
d(1− τr

k )
=

∞

∑
t=0

βt
∫

ω(k0, η)uc(k0, η)

{
r
(
k0 − K

)
1t≥ta +

dwt

d(1− τr
k )

L
[
− (1− τk)

k0

K
− τk

+
ηl(k0, η)

L
(
1− τ′l (ηwl(k0, η))

)
+
∫

τ′l (ηwl(k0, η))
ηl(k0, η)

L
dΓ
]

+τkr
dKt

d(1− τr
k )

+
∫

τ′l (ηwl(k0, η))ηw
dlt(k0, η)

d(1− τr
k )

dΓ
}

dΓ = 0,

which using that ω(k0, η)uc(k0, η) = g(k0, η) and the definition for the income weighted average
marginal labor tax rate

τ̄′l =

∫
τ′l (k0, η)ηwl(k0, η)dΓ

wL
,

is equivalent to

dW
d(1− τr

k )
=

∞

∑
t=0

βt
∫

g(k0, η)

{
r
(
k0 − K

)
1t≥ta + τkr

dKt

d(1− τr
k )

+
∫

τ′l (ηwl(k0, η))ηw
dlt(k0, η)

d(1− τr
k )

dΓ

+
dwt

d(1− τr
k )

L
[
(1− τk)

(
1− rk0

rK

)
− (1− τ̄′l )

(
1−

(
1− τ′l (ηwl(k0, η))

)
ηwl(k0, η)

wL

)]}
dΓ = 0.

Using the normalization
∫

g(k0, η)dΓ = 1 and multiplying by 1−β
rK gives

dW
d(1− τr

k )
Yk =βta

(ḡk − 1) +
τk

1− τk
(1− β)

∞

∑
t=0

βtεKt,1−τk

+
1

1− τk

wL
rK

(1− β)
∞

∑
t=0

βt
∫

τ′l (ηwl(k0, η))
ηl(k0, η)

L
εlt(k0,η),1−τk

dΓ

+

[
(1− ḡk)−

1− τ̄′l
1− τk

(1− g̃l)

]
(1− β)

∞

∑
t=0

βtεwt,1−τk

wL
rK

= 0.

A.1 This implies that we can drop the time indices of equilibrium variables but not of their derivatives. Transitional
dynamics induced by changing capital taxes are hence accounted for.
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Now note that

(1− β)
∞

∑
t=0

βt
∫

τ′l (ηwl(k0, η))
ηl(k0, η)

L
εlt(k0,η),1−τk

dΓ =

CovΓ

(
τ′l (k0, η),

yl(k0, η)

Yl ε̄l(k0,η),1−τk

)
+ EΓ[τ

′
l ]ε̄L,1−τk .

Hence we obtain

dW
d(1− τr

k )
Yk = βta

(ḡk − 1) +
τk

1− τk
ε̄K,1−τk +

1
1− τk

wL
rK

[
CovΓ

(
τ′l ,

yl

Yl ε̄l,1−τk

)
+ EΓ[τ

′
l ]ε̄L,1−τk

]
+ε̄w,1−τk

wL
rK

[
(1− ḡk)−

1− τ̄′l
1− τk

(1− g̃l)

]
= 0.

Using the definitions

EQM =βta
(1− ḡk)

MEBK =
τk

1− τk
ε̄K,1−τk = τk ε̄K,1−τk

MEBL =
1

1− τk

wL
rK

[
EΓ[τ

′
l ] + CovΓ

(
τ′l ,

yl

Yl ε̄l,1−τk

)]
=

αl

αk ε̄L,1−τk

[
EΓ[τ

′
l ] + CovΓ

(
τ′l ,

yl

Yl

ε̄ l,1−τk

ε̄L,1−τk

)]
P =− ε̄w,1−τk

wL
rK

[
(1− ḡk)−

1− τ̄′l
1− τk

(1− g̃l)

]
= ε̄w,1−τk

αl

αk

[
(1− τk)ḡk − (1− τ̄′l )g̃l − (τ̄′l − τk)

]
EQP =ε̄w,1−τk

αl

αk

[
(1− τk)ḡk − (1− τ̄′l )g̃l

]
MEBP = = ε̄w,1−τk

αl

αk

[
τ̄′l − τk

]
this is equivalent to

dW
dτr

k
Yk = EQM + EQP −

[
MEBK + MEBL + MEBP

]
= 0,

proving both the decomposition (4) of the welfare change as well as the optimality condition (5) for
the optimal tax rate,

τk =
βta

(1− ḡk)−MEBL + P
ε̄K,1−τk

=
βta

(1− ḡk)

ε̄K,1−τk

−
ε̄L,1−τk

ε̄K,1−τk

αl

αk

[
EΓ[τ

′
l ] +

1
Yl ε̄L,1−τk

CovΓ
(
τ′l , yl ε̄ l,1−τk

)]
+

ε̄w,1−τk

ε̄K,1−τk

αl

αk

[
(1− τk)ḡk − (1− τ̄′l )g̃l + τk − τ̄′l

]
.

Finally, τk < 1 ensures that the solution is interior. Hence equation (5) is indeed a necessary condi-
tion for τk to be optimal.
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A.2 Proofs of Theoretical Results in the Appendix

A.2.1 Proof of Lemma B.1

Proof. The entrepreneur’s profit is π = maxl{F(k, ld) − δk − wld}. The first order condition is
Fl(k, ld) = w. Linear homogeneity of F implies that Fl

( k
ld , 1

)
= Fl

(Kc

Lc , 1
)
= w, i.e. all firms em-

ploy the same ratio of effective capital to effective labor, proving part (a).

Furthermore, linear homogeneity of F implies

F(k, l) = kFk(k, ld) + ldFl(k, ld) = kFk(k, ld) + ldw

by Euler’s Theorem. Plugging into the profit function above gives

π =kFk(k, ld)− kδ = kFk(Kc, Lc)− kδ = kr,

which proves part (b).

A.2.2 Proof of Proposition B.1

Proof. For convenience, I use the shorthand notation

uz,t(xt) ≡ uz,t
(
ct(xt; Γt), lt(xt; Γt)

)
for z ∈ {c, l, cc, ll, cl} throughout this proof.

I will also make use of the households’ optimality conditions. The intra-temporal labor supply
condition is the same as in the framework of the main text, that is

ηwt
(
1− τ′l (ηwtlt(xt))

)
uc,t(xt) = −ul,t(xt).

However, now there are two intertemporal Euler equations that characterize optimal bond and pri-
vate equity holdings, respectively. The Euler equation for bond holdings is given by

uc,t(xt) = β
∫

p(θ′, η′|θ, η)[1 + (1− τk,t+1)r]uc,t+1(xt, θ′, η′)d(θ′, η′) + µb
t (x

t),

where µb
t (x

t) is the Lagrange multiplier on the borrowing constraint bt+1(xt) ≥ −b(et+1(xt)). The
Euler equation for private equity holdings is given by

uc,t(xt) = β
∫

p(θ′, η′|θ, η)[1 + (1− τk,t+1)θ
′r]uc,t+1(xt, θ′, η′)d(θ′, η′) + µe

t(x
t),

where µe
t(x

t) is the Lagrange multiplier on the non-negativity constraint for private equity,
et+1(xt) ≥ 0.
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The final two optimality conditions are the complementary slackness conditions

µb
t (x

t)
(
bt+1(xt) + b(et+1(xt))

)
= 0

and

µe
t(x

t)et+1(xt) = 0.

The social planner’s problem (P̃) is equivalent to

max
τk≤1

∞

∑
t=0

βt
∫ ∫

ωt(xt)p(xt|x0)u
(
ct(xt), lt(xt)

)
dxtdΓ0

s.t. T ≥ T.

The first order condition with respect to 1− τr
k is

∞

∑
t=0

βt
∫ ∫

ωt(xt)p(xt|x0)

[
uc
(
ct(xt)

) dct(xt)

d(1− τk)
+ uc

(
lt(xt)

) dlt(xt)

d(1− τk)

]
dxtdΓ0 = 0.

In each period t, the households’ budget constraint is given by

ct(xt) + et+1(xt) + bt+1(xt) =(1− τk,t)rt
[
θtet(xt−1) + bt(xt−1)

]
+ et(xt−1) + bt(xt−1)

+ ηtwtlt(xt)− τl(ηtwtlt(xt)) + Tt.

Deriving with respect to (1− τr
k ) gives

dct(xt)

d(1− τr
k )

+
det+1(xt)

d(1− τr
k )

+
dbt+1(xt)

d(1− τr
k )

= 1t≥tartkt(xt) + (1− τk,t)rt

[
θt

det(xt−1)

d(1− τr
k )

+
dbt(xt−1)

d(1− τr
k )

]
+

det(xt−1)

d(1− τr
k )

+
dbt(xt−1)

d(1− τr
k )

+ (1− τk,t)
drt

d(1− τr
k )

kt(xt) + ηtwt
(
1− τ′l (ηtwtlt(k0, η))

) dlt(xt)

d(1− τr
k )

+ηtlt(xt)
(
1− τ′l (ηtwtlt(xt))

) dwt

d(1− τr
k )

+
dTt

d(1− τr
k )

,

where 1t≥ta denotes an indicator function that takes the value one if t ≥ ta and the value zero
otherwise and

kt(xt) ≡ θtet(xt−1) + bt(xt−1).

The government transfer in period t is given by

Tt + G = τk,trtKt +
∫

τl(ηwtlt(xt(xt)))dΓt,
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where xt(xt) denotes the state (at, θt, ηt) in period t that corresponds to history xt. Deriving it with
respect to (1− τr

k ) gives

dTt

d(1− τr
k )

=− rtKt1t≥ta + τk,trt
dKt

d(1− τr
k )

+ τk,tKt
drt

d(1− τr
k )

+
∫

τ′l (ηwtlt(xt(xt)))

[
ηwt

dlt(xt(xt))

d(1− τr
k )

+ ηlt(xt(xt))
dwt

d(1− τr
k )

]
dΓt.

Plugging the expression for dct(xt)
d(1−τr

k )
into the first order condition of the planner then gives

∞

∑
t=0

βt
∫ ∫

ωt(xt)p(xt|x0)uc,t(xt)

{
rt
(
kt(xt)− Kt

)
1t≥ta + (1− τk,t)

drt

d(1− τk)
kt(xt)

+τk,tKt
drt

d(1− τk)
+ ηlt(xt)

(
1− τ′l (ηwtlt(xt))

) dwt

d(1− τr
k )

+
∫

τ′l (ηwtlt(xt))ηlt(xt)
dwt

d(1− τr
k )

dΓ

+τk,trt
dKt

d(1− τr
k )

+
∫

τ′l (ηwtlt(xt(xt)))ηwt
dlt(xt(xt))

d(1− τr
k )

dΓt

}
dxtdΓ0 = 0.

Note that the derivatives dlt(xt)
d(1−τr

k )
, det+1(xt)

d(1−τr
k )

and dbt+1(xt)
d(1−τr

k )
all drop out because of households’ optimiza-

tion behavior (envelope conditions). Specifically, note that for histories xt, in which the Euler equa-
tion for bonds, respectively private equity, holds with strict inequality, we have dbt+1(xt)

d(1−τr
k )

= 0, respec-

tively det+1(xt)
d(1−τr

k )
= 0.

Furthermore, linear homogeneity of F implies that drt
d(1−τk)

= − Lt
Kt

dwt
d(1−τk)

(see Lemma 1). Hence, the
first order condition can be further simplified to

∞

∑
t=0

βt
∫ ∫

ωt(xt)p(xt|x0)uc,t(xt)

{
rt
(
kt(xt)− Kt

)
1t≥ta +

dwt

d(1− τr
k )

[
− Lt(1− τk,t)

kt(xt)

Kt

−τk,tLt + ηlt(xt)
(
1− τ′l (ηwtlt(xt))

)
+
∫

τ′l (ηwtlt(xt(xt)))ηlt(xt(xt))dΓt

]
+τk,trt

dKt

d(1− τr
k )

+
∫

τ′l (ηwtlt(xt(xt)))ηwt
dlt(xt(xt))

d(1− τr
k )

dΓt

}
dxtdΓ0 = 0.

Using that if τk solves the planners problem we have that τk,t = τk for all t and employing Assump-
tion 3, this is equivalent to

∞

∑
t=0

βt
∫ ∫

ωt(xt)p(xt|x0)uc,t(xt)

{(
yk

t (x
t)−Yk)1t≥ta +

τk
1− τk

YkεKt,1−τk

+εwt,1−τkY
l
[
− yk

t (x
t)

Yk − τk
1− τk

+
yl

t(x
t)

Yl

1− τ′l (y
l
t(x

t))

1− τk
+

τ̄′l
1− τk

]
+

1
1− τk

∫
τ′l (y

l
t(x))y

l
t(x)εlt(x),1−τk

dΓ
}

dxtdΓ = 0,
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where

τ̄′l,t =

∫
τ′l (ηwtlt(xt(xt)))ηwtlt(xt(xt))dΓt

wtLt
,

and because of Assumption 3 we have τ̄′l,t = τ̄′l .

Now use that gt(xt) = ωt(xt)uc,t(xt) and that by normalization (B.1)

(1− β)
∞

∑
t=0

βt
∫ ∫

ωt(xt)p(xt|x0)uc,t(xt)dxtdΓ = 1

as well as

(1− β)
∞

∑
t=0

βt
∫

τ′l (y
l
t(x))

yl
t(x)
Yl εlt(x),1−τk

dΓ = EΓ[τ
′
l ]ε̄L,1−τk + CovΓ

(
τ′l ,

yl

Yl ε̄l,1−τk

)
.

Multiplying the first order condition by (1− β) then gives

(1− β)
∞

∑
t=0

βt
∫

gt(xt)
(
yk

t (x
t)−Yk)1t≥ta dPt +

τk
1− τk

Yk(1− β)
∞

∑
t=0

βtεKt,1−τk ḡt

+(1− β)
∞

∑
t=0

βtεwt,1−τk

∫
gt(xt)Yl

[
− yk

t (x
t)

Yk − τk
1− τk

+
yl

t(x
t)

Yl

1− τ′l (y
l
t(x

t))

1− τk
+

τ̄′l
1− τk

]
dPt

+
Yl

1− τk

[
EΓ[τ

′
l ]ε̄L,1−τk + CovΓ

(
τ′l ,

yl

Yl ε̄l,1−τk

)]
= 0.

Dividing by Yk and rearranging terms gives

(1− β)
∞

∑
t=ta

βt
∫

gt(xt)

(
yk

t (x
t)

Yk − 1
)

dPt +
τk

1− τk
(1− β)

∞

∑
t=0

βtεKt,1−τk ḡt

−
Yl

Yk

1− τk
(1− β)×

∞

∑
t=0

βtεwt,1−τk

∫
gt(xt)

[
(1− τk)

yk
t (x

t)

Yk − (1− τ̄′l )

(
1− τ′l (y

l
t(x

t))
)
yl

t(x
t)

(1− τ̄′l )Y
l + τk − τ̄′l

]
dPt

+
Yl

Yk

1− τk

[
EΓ[τ

′
l ]ε̄L,1−τk + CovΓ

(
τ′l ,

yl

Yl ε̄l,1−τk

)]
= 0.

Using the definitions of ε̂K,1−τk , Ḡk Ḡk and G̃ l this is equivalent to

βta
(Ḡk − 1) +

τk
1− τk

ε̂K,1−τk − ε̄w,1−τk

Yl

Yk

1− τk

[
(1− τk)Ḡk − (1− τ̄′l )G̃ l + τk − τ̄′l

]

+
Yl

Yk

1− τk

[
EΓ[τ

′
l ]ε̄L,1−τk + CovΓ

(
τ′l ,

yl

Yl ε̄l,1−τk

)]
= 0.

Rearranging terms then gives the desired expression.
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Finally, τk < 1 ensure that the solution is interior. Hence equation (B.2) is indeed a necessary condi-
tion for τk to be optimal.

A.2.3 Proof of Lemma C.1

Proof. The intra-temporal optimality condition is given by

(
1− τ′l (ηwtlt(k0, η))

)
ηwtuc,t = −ul,t,

where I denote

uc,t ≡ uc(ct(k0, η), lt(k0, η)) and ul,t ≡ ul(ct(k0, η), lt(k0, η)).

Deriving with respect to x ∈ {1− τk, r̄s, T} or with respect to x ∈ {ws}s 6=t and evaluating at the
steady state gives

−τ′′l (ηwl(k0, η))(ηw)2 ∂lt(k0, η)

∂x
uc +

(
1− τ′l (ηwl(k0, η))

)
ηw
[

ucc
∂ct(k0, η)

∂x
+ ucl

∂lt(k0, η)

∂x

]
=

−ucl
∂ct(k0, η)

∂x
− ull

∂lt(k0, η)

∂x
,

which is equivalent to

∂ct(k0, η)

∂x

[(
1− τ′l (ηwl(k0, η))

)
ηwucc + ucl

]
=

∂lt(k0, η)

∂x

[
τ′′l (ηwl(k0, η))(ηw)2uc −

(
1− τ′l (ηwl(k0, η))

)
ηwucl − ull

]
Dividing by

(
1− τ′l (ηwl(k0, η))

)
ηw gives

∂ct(k0, η)

∂x

[
ucc +

ucl(
1− τ′l (ηwl(k0, η))

)
ηw

]
=

∂lt(k0, η)

∂x

[
τ′′l (ηwl(k0, η))ηwuc

1− τ′l (ηwl(k0, η))
− ucl −

ull(
1− τ′l (ηwl(k0, η))

)
ηw

]
.

Plugging in the intra-temporal first order condition and the definition of the local rate of tax pro-
gressivity gives

∂ct(k0, η)

∂x

[
ucc −

ucluc

ul

]
=

∂lt(k0, η)

∂x

[
p(ηwl(k0, η))uc

l(k0, η)
− ucl +

ulluc

ul

]
.

Dividing by uc then gives

∂ct(k0, η)

∂x

[
ucc

uc
− ucl

ul

]
=

∂lt(k0, η)

∂x

[
p(ηwl(k0, η))

l(k0, η)
− ucl

uc
+

ull
ul

]
.
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Now observe that Assumption 4 implies

ucc

uc
− ucl

ul
= 0

and therefore

∂lt(k0, η)

∂x
= 0,

which proves the Lemma for x ∈ {1− τk, r̄s, Ts} and for x ∈ {ws}s 6=t.

Deriving the intra-temporal optimality condition with respect to wt and evaluating at the steady
state

(
1− τ′l (ηwl(k0, η))

)
η

[
uc + w

(
ucc

∂ct(k0, η)

∂wt
+ ucl

∂lt(k0, η)

∂wt

)]
−τ′′l (ηwl(k0, η))ηwucη

[
l(k0, η) + w

∂lt(k0, η)

∂wt

]
= −ucl

∂ct(k0, η)

∂wt
− ull

∂lt(k0, η)

∂wt
,

which is equivalent to

∂ct(k0, η)

∂wt

[(
1− τ′l (ηwl(k0, η))

)
ηwucc + ucl

]
+
(
1− τ′l (ηwl(k0, η))

)
ηuc

−τ′′l (ηwl(k0, η))ηwucηl(k0, η) =

∂lt(k0, η)

∂wt

[
−
(
1− τ′l (ηwl(k0, η))

)
ηwucl + τ′′l (ηwl(k0, η))(ηw)2uc − ull

]
Dividing by

(
1− τ′l (ηwl(k0, η))

)
ηw gives

∂ct(k0, η)

∂wt

[
ucc +

ucl(
1− τ′l (ηwl(k0, η))

)
ηw

]
+

uc

w
−

τ′′l (ηwl(k0, η))ηwucηl(k0, η)(
1− τ′l (ηwl(k0, η))

)
ηw

=

∂lt(k0, η)

∂wt

[
− ucl +

τ′′l (ηwl(k0, η))(ηw)2uc(
1− τ′l (ηwl(k0, η))

)
ηw
− ull(

1− τ′l (ηwl(k0, η))
)
ηw

]
Plugging in the intra-temporal first order condition and the definition of the local rate of tax pro-
gressivity gives

∂ct(k0, η)

∂wt

[
ucc −

ucluc

ul

]
+

uc

w
(
1− p(ηwl(k0, η))

)
=

∂lt(k0, η)

∂wt

[
− ucl +

p(ηwl(k0, η))uc

l(k0, η)
+

ulluc

ul

]
.

Dividing by uc then gives

∂ct(k0, η)

∂wt

[
ucc

uc
− ucl

ul

]
+

(
1− p(ηwl(k0, η))

)
w

=
∂lt(k0, η)

∂wt

[
− ucl

uc
+

p(ηwl(k0, η))

l(k0, η)
+

ull
ul

]
.
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Again using the fact that Assumption 4 implies

ucc

uc
− ucl

ul
= 0

gives (
1− p(ηwl(k0, η))

)
w

=
∂lt(k0, η)

∂wt

[
p(ηwl(k0, η))

l(k0, η)
+

ull
ul
− ucl

uc

]
.

Furthermore, one can check that Assumption 4 also implies

ull
ul
− ucl

uc
=

v′′(l(k0, η))

v′(l(k0, η))
.

Hence,

∂lt(k0, η)

∂wt
=

l(k0, η)
(
1− p(ηwl(k0, η))

)
w
[

p(ηwl(k0, η)) + l(k0, η) v′′(l(k0,η))
v′(l(k0,η))

]
which is equivalent to

∂lt(k0, η)

∂wt
=

l(k0, η)
(
1− p(ηwl(k0, η))

)
w
[

p(ηwl(k0, η)) + 1
γl(k0,η)

] .

In terms of elasticities this is the same as

ε̃lt(k0,η),wt =
γl(k0, η)

(
1− p(ηwl(k0, η))

)
1 + γl(k0, η)p(ηwl(k0, η))

.

which proofs the final part of the lemma.

A.2.4 Proof of Lemma C.2

Proof. The transfer in period s is given by

Ts = 1t≥ta τkrsKs +
∫

τl(ηwsls(k0, η))dΓ− G

Deriving with respect to 1− τr
k gives

dTs

d(1− τr
k )

=− 1t≥tarsKs + τk

[
rs

dKs

d(1− τr
k )

+
drs

d(1− τk)
Ks

]
+
∫

τ′l (y
l(k0, η))η

[
ws

dls(k0, η)

d(1− τk)
+

dws

d(1− τk)
ls(k0, η)

]
dΓ,
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which can be written in terms of elasticities as

εTs,1−τk =− 1t≥ta(1− τk)
Yk

s
Ts

+ τk

[
Yk

s
Ts

εKs,1−τk +
Yk

s
Ts

εrs,1−τk

]
+

1
Ts

∫
τ′l (y

l(k0, η))η

[
wsls(k0, η)εls(k0,η),1−τk

+ εws,1−τk wsls(k0, η)

]
dΓ

Note that by the same arguments as in the proof of Lemma C.1 we have that εls(k0,η),1−τk
=

ε̃ls(k0,η),ws εws,1−τk . Plugging in this result gives

εTs,1−τk =− 1t≥ta(1− τk)
Yk

s
Ts

+ τk

[
Yk

s
Ts

εKs,1−τk +
Yk

s
Ts

εrs,1−τk

]
+

Yl
s

Ts
εws,1−τk

[ ∫
τ′l (y

l(k0, η))
yl

s(k0, η)

Yl
s

ε̃ls(k0,η),ws dΓ + τ̄′l,s

]
.

Now note that

∫
τ′l (y

l(k0, η))
yl

s(k0, η)

Yl
s

ε̃ls(k0,η),ws dΓ = EΓ[τ
′
l ]ε̃L,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
.

Using this and plugging in the expressions for εrs,1−τk and εws,1−τk from Lemma 1 gives

εTs,1−τk =− 1t≥ta(1− τk)
Yk

T
+ τk

[
Yk

T
εKs,1−τk +

Yk

T
α̃l

σ

r + δ

r
[
εLs,1−τk − εKs,1−τk

]]
+

Yl

T
α̃k

σ

[
εKs,1−τk − εLs,1−τk

][
EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

]
,

where Assumption 3 allowed me to drop some time indices.

Finally, plugging in the expression for εLt,1−τk from Corollary C.1 gives

εTs,1−τk =− 1t≥ta(1− τk)
Yk

T
+ τk

[
Yk

T
εKs,1−τk −

Yk

T
α̃l

σ

r + δ

r
εKs,1−τk

σ

σ + α̃kε̃Ls,ws

]
+

Yl

T
α̃k

σ
εKs,1−τk

σ

σ + α̃kε̃Ls,ws

[
EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

]
,

which is equivalent to

εTs,1−τk =
Yk

T

[
− 1t≥ta(1− τk) + τkεKs,1−τk

]
+

Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

[
αl α̃k

(
EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

)
− αkα̃l r + δ

r
τk

]
.
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Finally, observe that

αkα̃l r + δ

r
= αkα̃l

α̃kỸ
K

αkY
K

= αkα̃l α̃kỸ
αkY

= α̃k α̃lỸ
Y

= α̃k wL
Y

= α̃kαl.

Plugging in above hence gives

εTs,1−τk =
Yk

T

[
− 1t≥ta(1− τk) + τkεKs,1−τk

]
+

Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

α̃kαl
[(

EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

)
− τk

]
.

A.2.5 Proof of Lemma C.3

Proof. For simplicity, I denote the net return to capital in period t by

r̄t = (1− τk)rt.

In the proof, I extensively make use of the fact that at the steady state, we have β(1 + r̄t) = 1 for all
t.

The Euler equation is given by

uc,t(k0, η) = β(1 + r̄t)uc,t+1(k0, η).

Hence, we can write the Euler equation as

uc,0(k0, η) =
[
β(1 + r̄)

]tuc,t(k0, η).

Partially deriving with respect to (1− τk) gives

ucc,0(k0, η)
∂c0(k0, η)

∂(1− τk)
+ ucl,0(k0, η)

∂l0(k0, η)

∂(1− τk)
=

[
β(1 + r̄)

]t
[

ucc,t(k0, η)
∂ct(k0, η)

∂(1− τk)
+ ucl,t(k0, η)

∂lt(k0, η)

∂(1− τk)

]
+ t
[
β(1 + r̄)

]t−1
βruc,t(k0, η),

which, evaluated at the initial steady state, is equivalent to

ucc(k0, η)
∂c0(k0, η)

∂(1− τk)
+ ucl(k0, η)

∂l0(k0, η)

∂(1− τk)
=[

ucc(k0, η)
∂ct(k0, η)

∂(1− τk)
+ ucl(k0, η)

∂lt(k0, η)

∂(1− τk)

]
+ tβruc(k0, η),
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which is the same as

ucc(k0, η)

[
∂ct(k0, η)

∂(1− τk)
− ∂c0(k0, η)

∂(1− τk)

]
+ ucl(k0, η)

[
∂lt(k0, η)

∂(1− τk)
− ∂l0(k0, η)

∂(1− τk)

]
= −tβruc(k0, η).

Using Lemma C.1 this is equivalent to

∂ct(k0, η)

∂(1− τk)
=

∂c0(k0, η)

∂(1− τk)
− tβr

uc(k0, η)

ucc(k0, η)
.

This can be rewritten in terms of elasticities as

ε̃ct(k0,η),1−τk
= ε̃c0(k0,η),1−τk

+ t(1− β)
uc(k0, η)

c(k0, η)ucc(k0, η)
. (A.1)

Deriving the intertemporal budget constraint

∞

∑
t=0

ct(k0, η)

(1 + r̄)t = (1 + r̄)k0 +
∞

∑
t=0

ηwlt(k0, η)− τl(ηwlt(k0, η)) + T
(1 + r̄)t

with respect to (1− τk) gives

∞

∑
t=0

[
∂ct(k0, η)

∂(1− τk)

1
(1 + r̄)t − t(1 + r̄)−t−1rc(k0, η)

]
= rk0

+
∞

∑
t=0

∂lt(k0, η)

∂(1− τk)

ηw
(
1− τ′l (ηwl(k0, η))

)
(1 + r̄)t − [ηwl(k0, η)− τl(ηwl(k0, η)) + T]

∞

∑
t=0

t(1 + r̄)−t−1r,

which evaluated at the steady state equals

∞

∑
t=0

∂ct(k0, η)

∂(1− τk)

1
(1 + r̄)t = rk0 +

∞

∑
t=0

∂lt(k0, η)

∂(1− τk)

ηw
(
1− τ′l (ηwl(k0, η))

)
(1 + r̄)t + r̄k0

∞

∑
t=0

t(1 + r̄)−t−1r.

Using the formulas for geometric and arithmetico-geometric sequences, and plugging in the result
above gives

∂c0(k0, η)

∂(1− τk)
= rk0 +

β2r
1− β

uc(k0, η)

ucc(k0, η)

The budget constraint is given by

ct(k0, η) = (1 + r̄)kt(k0, η)− kt+1(k0, η) +
(
1− τl(ηwlt(k0, η))

)
ηwlt(k0, η) + T

Deriving this constraint for t = 0 gives

∂k1(k0, η)

∂(1− τk)
=rk0 −

∂c0(k0, η)

∂(1− τk)
+ ηw

(
1− τ′l (ηwl(k0, η))

)∂l0(k0, η)

∂(1− τk)
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=rk0 −
∂c0(k0, η)

∂(1− τk)

=− β2r
1− β

uc(k0, η)

ucc(k0, η)
,

where the second equality follows from Lemma C.1.

Expressed in elasticities this is equivalent to

ε̃k1(k0,η),1−τk
= − β

k0

uc(k0, η)

ucc(k0, η)
.

This proves the Lemma for t = 1.

Consider now an arbitrary t ≥ 1. Assume the condition holds for an arbitrary t ≥ 1. Deriving the
budget constraint for any t ≥ 1 and evaluating at the steady state gives

∂kt+1(k0, η)

∂(1− τk)
=rk0 + (1 + r̄)

∂kt(k0, η)

∂(1− τk)
− ∂ct(k0, η)

∂(1− τk)
+ ηw

(
1− τ′l (ηwl(k0, η))

) ∂lt(k0, η)

∂(1− τk)

=rk0 − (1 + r̄)t
β2r

1− β

uc(k0, η)

ucc(k0, η)
− ∂ct(k0, η)

∂(1− τk)

=rk0 − (1 + r̄)t
β2r

1− β

uc(k0, η)

ucc(k0, η)
−
[

∂c0(k0, η)

∂(1− τk)
− tβr

uc(k0, η)

ucc(k0, η)

]
=− t

β

1− β
r

uc(k0, η)

ucc(k0, η)
−
[

β2r
1− β

− tβr
]

uc(k0, η)

ucc(k0, η)

=− uc(k0, η)

ucc(k0, η)

tβr + β2r− tβr + tβ2r
1− β

=− (t + 1)
β2r

1− β

uc(k0, η)

ucc(k0, η)
.

Expressed in terms of elasticities this is the same as

ε̃kt+1(k0,η),1−τk
=− (t + 1)

β

k0

uc(k0, η)

ucc(k0, η)
,

which completes the proof.

A.2.6 Proof of Lemma C.4

Proof. Assuming that Fkl = 0, the policy elasticity is given by

εKt,1−τk = ε̃Kt,1−τk +
∞

∑
s=0

ε̃Kt,Ts ε
ex
Ts,1−τk

,

where

εex
Ts,1−τk

=
Yk

T

[
− (1− τk) + τkεKs,1−τk

]
A-16



by Lemma C.2. Using Lemma A.3 gives

εKt,1−τk =ε̃Kt,1−τk +
∞

∑
s=0

ε̃Kt,Ts

Yk

T

[
− (1− τk) + τkεKs,1−τk

]
=ε̃Kt,1−τk +

t−1

∑
s=0

T
K

βs+1 Yk

T

[
− (1− τk) + τkεKs,1−τk

]
−

∞

∑
s=t

T
K

βs+1(β−t − 1)
Yk

T

[
− (1− τk) + τkεKs,1−τk

]
.

Therefore,

εKt,1−τk = ε̃Kt,1−τk + τkr
[ ∞

∑
s=0

βs+1εKs,1−τk − β−t
∞

∑
s=t

βs+1εKs,1−τk

]
.

I will now find a sequence {εKt,1−τk}∞
t=1 that satisfies the above equation for all t using the guess

εKt,1−τ = λε̃Kt,1−τk

for some λ > 0. We know from Lemma C.3 that ε̃Kt,1−τk = tε̃K1,1−τk . Hence, this guess implies

εKt,1−τ = tλε̃K1,1−τk .

Plugging in the above equation gives

tλε̃K1,1−τk =tε̃K1,1−τk + τkrλε̃K1,1−τk

[ ∞

∑
s=0

sβs+1 − β−t
∞

∑
s=t

sβs+1
]

=tε̃K1,1−τk + τkrβλε̃K1,1−τk

[ ∞

∑
s=0

sβs −
∞

∑
s=0

sβs − t
∞

∑
s=0

βs
]

=tε̃K1,1−τk − tτkrλε̃K1,1−τk

β

1− β

=t
(

1− τkrλ
β

1− β

)
ε̃K1,1−τk .

This equation is satisfied for all t if and only if

λ = 1− τkrλ
β

1− β
,

implying

λ =
1− β

1− β(1− τkr)
< 1.
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Hence, the policy elasticity with constant prices is given by

εKt,1−τk = t
1− β

1− β(1− τkr)
ε̃K1,1−τk .

A.2.7 Proof of Proposition C.1

Proof. Consider an agent with initial wealth k0 and labor productivity η. The total derivative of her
capital in period t with respect to 1− τk can be written as

dkt(k0, η)

d(1− τk)
=

∂kt(k0, η)

∂(1− τk)
+

∞

∑
s=0

∂kt(k0, η)

∂rs

drs

d(1− τk)

+
∞

∑
s=0

∂kt(k0, η)

∂Ts

dTs

d(1− τk)
+

∞

∑
s=0

∂kt(k0, η)

∂ws

dws

d(1− τk)
.

Defining the net return to capital in period t as

r̄t = (1− τk)rt

the above equation is equivalent to

dkt(k0, η)

d(1− τk)
=

∞

∑
s=0

∂kt(k0, η)

∂r̄s

[
r + (1− τk)

drs

d(1− τk)

]
+

∞

∑
s=0

∂kt(k0, η)

∂Ts

[
dTs

d(1− τk)
+ η

(
1− τ′l (ηwl(k0, η))

)
l(k0, η)

dws

d(1− τk)

]
,

that is one can express the capital change solely in terms of a price effects ∂kt(k0,η)
∂r̄s

and an income

effects ∂kt(k0,η)
∂Ts

.

In terms of elasticities, this can be rewritten as

εkt(k0,η),1−τk
=

∞

∑
s=0

ε̃kt(k0,η),r̄s

[
1 + εrs,1−τk

]
+

∞

∑
s=0

ε̃kt(k0,η),Ts

[
εTs,1−τk +

(
1− τ′l (y

l(k0, η))
)
yl(k0, η)

T
εws,1−τk

]
Lemma A.3 in Appendix A.3 shows that

ε̃kt(k0,η),Ts =
K
k0

ε̃Kt,Ts ,

that is the individual savings elasticities with respect to unearned income are inversely proportional
to wealth.
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Lemma A.3 in Appendix A.3 shows that

ε̃kt(k0,η),Ts =
K
k0

ε̃Kt,Ts ,

that is the individual savings elasticities with respect to unearned income are inversely proportional
to wealth. The aggregate elasticity

εKt,1−τk =
∫ k0

K
εkt(k0,η),1−τk

dΓ

is therefore given by

εKt,1−τk =
∞

∑
s=0

ε̃Kt,r̄s

[
1 + εrs,1−τk

]
+

∞

∑
s=0

ε̃Kt,Ts

[
εTs,1−τk +

1
T
(1− τ̄′l )Y

lεws,1−τk

]
. (A.2)

Also given by Lemma A.3 is the elasticity of aggregate capital supply in period t with respect to
unearned income in period s,

ε̃Kt,Ts =
T
K

∂Kt

∂Ts
=

− T
K βs+1(β−t − 1) if 1 ≤ t ≤ s
T
K βs+1 if t > s ≥ 0.

Lemma A.4 shows that the elasticity of aggregate capital supply in period t with respect to the
interest rate in period s is given by

ε̃Kt,r̄s =

βs(β−t − 1)
[
ε̃K1,1−τk − (1− β)

]
if 1 ≤ t ≤ s

βs(1− β) + (1− βs)ε̃K1,1−τk if t > s ≥ 0.

Observe that this is the same as

ε̃Kt,r̄s =


(1−τk)Yk−

Kε̃K1,1−τk
β

T ε̃Kt,Ts if 1 ≤ t ≤ s

(1−τk)Yk−
Kε̃K1,1−τk

β

T ε̃Kt,Ts + ε̃K1,1−τk if t > s ≥ 0.

Hence we can write (A.2) as

εKt,1−τk =
∞

∑
s=0

ε̃Kt,r̄s

[
1 + εrs,1−τk

]
+

∞

∑
s=0

ε̃Kt,Ts

[
εTs,1−τk +

1
T
(1− τ̄′l )Y

lεws,1−τk

]
=ε̃K1,1−τk

t−1

∑
s=0

[
1 + εrs,1−τk

]
+

∞

∑
s=0

ε̃Kt,Ts

[
εTs,1−τk +

(1− τk)Yk − Kε̃K1,1−τk
β

T
[
1 + εrs,1−τk

]
+

(1− τ̄′l )Y
l

T
εws,1−τk

]
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Furthermore, from Lemma 1 we know that

εrs,1−τk = −
α̃k

σ

αl

αk

[
εKs,1−τk − εLs,1−τk

]
and εws,1−τk =

α̃k

σ

[
εKs,1−τk − εLs,1−τk

]
,

which by Corollary C.1 is equivalent to

εrs,1−τk = −
α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk and εws,1−τk =
α̃k

σ + α̃kε̃Ls,ws

εKs,1−τk .

Finally, from Lemma C.2 we know

εTs,1−τk =
Yk

T

[
− (1− τk) + τkεKs,1−τk

]
+

Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

α̃kαl
[(

EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

)
− τk

]
.

Plugging all these results into the equation above gives

εKt,1−τk =ε̃K1,1−τk

t−1

∑
s=0

(
1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
+

t−1

∑
s=0

T
K

βs+1
[
− r̄K

T
+

Y
T

αkτkεKs,1−τk

+
Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

α̃kαl
[(

EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

)
− τk

]

+
(1− τk)Yk − Kε̃K1,1−τk

β

T

(
1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
+

(1− τ̄′l )Y
l

T
α̃k

σ + α̃kε̃Ls,ws

εKs,1−τk

]
+

∞

∑
s=t

(
− T

K
βs+1(β−t − 1)

)[
− r̄K

T
+

Y
T

αkτkεKs,1−τk

+
Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

α̃kαl
[(

EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

)
− τk

]

+
(1− τk)Yk − Kε̃K1,1−τk

β

T

(
1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
+

(1− τ̄′l )Y
l

T
α̃k

σ + α̃kε̃Ls,ws

εKs,1−τk

]
,

which is equivalent to

εKt,1−τk =ε̃K1,1−τk

[ t−1

∑
s=0

(
1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
−

∞

∑
s=0

βs
(

1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
+ β−t

∞

∑
s=t

βs
(

1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)]
+

t−1

∑
s=0

T
K

βs+1
[

Y
T

αkτkεKs,1−τk
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+
Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

α̃kαl
(

EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

))]
+

∞

∑
s=t

(
− T

K
βs+1(β−t − 1)

)[
Y
T

αkτkεKs,1−τk

+
Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

α̃kαl
(

EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

))]
,

which in turn is equivalent to

εKt,1−τk =− ε̃K1,1−τk

∞

∑
s=0

βs
(

1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
+ ε̃K1,1−τk

t−1

∑
s=0

(
1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
+ ε̃K1,1−τk β−t

∞

∑
s=t

βs
(

1− α̃k

σ + α̃kε̃Ls,ws

αl

αk εKs,1−τk

)
+

t−1

∑
s=0

βs+1
[

rτkεKs,1−τk + r
εKs,1−τk

σ + α̃kε̃Ls,ws

α̃k αl

αk

(
EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

))]
− (β−t − 1)

∞

∑
s=t

βs+1
[

rτkεKs,1−τk + r
εKs,1−τk

σ + α̃kε̃Ls,ws

α̃k αl

αk

(
EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

))]

I will now guess – and verify – that

εKs,1−τk = (1− λs)εK∞,1−τk (A.3)

with

εK∞,1−τk =
σ + α̃kε̃L1,w1

α̃k
αk

αl

and λ ∈ (0, 1).

Plugging this guess into the equation above gives

(1− λt)εK∞,1−τk =ε̃K1,1−τk

[
−

∞

∑
s=0

(βλ)s +
t−1

∑
s=0

λs + β−t
∞

∑
s=t

(βλ)s
]

+ r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
×

×
[ t−1

∑
s=0

βs+1(1− λs)− (β−t − 1)
∞

∑
s=t

βs+1(1− λs)

]
.

Using the limits of the geometric series this is the same as

(1− λt)εK∞,1−τk =ε̃K1,1−τk

[
− 1

1− βλ
+

1− λt

1− λ
+

λt

1− βλ

]
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+ β

[[
1− βt

1− β
− 1− (βλ)t

1− βλ

]
− (β−t − 1)

[
βt

1− β
− (βλ)t

1− βλ

]]
×

r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
,

which in turn is equivalent to

(1− λt)εK∞,1−τk =ε̃K1,1−τk

[
λt − 1
1− βλ

+
1− λt

1− λ

]
− β

1− λt

1− βλ
× r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]

Setting t = 1 gives

(1− λ)εK∞,1−τk =ε̃K1,1−τk

λ(1− β)

1− βλ
− β

1− λ

1− βλ
× r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
.

(A.4)

Multiplying by 1− βλ gives

(1− λ)(1− βλ)εK∞,1−τk =ε̃K1,1−τk λ(1− β)

− β(1− λ)r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
,

which is equivalent to the quadratic equation

λ2 βεK∞,1−τk︸ ︷︷ ︸
≡a

−λ

{
(1 + β(1 + τkr))εK∞,1−τk + (1− β)ε̃K1,1−τk + rβ

[
EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]}
︸ ︷︷ ︸

≡−b

+ εK∞,1−τk(1 + βτkr) + rβ

[
EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
︸ ︷︷ ︸

≡c

= 0.

There are two solutions to this quadratic equations. I will show that the root

λ =
−b−

√
b2 − 4ac

2a

has a value in (0, 1) and is decreasing in ε̃K1,1−τk .

First note that
√

b2 − 4ac is real since

b = −
(
a + c + (1− β)ε̃K1,1−τk

)
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and hence

b2 − 4ac =(a + c)2 + 2(a + c)(1− β)ε̃K1,1−τk + (1− β)2ε̃2
K1,1−τk

− 4ac

=(a− c)2 + 2(a + c)(1− β)ε̃K1,1−τk + (1− β)2ε̃2
K1,1−τk

> 0.

Then it follows immediately from b < 0, a > 0 and c > 0 that λ must be positive.

To see that λ < 1 note its numerator satisfies

−b−
√

b2 − 4ac =a + c + (1− β)ε̃K1,1−τk −
√
(a− c)2 + 2(a + c)(1− β)ε̃K1,1−τk + (1− β)2ε̃2

K1,1−τk

<a + c + (1− β)ε̃K1,1−τk −
√
(c− a)2 + 2(c− a)(1− β)ε̃K1,1−τk + (1− β)2ε̃2

K1,1−τk

=a + c + (1− β)ε̃K1,1−τk −
(
c− a + (1− β)ε̃K1,1−τk

)
= 2a.

Thus, since the numerator is smaller than the denominator, we must have λ < 1.

To see that dλ
dε̃K1,1−τk

< 0 note that

da
dε̃K1,1−τk

=
dc

dε̃K1,1−τk

= 0

and

db
dε̃K1,1−τk

= −(1− β)

Hence,

dλ

dε̃K1,1−τk

=
1
2a

[
1− β +

2b(1− β)

2
√

b2 − 4ac

]
=

1− β

2a

[
1 +

b√
b2 − 4ac

]
<0,

where the inequality follows from the fact that the absolute value of b is larger than the absolute
value of

√
b2 − 4ac and hence the term in squared brackets is negative.

Finally, one can show by induction that condition (A.3) holds for all t. By construction, it holds for
t = 1. What is left to show is that if it holds for an arbitrary t ≥ 1, it must also hold for t + 1.

Assume that it holds for t ≥ 1. If it holds also for t + 1, it must satisfy

(1− λt+1)εK∞,1−τk =ε̃K1,1−τk

[
λt+1 − 1
1− βλ

+
1− λt+1

1− λ

]
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− β
1− λt+1

1− βλ
× r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
This condition is equivalent to

(1− λt + λt − λt+1)εK∞,1−τk =ε̃K1,1−τk

[
λt+1 − λt + λt − 1

1− βλ
+

1− λt + λt − λt+1

1− λ

]
− β

1− λt + λt − λt+1

1− βλ
× r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
.

Using that condition (A.3) hold for t gives

(λt − λt+1)εK∞,1−τk =ε̃K1,1−τk

[
λt+1 − λt

1− βλ
+

λt − λt+1

1− λ

]
− β

λt − λt+1

1− βλ
× r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
.

Dividing by λt and rearranging terms gives

(1− λ)εK∞,1−τk =ε̃K1,1−τk

λ(1− β)

1− βλ
− β

1− λ

1− βλ
× r
[

τkεK∞,1−τk + EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)]
,

which is identical to condition (A.4). This quadratic equation has therefore the same solutions. This
completes the proof.

A.3 Auxiliary Lemmas and their Proofs

In this section I state and prove some auxiliary Lemmas, which I use in the proofs above.

A.3.1 Inter-temporal Consumption Response to Interest Rate Changes

Lemma A.1. Let Assumptions 1-3 be satisfied. Then

∂ct(k0, η)

∂r̄0
=

∂c0(k0, η)

∂r̄0

for all t ≥ 0. Furthermore for any s > 0 we have that

∂ct(k0, η)

∂r̄s
=

∂c0(k0, η)

∂r̄s

for all t < s and

∂ct(k0, η)

∂r̄s
=

∂c0(k0, η)

∂r̄s
− βuc(k0, η)

ucc(k0, η)

for all t ≥ s.
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Proof. The Euler equation in period s− 1 is given by

uc,s−1(k0, η) = β(1 + r̄s)uc,s(k0, η)

Partially deriving with respect to r̄s gives

ucc,s−1(k0, η)
∂cs−1(k0, η)

∂r̄s
+ ucl,s−1(k0, η)

∂ls−1(k0, η)

∂r̄s
= βuc,s(k0, η) + ucc,s(k0, η)

∂cs(k0, η)

∂r̄s

+ucl,s(k0, η)
∂ls(k0, η)

∂r̄s
.

Using Lemma C.1 and evaluating at the steady state gives

ucc(k0, η)
∂cs−1(k0, η)

∂r̄s
= βuc(k0, η) + ucc(k0, η)

∂cs(k0, η)

∂r̄s
,

which is equivalent to

∂cs−1(k0, η)

∂r̄s
=

∂cs(k0, η)

∂r̄s
+

βuc(k0, η)

ucc(k0, η)

Furthermore, partially deriving the Euler equations in all other periods one obtains that

∂ct(k0, η)

∂r̄s
=

∂cs−1(k0, η)

∂r̄s

t < s− 1 and that

∂ct(k0, η)

∂r̄s
=

∂cs(k0, η)

∂r̄s

for t > s, which proofs the Lemma.

A.3.2 Elasticity of Capital Supply with Respect to Unearned Income

Lemma A.2. Let Assumptions 1-4 be satisfied. Then

ε̃kt(k0,η),Ts =
T
k0

∂kt(k0, η)

∂Ts
=

− T
k0

βs+1(β−t − 1) if 1 ≤ t ≤ s
T
k0

βs+1 if t > s ≥ 0.

and

ε̃Kt,Ts =
T
K

∂Kt

∂Ts
=

− T
K βs+1(β−t − 1) if 1 ≤ t ≤ s
T
K βs+1 if t > s ≥ 0.
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As a consequence,

ε̃kt(k0,η),Ts =
K
k0

ε̃Kt,Ts .

Proof. Throughout the proof I use the shorthand notation

uc,t(k0, η) ≡ uc(ct(k0, η), lt(k0, η)) and ul,t(k0, η) ≡ ul(ct(k0, η), lt(k0, η))

The Euler equation of an agent with initial state (k0, η) is given by

uc,t(k0, η) = β(1 + (1− τk)rt+1)uc,t+1(k0, η).

Deriving with respect to Ts gives

ucc,t(k0, η)
∂ct(k0, η)

∂Ts
+ ucl,t(k0, η)

∂lt(k0, η)

∂Ts

= β(1 + (1− τk)rt+1)

[
ucc,t+1(k0, η)

∂ct+1(k0, η)

Ts
+ ucl,t+1(k0, η)

∂lt+1(k0, η)

∂Ts

]
Using Lemma C.1 and evaluating at the steady state, at which we have β(1 + (1 − τk)rt+1) = 1,
gives

ucc(k0, η)
∂ct(k0, η)

∂Ts
= ucc(k0, η)

∂ct+1(k0, η)

∂Ts
.

It follows that for all t ≥ 1

∂ct(k0, η)

∂Ts
=

∂c0(k0, η)

∂Ts

The inter-temporal budget constraint is given by

c0(k0, η) +
∞

∑
t=1

ct(k0, η)

∏t
u=1(1 + (1− τk)ru)

= (1 + (1− τk)r0)k0 + ηw0l0(k0, η)

−τl(ηw0l0(k0, η)) + T0 +
∞

∑
t=1

ηwtlt(k0, η)− τl(ηwtlt(k0, η)) + Tt

∏t
u=1(1 + (1− τk)ru)

.

Partially deriving with respect to Ts, using Lemma C.1, and evaluating at the steady state gives

∞

∑
u=0

βu ∂cu(k0, η)

∂Ts
= βs

Using that ∂cu(k0,η)
∂Ts

= ∂c0(k0,η)
∂Ts

for all u we get

∂cu(k0, η)

∂Ts
= (1− β)βs
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for all u.

Consider s = 0. The budget constraint in the initial period t = 0 is

c0(k0, η) + k1(k0, η) = (1 + (1− τk)r)k0 + ηwl0(k0, η)− τl(ηwl0(k0, η)) + T0

Hence,

∂k1(k0, η)

∂T0
= 1− ∂c0(k0, η)

∂T0
+ ηw

(
1− τ′l (ηwl(k0, η))

)∂l0(k0, η)

∂T0
= 1− (1− β) = β,

Now consider an arbitrary t ≥ 1 and assume that ∂kt(k0,η)
∂T0

= β. The budget constraint in t is

ct(k0, η) + kt+1(k0, η) = (1 + (1− τk)r)kt + ηwlt(k0, η)− τl(ηwlt(k0, η)) + Tt

Partially deriving with respect to T0 and evaluating at the steady state gives

∂kt+1(k0, η)

∂T0
=(1 + (1− τk)r)

∂kt(k0, η)

∂T0
− ∂ct(k0, η)

∂T0
+ ηw

(
1− τ′l (ηwl(k0, η))

)∂ltk0, η)

∂T0

=
1
β

∂kt(k0, η)

∂T0
− (1− β)

=
1
β

β− (1− β)

=β,

which implies that

∂Kt

∂Ts
= β.

for all t ≥ 1, proving the condition of the Lemma for s = 0.

Now consider s ≥ 1. I will show the condition for 1 ≤ t ≤ s by induction. First I will show that it
holds for ε̃K1,Ts . Partially deriving the budget constraint in the initial period t = 0 with respect to Ts

gives

∂k1(k0, η)

∂Ts
= −∂c0(k0, η)

∂Ts
+ ηw

(
1− τ′l (ηwl(k0, η))

)∂l0(k0, η)

∂Ts
= −(1− β)βs,

which implies that

∂K1

∂Ts
= −(1− β)βs = −βs+1(β−1 − 1).

Hence the condition of the Lemma is satisfied for any s ≥ 1 and t = 1.
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Now assume that the condition is satisfied for an arbitrary t− 1 < s. That is, let t− 1 < s with

∂kt−1(k0, η)

∂Ts
= −βs+1(β−(t−1) − 1).

Implicitly deriving the budget constraint in period t− 1 with respect to Ts gives

∂kt(k0, η)

∂Ts
=

1
β

∂kt−1(k0, η)

∂Ts
− ∂ct−1(k0, η)

∂Ts
+ ηw

(
1− τ′l (ηwl(k0, η))

)∂lt−1(k0, η)

∂Ts

=− βs(β−(t−1) − 1)− (1− β)βs

=− βs(β−(t−1) − 1 + 1− β)

=− βs+1(β−t − 1)

Hence for all (t, s) with s ≥ 1 and 1 ≤ t ≤ s we have

∂Kt

∂Ts
= −βs+1(β−t − 1).

Finally, we also show that the condition of the Lemma holds for all t > s > 0. We again use an
induction argument. First, consider the case t = s + 1. From above we know that

∂ks(k0, η)

∂Ts
= −βs+1(β−s − 1).

Partially deriving the budget constraint in period s = t− 1 gives

∂kt(k0, η)

∂Ts
=

1
β

∂ks(k0, η)

∂Ts
− ∂cs(k0, η)

∂Ts
+ ηw

(
1− τ′l (ηwl(k0, η))

)∂ls(k0, η)

∂Ts
+ 1

=− βs(β−s − 1)− (1− β)βs + 1

=− 1 + βs − βs + βs+1 + 1

=βs+1

Now assume that for any arbitrary t > s this condition holds. That is for any t > s we have

∂kt(k0, η)

∂Ts
=

∂Kt

∂Ts
= βs+1

Partially deriving the budget constraint in period t with respect to Ts gives

∂kt+1(k0, η)

∂Ts
=

1
β

∂kt(k0, η)

∂Ts
− ∂ct(k0, η)

∂Ts
+ ηw

(
1− τ′l (ηwl(k0, η))

)∂lt(k0, η)

∂Ts

=βs − (1− β)βs

=βs − βs + βs+1

=βs+1
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Hence for all t > s > 0 we have

∂kt(k0, η)

∂Ts
=

∂kt+1(k0, η)

∂Ts
=

∂Kt

∂Ts
=

∂Kt+1

∂Ts
= βs+1.

A.3.3 Elasticity of Capital Supply with Respect to Wages

Lemma A.3. Let Assumptions 1-4 be satisfied. Then

ε̃kt(k0,η),ws =
w
k0

∂kt(k0, η)

∂ws
=

−
yl(k0,η)

(
1−τ′l (y

l(k0,η))
)

k0
βs+1(β−t − 1) if 1 ≤ t ≤ s

yl(k0,η)
(

1−τ′l (y
l(k0,η))

)
k0

βs+1 if t > s ≥ 0.

and

ε̃Kt,ws =
w
K

∂Kt

∂ws
=

−
(1−τ̄′l )Y

l

K βs+1(β−t − 1) if 1 ≤ t ≤ s
(1−τ̄′l )Y

l

K βs+1 if t > s ≥ 0.

Proof. Throughout the proof I use the shorthand notation

uc,t(k0, η) ≡ uc(ct(k0, η), lt(k0, η)) and ul,t(k0, η) ≡ ul(ct(k0, η), lt(k0, η))

The Euler equation of an agent with initial state (k0, η) is given by

uc,t(k0, η) = β(1 + (1− τk)rt+1)uc,t+1(k0, η).

Deriving with respect to ws gives

ucc,t(k0, η)
∂ct(k0, η)

∂ws
+ ucl,t(k0, η)

∂lt(k0, η)

∂ws

= β(1 + (1− τk)rt+1)

[
ucc,t+1(k0, η)

∂ct+1(k0, η)

ws
+ ucl,t+1(k0, η)

∂lt+1(k0, η)

∂ws

]
Using Lemma C.1 and evaluating at the steady state, at which we have β(1 + (1 − τk)rt+1) = 1,
gives for all s /∈ {t, t + 1}

∂ct(k0, η)

∂ws
=

∂ct+1(k0, η)

∂ws
.

However, for s = t we have

∂ct(k0, η)

∂wt
+

ucl(k0, η)

ucc(k0, η)
ε̃l(k0,η),w

l(k0, η)

w
=

∂ct+1(k0, η)

∂wt
,
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while for s = t + 1 we have

∂ct(k0, η)

∂wt+1
=

∂ct+1(k0, η)

∂wt+1
+

ucl(k0, η)

ucc(k0, η)
ε̃l(k0,η),w

l(k0, η)

w
.

Furthermore, observe that

ucl(k0, η)

ucc(k0, η)
ε̃l(k0,η),w

l(k0, η)

w
= −ηl(k0, η)

(
1− τ′l (ηwl(l0, η))

)
ε̃l(k0,η),w.

Together these results imply that the consumption change is constant for all t 6= s

∂ct(k0, η)

∂ws
=

∂c 6=s(k0, η)

∂ws
,

while for t = s we have

∂ct(k0, η)

∂ws
=

∂c 6=s(k0, η)

∂ws
+ ηl(k0, η)

(
1− τ′l (ηwl(l0, η))

)
ε̃l(k0,η),w.

The inter-temporal budget constraint is given by

c0(k0, η) +
∞

∑
t=1

ct(k0, η)

∏t
u=1(1 + (1− τk)ru)

= (1 + (1− τk)r0)k0 + ηw0l0(k0, η)

−τl(ηw0l0(k0, η)) + T0 +
∞

∑
t=1

ηwtlt(k0, η)− τl(ηwtlt(k0, η)) + Tt

∏t
u=1(1 + (1− τk)ru)

.

Partially deriving with respect to ws, using Lemma C.1, and evaluating at the steady state gives

∞

∑
u=0

βu ∂cu(k0, η)

∂ws
= βs[1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

[
1 + ε̃l(k0,η),w

]
Using the results above gives

∂c 6=s(k0, η)

∂ws
= (1− β)βs[1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

and

∂cs(k0, η)

∂ws
=

[
(1− β)βs + ε̃l(k0,η),w

][
1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

Consider s = 0. The budget constraint in the initial period t = 0 is

c0(k0, η) + k1(k0, η) = (1 + (1− τk)r)k0 + ηw0l0(k0, η)− τl(ηw0l0(k0, η)) + T0
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Hence,

∂k1(k0, η)

∂w0
=− ∂c0(k0, η)

∂w0
+ ηl(k0, η)

(
1− τ′l (ηl(k0, η)w)

)[
1 + ε̃l(k0,η),w

]
=−

[
(1− β) + ε̃l(k0,η),w

][
1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

+ ηl(k0, η)
(
1− τ′l (ηl(k0, η)w)

)[
1 + ε̃l(k0,η),w

]
=β
[
1− τ′l (ηwl(k0, η))

]
ηl(k0, η).

Now consider an arbitrary t ≥ 1 and assume that

∂kt(k0, η)

∂w0
= β

[
1− τ′l (ηwl(k0, η))

]
ηl(k0, η).

The budget constraint in t is

ct(k0, η) + kt+1(k0, η) = (1 + (1− τk)r)kt + ηwtlt(k0, η)− τl(ηwlt(k0, η)) + Tt.

Partially deriving with respect to w0 and using Lemma C.1 gives

∂kt+1(k0, η)

∂w0
=− ∂ct(k0, η)

∂w0
+

1
β

∂kt(k0, η)

∂w0

=− (1− β)
[
1− τ′l (ηwl(k0, η))

]
ηl(k0, η) +

[
1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

=β
[
1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

Therefore,

ε̃kt(k0,η),w0
= β

[
1− τ′l (y

l(k0, η))
]
yl(k0, η)

k0

and

ε̃Kt,w0 = β
(1− τ̄′l )Y

l

K
,

which proves the statement for s = 0.

Next, consider s ≥ 1. I will show the condition for 1 ≤ t ≤ s by induction. First, I will show that it
holds for ε̃K1,ws . Partially deriving the budget constraint in the initial period t = 0 with respect to ws

gives

∂k1(k0, η)

∂w1
= −∂c0(k0, η)

∂w1
= −(1− β)βs[1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

A-31



and therefore

ε̃k1(k0,η),ws = −(1− β)βs
[
1− τ′l (y

l(k0, η))
]
yl(k0, η)

k0
,

as well as

ε̃K1,w1 = −(1− β)β
(1− τ̄′l )

]
Yl

K0
,

which proves the statement for s ≥ 1 and t = 1.

Now assume that the statement is satisfied for an arbitrary t− 1 < s. That is, let t− 1 < s with

∂kt−1(k0, η)

∂w1
= −(β−(t−1) − 1)βs+1[1− τ′l (ηwl(k0, η))

]
ηl(k0, η).

Implicitly deriving the budget constraint in period t− 1 with respect to ws gives

∂kt(k0, η)

∂ws
=

1
β

∂kt−1(k0, η)

∂ws
− ∂ct−1(k0, η)

∂ws

=− (β−(t−1) − 1)βs[1− τ′l (ηwl(k0, η))
]
ηl(k0, η)− (1− β)βs[1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

=− (β−(t−1) − β)βs[1− τ′l (ηwl(k0, η))
]
ηl(k0, η)

=− (β−t − 1)βs+1[1− τ′l (ηwl(k0, η))
]
ηl(k0, η),

which proves the statement for all (t, s) where s ≥ 1 and 1 ≤ t ≤ s.

Finally, we also show that the condition of the Lemma holds for all t > s > 0. We again use an
induction argument. First, consider the case t = s + 1. From above we know that

∂ks(k0, η)

∂ws
= −(β−s − 1)βs+1[1− τ′l (ηwl(k0, η))

]
ηl(k0, η).

Partially deriving the budget constraint in period s = t− 1 gives

∂kt(k0, η)

∂ws
=

1
β

∂ks(k0, η)

∂ws
− ∂cs(k0, η)

∂ws
+ ηl(k0, η)

(
1− τ′l (ηwl(k0, η))

)[
1 + ε̃l(k0,η),w

]
=− (β−s − 1)βs[1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

−
[
(1− β)βs + ε̃l(k0,η),w

][
1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

+ ηl(k0, η)
(
1− τ′l (ηwl(k0, η))

)[
1 + ε̃l(k0,η),w

]
=βs+1[1− τ′l (ηwl(k0, η))

]
ηl(k0, η),

which proves the statement for t = s + 1. Now assume that for any arbitrary t > s this condition
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holds, that is for any t > s we have

∂kt(k0, η)

∂ws
= βs+1[1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

Partially deriving the budget constraint in period t with respect to ws gives

∂kt+1(k0, η)

∂ws
=

1
β

∂kt(k0, η)

∂ws
− ∂ct(k0, η)

∂ws

=βs[1− τ′l (ηwl(k0, η))
]
ηl(k0, η)− (1− β)βs[1− τ′l (ηwl(k0, η))

]
ηl(k0, η)

=βs+1[1− τ′l (ηwl(k0, η))
]
ηl(k0, η).

Hence for all t > s > 0 we have

ε̃kt(k0,η),ws = βs+1

[
1− τ′l (y

l(k0, η))
]
yl(k0, η)

k0

and

ε̃Kt,ws = βs+1 (1− τ̄′l )Y
l

K
.

This completes the proof.

A.3.4 Elasticity of Capital Supply with Respect to Net Returns

Lemma A.4. Let Assumptions 1-4 be satisfied. Then

ε̃Kt,r̄s =


1− β if s = 0

βs(β−t − 1)
[
ε̃K1,1−τk − (1− β)

]
if s > 0∧ t ≤ s

βs(1− β) + (1− βs)ε̃K1,1−τk if s > 0∧ t > s

Proof. The inter-temporal budget constraint is given by

c0(k0, η) +
∞

∑
t=1

ct(k0, η)

∏t
u=1(1 + r̄u)

= (1 + r̄0)k0 + ηw0l0(k0, η)− τl(ηw0l0(k0, η)) + T0

+
∞

∑
t=1

ηwtlt(k0, η)− τl(ηwtlt(k0, η)) + Tt

∏t
u=1(1 + r̄u)

.

Consider first s = 0. Deriving the intertemporal budget constraint with respect to r̄0 and using
Assumption 4 gives

∂c0(k0, η)

∂r̄0
+

∞

∑
t=1

∂ct(k0, η)

∂r̄0

1

∏t
u=1(1 + r̄u)

= k0.
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Evaluating at the steady state and using Lemma A.1 gives

∂c0(k0, η)

∂r̄0
= (1− β)k0, (A.5)

The budget constraint in t = 0 is

k1(k0, η) + c0(k0, η) = (1 + r̄0)k0 + ηw0l0(k0, η)− τl(ηw0l0(k0, η)) + T0

Hence

∂k1(k0, η)

∂r̄0
=k0 −

∂c0(k0, η)

∂r̄0
= βk0.

Similarly, partially deriving the budget constraint in any period t ≥ 1 and evaluating at the steady
state gives

∂kt+1(k0, η)

∂r̄0
=(1 + r̄)

∂kt(k0, η)

∂r̄0
− ∂c0(k0, η)

∂r̄0
= (1 + r̄)

∂kt(k0, η)

∂r̄0
− (1− β)k0.

This implies

∂kt(k0, η)

∂r̄0
= βk0

for all t ≥ 1. Hence, εkt(k0,η),1−τk
= βr̄ and aggregating over all agents gives εKt,1−τk = βr̄ = 1− β,

i.e. the first part of the Lemma.

Next, consider an arbitrary s > 0. Deriving the intertemporal budget constraint with respect to r̄s

for s > 0 gives

∂c0(k0, η)

∂r̄s
+

∞

∑
t=1

∂ct(k0, η)

∂r̄s

1

∏t
u=1(1 + r̄u)

−
∞

∑
t=s

ct(k0, η)(1 + r̄s)−1

∏t
u=1(1 + r̄u)

=

−
∞

∑
t=s

[ηwtlt(k0, η)− τl(ηwtlt(k0, η)) + Tt](1 + r̄s)−1

∏t
u=1(1 + r̄u)

.

Using Lemma A.1 and evaluating at the steady state gives

1− βs

1− β

∂c0(k0, η)

∂r̄s
+

βs

1− β

∂cs(k0, η)

∂r̄s
=

∞

∑
t=s

βt+1r̄k0, (A.6)

where we used that in steady state c(k0, η)− ηwl(k0, η)− τl(ηwl(k0, η))− T = r̄k0.

Using Lemma A.1 one can plug in for ∂cs(k0,η)
∂r̄s

= ∂c0(k0,η)
∂r̄s

− βuc(k0,η)
ucc(k0,η) to obtain

1− βs

1− β

∂c0(k0, η)

∂r̄s
+

βs

1− β

[
∂c0(k0, η)

∂r̄s
− βuc(k0, η)

ucc(k0, η)

]
=

∞

∑
t=s

βt+1r̄k0,
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which, using that r̄ = 1−β
β , is equivalent to

∂c0(k0, η)

∂r̄s
= (1− β)βsk0 + βs βuc(k0, η)

ucc(k0, η)
. (A.7)

In the following, I will show by induction that for all 1 ≤ t ≤ s we have

∂kt(k0, η)

∂r̄s
=

[
βs βuc(k0, η)

ucc(k0, η)
+ (1− β)βsk0

]
β

1− β−t

1− β
.

Consider first t = 1. Deriving the budget constraint in the initial period and evaluating at the steady
state gives

∂k1(k0, η)

∂r̄s
=− ∂c0(k0, η)

∂r̄s

=− βs βuc(k0, η)

ucc(k0, η)
− (1− β)βsk0,

which satisfies the statement. Next, assume that the condition holds for an arbitrary 1 ≤ t− 1 < s.
Partially deriving the budget constraint at period t− 1 and evaluating at the steady state gives

∂kt(k0, η)

∂r̄s
=(1 + r̄)

∂kt−1(k0, η)

∂r̄s
− ∂c0(k0, η)

∂r̄s

=

[
βs βuc(k0, η)

ucc(k0, η)
+ (1− β)βsk0

]
1− β−t+1

1− β
− βs βuc(k0, η)

ucc(k0, η)
− (1− β)βsk0

=

[
βs βuc(k0, η)

ucc(k0, η)
+ (1− β)βsk0

]
1− β−t+1 − 1 + β

1− β

=

[
βs βuc(k0, η)

ucc(k0, η)
+ (1− β)βsk0

]
β

1− β−t

1− β
,

which proves the statement.

Hence for s > 0 and 1 ≤ t ≤ s we have that

ε̃kt(k0,η),r̄s =
r̄
k0

[
βs βuc(k0, η)

ucc(k0, η)
+ (1− β)βsk0

]
β

1− β−t

1− β

=

[
1
k0

βs βuc(k0, η)

ucc(k0, η)
+ (1− β)βs

]
(1− β−t).

Now remember that by Lemma C.3 the pure supply elasticity of capital in the first period is

ε̃k1(k0,η),1−τk
=− β

c0(k0, η)

k0

uc(k0, η)

c0(k0, η)ucc(k0, η)
.
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Hence,

ε̃kt(k0,η),r̄s =

[
βsε̃k1(k0,η),1−τk

− (1− β)βs
]
(β−t − 1).

The aggregate elasticity is then given by

ε̃Kt,r̄s =
∫ k0

K0
ε̃kt(k0,η),r̄s dΓ

=(β−t − 1)
∫ k0

K0

[
βsε̃k1(k0,η),1−τk

− (1− β)βs
]

dΓ

=(β−t − 1)βs
∫ k0

K0
ε̃k1(k0,η),1−τk

dΓ− (β−t − 1)(1− β)βs

=(β−t − 1)βs[ε̃K1,1−τk − 1 + β
]

which proves the second part of the Lemma.

Finally, I will show again by induction that for any t > s ≥ 1 we have

∂kt(k0, η)

∂r̄s
= −β

1− βs

1− β

βuc(k0, η)

ucc(k0, η)
+ βs+1k0

Again using equation (A.6) but this time substituting out ∂c0(k0,η)
∂r̄s

gives

∂cs(k0, η)

∂r̄s
= (1− β)βsk0 − (1− βs)

βuc(k0, η)

ucc(k0, η)
.

Implicitly deriving the budget constraint at t = s and evaluating at the steady state gives

∂ks+1(k0, η)

∂r̄s
=k0 + (1 + r̄)

∂ks(k0, η)

∂r̄s
− ∂cs(k0, η)

∂r̄s

Plugging in the results above gives

∂ks+1(k0, η)

∂r̄s
=k0 + (1 + r̄)

[
βs βuc(k0, η)

ucc(k0, η)
+ (1− β)βsk0

]
β

1− β−s

1− β

+ (1− βs)
βuc(k0, η)

ucc(k0, η)
− (1− β)βsk0

=
βs − 1 + 1− β− βs + βs+1

1− β

βuc(k0, η)

ucc(k0, η)
+ βs+1k0

= −β
1− βs

1− β

βuc(k0, η)

ucc(k0, η)
+ βs+1k0

which shows the statement for t = s + 1. Next, assume that the statement holds for an arbitrary
t− 1 ≥ s + 1. Partially deriving the budget constraint in period t− 1 and evaluating at the steady
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state gives

∂kt(k0, η)

∂r̄s
=(1 + r̄)

∂kt−1(k0, η)

∂r̄s
− ∂cs(k0, η)

∂r̄s

=(1 + r̄)
[
− β

1− βs

1− β

βuc(k0, η)

ucc(k0, η)
+ βs+1k0

]
+ (1− βs)

βuc(k0, η)

ucc(k0, η)
− (1− β)βsk0

=
−1 + βs + 1− β− βs + βs+1

1− β

βuc(k0, η)

ucc(k0, η)
+ βs+1k0

=− β
1− βs

1− β

βuc(k0, η)

ucc(k0, η)
+ βs+1k0,

which proves the statement.

Hence for t > s > 0 we have

ε̃kt(k0,η),r̄s =
r̄
k0

[
− β

1− βs

1− β

βuc(k0, η)

ucc(k0, η)
+ βs+1k0

]
=− 1

k0
(1− βs)

βuc(k0, η)

ucc(k0, η)
+ (1− β)βs.

Again remember that by Lemma C.3 the pure supply elasticity of capital in the first period is

ε̃k1(k0,η),1−τk
=− β

c0(k0, η)

k0

uc(k0, η)

c0(k0, η)
(
ucc(k0, η)

.

Hence,

ε̃kt(k0,η),r̄s =(1− βs)ε̃k1(k0,η),1−τk
+ (1− β)βs.

The aggregate elasticity is then given by

ε̃Kt,r̄s =
∫ k0

K0
ε̃kt(k0,η),r̄s dΓ

=
∫ k0

K0

[
(1− β)βs + (1− βs)ε̃k1(k0,η),1−τk

]
dΓ

=βs(1− β) + (1− βs)ε̃K1,1−τk

which proves the third part of the Lemma.
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B The General Framework

In this section I present a more general model. It nests the model of the main text, and consequently
all its special cases. Relative to the framework in the main text, I introduce uninsurable labor income-
and investment risk. It thus nests, additionally, the standard incomplete markets model of Aiyagari
(1994) as well as the framework of Angeletos (2007) as special cases. It has been shown analytically
that such frameworks, with capital- as well as labor income risk, can replicate the observed Pareto
distribution in wealth (Benhabib, Bisin, and Zhu, 2011, 2015).

B.1 Model

B.1.1 General Setup

Demographics. There is a continuum of infinitely lived agents (dynasties) of measure one. Agents
differ in their managerial/investing ability θ ∈ [0, θ̄], and their working ability η ∈ [η, η̄]. The un-
conditional density over the ability states pu(θ, η) is stationary, continuous and strictly positive over
the whole set [0, θ̄]× [η, η̄]. Each agent is both an investor/entrepreneur and a worker. Equivalently,
one can think of an agent as a household consisting of firm owners and workers who pool their
income.

Timing of Events. Time is discrete. Agents make an investment decision at the end of each period t.
This decision includes a portfolio choice as agents can investment in private equity (their own firm)
or in riskless bonds issued by the corporate sector. At the beginning of the following period t + 1
agents draw their productivity (θt+1, ηt+1) ∈ [0, θ̄]× [η, η̄], after which they decide how much labor
to hire. Then, production takes place and agents receive their net labor- and capital income.

Idiosyncratic Shocks. Each agent draws next period’s productivity from the conditional density
p(θ′, η′|θ, η). Next period’s productivity (θ′, η′) is therefore correlated with current productivity
(θ, η). This is a parsimonious way to account for the fact that heterogeneous productivity is partly
driven by differences in ability (the initial state) and partly by luck. I assume that for each (θ, η) ∈
[0, θ̄]× [η, η̄] the conditional density p(θ′, η′|θ, η) > 0.

Preferences. Agents maximize their expected discounted lifetime utility

E0

∞

∑
t=0

βtu(ct, lt),

where the utility function satisfies the same properties as in the main text, that is Assumption 1
holds.

Technology. There are two sectors of production, a public corporate sector and a private ent-
prepreneurial sector. Agents can decide to invest their money in the public corporate sector or in
their own firm. The former can be interpreted as investment in public equity or bonds and is denoted
by b. The latter can be interpreted as private equity investment and is denoted by e. Investment in
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the corporate sector is perfectly diversified and hence riskless, while investment in private equity is
risky. Both sectors have access to the same production technology. In particular, Assumption 2 from
the main text holds for both sectors.

Market Structure. There are incomplete financial markets. In particular, agents cannot insure
against adverse realizations of the idiosyncratic productivity shock (θ′, η′). Riskless bonds, issued
by the corporate sector, are the only trade-able assets in this economy. Publicly traded corpora-
tions are assumed to hire labor and rent capital under perfect competition. Privately owned firms
compete with public ones for the same employees.

B.1.2 Individual Optimization

Public Corporate Sector. The problem of public corporations is standard and shall be stated first.
Corporations are assumed to be perfectly competitive. They rent capital Kc and hire labor Lc in order
to maximize profits

max
Kc,Lc
{F(Kc, Lc)− (r + δ)Kc − wLc}.

Households. Next, I describe the individual optimization problem of households in recursive form.
There are four individual states: bond holdings b, private equity investment e, investment efficiency
(entrepreneurial ability) θ and working ability η. The aggregate state is given by the distribution Φ
over individual states. The households have rational expectations and perfect foresight implying
that at each period t the current distribution Φt is enough for the households to perfectly foresee the
path of future prices and transfers, {(ws, rs, Ts)}∞

s=t. The households’ problem is given by

(H1) V(b, e, θ, η; Φ) = max
c,l,ld,b′,e′

{
u(c, l) + βE

[
V(b′, e′, θ′, η′; Φ′)|θ, η; Φ

]}
s.t. e′ ≥ 0

b′ ≥ −b(e′)

k = θe

π = F(k, ld)− δk− wld

c + e′ + b′ = (1− τk)
[
rb + π

]
+ wηl − τl(wηl) + e + b + T.

Investment in the own firm needs to be non-negative, e′ ≥ 0. As in Aiyagari (1994), the household
may borrow up to some amount b(e′) ≥ 0. I allow this ammount to potentially increase in the
household’s business wealth e′, as this may serve as collateral. Specifically, the borrowing limit b(.)
is a continuous and weakly increasing function. Investment risk is modelled as in Angeletos (2007).
Specifically, after the household invested in private equity e, an idiosyncratic shock θ is drawn that
determines the effective capital stock k employed in her firm.

The household’s business income is denoted by π. She finances consumption c and investment
e′ + b′ with her net capital income (1− τk)

[
rb + π

]
, her net labor income wηl − τl(wηl), her current
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asset holdings e+ b, and the lump-sum transfer T. Note that the agent chooses her own labor supply
l but also labor demand ld, that is the amount of effective labor she wants to employ in her firm. As
in Angeletos (2007), hiring takes place after the idiosyncratic productivity shock θ is observed.

The households’ optimization problem (H1) is quite involved with four individual states (b, e, θ, η)

and five decision variables (c, l, ld, b′, e′). Luckily, we can reduce the dimensionality of the problem
because we can substitute out optimal labor hiring.

Lemma B.1. Proportionality. Let Kc > 0 and consider an agent with private equity e and investment
efficiency θ, i.e. effective capital θe. Then:

(a) The ratio of effective capital to effective labor is the same as in the corporate sector,

k
ld =

Kc

Lc .

(b) The agent’s business income is given by

π = rθe.

Proof. See Appendix A.2.1.

Part (a) implies that all firms, public and private, employ the same ratio of effective capital to ef-
fective labor. Part (b) implies that firm profits are linear in effective capital k = θe. Using Lemma
B.1, one can reduce the number of individual states to three, where bonds b and private equity e are
replaced by financial wealth a (sometimes referred to as ‘cash-on-hand’). The distribution Γ is now
over the three individual states (a, θ, η). The reduced problem is given by

(H2) V(a, θ, η;Γ) = max
c,l,b′,e′

{
u(c, l) + E

[
V(a′, θ′, η′; Γ′)|θ, η; Γ

]}
s.t. e′ ≥ 0

b′ ≥ −b(e′)

c + e′ + b′ = a + ηwl − τl
(
ηwl

)
+ T

a′ = (1− τ′k)r
′(θ′e′ + b′) + e′ + b′.

B.1.3 Equilibrium

To economize on notation, I from now on summarize the individual state by x = (a, θ, η).

Definition B.1. General Equilibrium. Denote by B(R3) the Borel-Sigma algebra over R3 and by P the
set of all measures over the measurable space (R3,B(R3)). Given an initial measure Γ−1 ∈ P , initial
individual portfolio allocations (e0(x), b0(x)), and a sequence of capital tax rates and transfers {τk,t, Tt}∞

t=0,
a general equilibrium is defined by prices {wt, rt}∞

t=0, by input factors {Kc
t , Lc

t}∞
t=0 of public corporations,

by household decision rules for consumption c(x; Γ), labor supply l(x; Γ), private equity e′(x; Γ), and bond
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holdings b′(x; Γ); by a value function V(x; Γ), and by a sequence of measures {Γt(x)}∞
t=0, such that for each

t ∈ {0, 1, 2, ...}:

(a) Factor demand (Kc
t , Lc

t) of public corporations satisfies rt = Fk(Kc
t , Lc

t)− δ and wt = Fl(Kc
t , Lc

t).

(b) Household decision rules are solutions to optimization problem (H2).

(c) The value function V(x; Γ) solves the Bellman equation for all x.

(d) The labor market clears,

L =
∫

ηl(x; Γ)dΓ = Lc
t +

∫
pθ(θ

′|θ, η)ld(θ′, e(x; Γt−1))dΓt−1,

where ld(θ, e) = arg maxld{F(θe, ld)− wtld}.

(e) The bond market clears, ∫
b′(x; Γt−1)dΓt−1 = Kc

t .

(f) The government budget clears,

∫ ∫
p(θ′, η′|θ, η)

(
τk,trt

[
b′(x; Γt−1) + θ′e′(x; Γt−1)

]
+ τl

(
η′wtl(x; Γ)

))
d(θ′, η′)dΓt−1

= G + Tt.

(g) The distribution evolves according to the law of motion

Γt = Pt(Γt−1),

where the transition function Pt : P → P can be written explicitly as follows. For each set A×Θ× H
in B(R3)

Γt(A×Θ× H) =
∫

p(θ′, η′|θ, η)1(θ′,η′)∈Θ×H1a′(θ′,η′|x;Γt−1)∈Ad(θ′, η′)dΓt−1(x),

where 1 denotes the indicator function and

a′(θ′, η′|x; Γt−1) =(1− τk,t)
[
rt
(
θ′e′(x; Γt−1) + b′(x; Γt−1)

)]
+ e′(x; Γt−1) + b′(x; Γt−1).

We can also define a stationary equilibrium for this setting.

Definition B.2. A Stationary General Equilibrium is a dynamic general equilibrium in which (τk,t, Γt) =

(τk, Γ) for all t ∈ {0, 1, 2, ...} and as a consequence all variables are time-invariant.

As in the main text we will assume that the economy is initially in steady state, that is that Assump-
tion 3 holds.
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B.2 Optimal Capital Taxation

I now move to the derivation of the optimality condition for the general framework. For simplicity,
I abstract from pre-announcement, that is I assume that ta = 0.

B.2.1 Social Welfare Criterion

I consider a very general set of social welfare functions. This generalization nests the welfarist
approach with Pareto weights on individual values.B.1

Denote time-t histories by xt = (a0, θ0, η0, θ1, η1, ..., θt, ηt). Furthermore, for each t ∈ {0, 1, 2, ...}
denote by

Pt(xt) =
∫

z0≤x0

∫
zt≤xt

p(zt|z0)dztdΓ0(z0)

the probability distribution over time-t histories xt.

Let ct(xt) be the agents’ optimal consumption and lt(xt) the agents’ optimal labor choice in period t
given history xt. The planner’s objective is given by

(P̃) max
τk≤1

W =
∞

∑
t=0

βt
∫

ωt(xt)u(ct(xt), lt(xt))dPt,

where ωt(xt) is a function that assigns real values to each individual history xt in a way such that∫
ωt(xt)dPt(xt) is constant across all t.

Denote by xs(xt) = (as, θs, ηs) the individual state in period s corresponding to history xt. Then:

1. whenever ωt(xt) = ω(xt(xt)) = ω(xt) for all histories xt, we have

W =
∞

∑
t=0

βt
∫

ω(xt)u
(
c(xt; Γt), l(xt; Γt)

)
dΓt,

that is a social welfare function with weights ω on states x.

2. whenever ωt(xt) = ω(x0(xt)) = ω(x0) for all histories xt, we have

W =
∫

ω(x0)V(x0; Γ0)dΓ0,

a welfarist social welfare function with Pareto weights ω on agents that are identified by initial
states x0.

B.1 There is some discrepancy in the literature in terms of terminology. I refer to a ‘welfarist’ social welfare function as
a weighted sum of agents’ values and to a ‘utilitarian’ social welfare function when those weights are the same for
all agents. Others refer to the former as ‘generalized utilitarian’ and to the latter as ‘pure utilitarian’ social welfare
function.
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Observe that the two social welfare criteria coincide whenever for each t the weights ωt(xt) are
constant across all time-t histories xt, which is the case in the deterministic framework of the main
text or in stochastic settings when the welfare criterion is utilitarian, i.e. with the criterion most often
used in the Macroeconomics literature.

B.2.2 The Optimality Condition for the General Case

Marginal social welfare weights are now given by gt(xt) = ωt(xt)uc(ct(xt), lt(xt)). Denote the aver-
age marginal social welfare weight in period t by

ḡt =
∫

gt(xt)dPt

In a stochastic environment, ḡt is generally time-varying. With a dynastic interpretation of my model
gt would measure by how much, relative to the average, the government values generation t. More
generally, it measures the planner’s relative valuation of an additional dollar available at time t.

Without loss of generality we can normalize the weights ωt(xt) such that

Ḡ = (1− β)
∞

∑
t=0

βt
∫

gt(xt)dPt = 1. (B.1)

The following proposition states the optimality condition in the general framework under the gen-
eral welfare objective.

Proposition B.1. Optimality Condition in the General Framework. Let Assumptions 1-3 be satisfied.
If the pre-existing capital income tax rate τk < 1 solves the Planner’s problem (P̃), then

τk =
βta

(1− Ḡk)

ε̂K,1−τk

−
ε̄L,1−τk

ε̂K,1−τk

αl

αk

[
EΓ[τ

′
l ] + CovΓ

(
τ′l ,

yl ε̄ l,1−τk

Yl ε̄L,1−τk

)]
(B.2)

+
ε̄w,1−τk

ε̂K,1−τk

αl

αk

[
(1− τk)Ḡk − (1− τ̄′l )G̃ l + τk − τ̄′l

]
,

where

ε̂K,1−τk = (1− β)
∞

∑
t=0

βtεKt,1−τk ḡt,

Ḡk =
1− β

ta

∞

∑
t=0

βt
∫

gt(xt)
yk

t (x
t)

Yk dPt,

Ḡk =
1− β

ε̄w,1−τk

∞

∑
t=0

βtεwt,1−τk

∫
gt(xt)

yk(xt)

Yk dPt,
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and

G̃ l =
1− β

ε̄w,1−τk

∞

∑
t=0

βtεwt,1−τk

∫
gt(xt)

(1− τ′l (y
l(xt))yl

t(x
t)

(1− τ̄′l )Y
l dPt.

Proof. See Appendix A.2.2.

We observe that condition (B.2) is very similar to the optimality condition (5) in the main text. How-
ever, some modifications are required. Specifically, ε̄K is replaced by ε̂K, ḡk is replaced once with Ḡk

and once with Ḡk, and g̃l is replaced with G̃ l.

The object Ḡk is the lifetime analogue of ḡk. It measures by how much the planner values, on average,
a marginal dollar in the hands of capital tax payers. By contrast, Ḡk measures by how much the
planner values a marginal dollar in the hand of those agents, who benefit from the increase in gross
capital returns. Since the adjustment process of capital takes time, agents with high capital income
in the beginning may have low capital income later and vice versa because idiosyncratic abilities are
not any more perfectly persistent.

Similarly, the lifetime analogue of g̃l,

G̃l = (1− β)
∞

∑
t=0

βt
∫

gt(xt)
(1− τ′l (y

l(xt))yl
t(x

t)

(1− τ̄′)Yl dPt,

and G̃ l may differ because of potential differences in the planner’s valuation of the payers of labor
taxes and the beneficiaries from wage reductions.

Finally, observe that the average discounted capital elasticity ε̂K,1−τk discounts each time-t capital
elasticity εKt,1−τk by the product of βt and the period-t average marginal social welfare weight ḡt.

In the stochastic setting, the main complication is that marginal social welfare weights are generally
time-varying. Specifically, each agent generally values differently an additional dollar of consump-
tion in two different periods t 6= s. However, the Corollary below shows that under the welfare
criterion 1 above the two optimality conditions (5) and (B.2) coincide.

Corollary B.1. Let Assumptions 1-3 be satisfied. Furthermore, assume that social welfare function is such
that ωt(xt) = ω(xt(xt)) = ω(xt). Then

τk =
βta

(1− ḡk)

ε̄K,1−τk

−
ε̄L,1−τk

ε̄K,1−τk

αl

αk

[
EΓ[τ

′
l ] + CovΓ

(
τ′l ,

yl ε̄ l,1−τk

Yl ε̄L,1−τk

)]
+

ε̄w,1−τk

ε̄K,1−τk

αl

αk

[
(1− τk)ḡk − (1− τ̄′l )g̃l + τk − τ̄′l

]
.

Proof. Follows directly from Proposition B.1 and the fact that the welfare criterion implies ε̂K,1−τk =

ε̄K,1−τk , Ḡk = Ḡk = ḡk and G̃ l = g̃l.
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As a consequence, with a utilitarian welfare criterion, the optimality condition for optimal capital
tax rates is given by condition (5) even in the stochastic setting. Thus, the condition reveals the
key elasticities that drive the optimal tax rate, independent of the true underlying data generating
process. As long the statistics entering the right hand side are estimated accurately, the condition
provides a test for optimality.
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C Methodology to Recover Unmeasured Policy Elasticities

As discussed in the main text, the discounted capital elasticity ε̄K,1−τk , as well as the discounted
aggregate and individual labor elasticities ε̄L,1−τk and ε̄l(k0,η),1−τk

, are what Hendren (2016) refers
to as “policy elasticities”, which measure the causal effect of a concrete policy experiment. For
example, εKt,1−τk summarizes the reaction of the capital stock in period t following an increase in
the net-of-tax rate 1− τk in period zero.

As in Saez and Stantcheva (2018), changes in the capital tax rate τk and in the transfer T induce
different income and substitution effects on capital and labor supply that are all subsumed in the
policy elasticities εKt,1−τk and εLt,1−τk . The main difference in my framework is that the demand
for production factors does not fully accommodate the changes in supply, such that in order to
restore equilibrium on factor markets, interest rates and wages need to adjust, which in turn impacts
demand and supply, and so forth. The elasticities εKt,1−τk and εLt,1−τk are the aggregate responses
that capture this whole equilibrium adjustment process.C.1 Consequently, in my framework the
net-of-capital-tax elasticity of wages is positive, ε̄w,1−τk > 0, and hence (by Lemma 1) the net-of-
capital-tax interest elasticity is negative, ε̄r,1−τk < 0, while in Saez and Stantcheva (2018) both are
equal to zero by assumption.

As pointed out by Kleven (2021), “[policy elasticities] can be used only to measure the welfare effect
of an actually implemented reform (compared to the counterfactual of no reform). They cannot
be used to assess the welfare effect of any other counterfactual reform that could be implemented"
(Kleven, 2021, Remark 2).

In the following, I describe the methodology laid out in Section 4 in more detail, that is I explain how
one can express the unmeasured policy elasticities in terms of factor supply elasticities, for which
we have actual evidence.

C.1 Relation between Equilibrium Labor- and Capital Elasticities

The policy elasticity of equilibrium effective labor in period t with respect to the net-of-capital tax
rate can be decomposed as

εLt,1−τk = ε̃Lt,1−τk +
∞

∑
s=0

ε̃Lt,Ts εTs,1−τk +
∞

∑
s=0

ε̃Lt,r̄s εrs,1−τk +
∞

∑
s=0

ε̃Lt,ws εws,1−τk ,

where for any i ∈ {1− τk, ws, rs, Ts}. I denote by

ε̃Lt,i =
∂ ln Lt

∂ ln i

C.1 Hendren (2016) considers a simple linear production structure that rules out general equilibrium price effects in
the main text. However, he discusses general equilibrium effects in the online Appendix D, where he argues that
“when policies have general equilibrium effects, one also needs to track the causal impact of the policy on prices
[...] The causal effects are still the desired responses, but one needs to also know the general equilibrium effects of
government policies.”
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the elasticity of labor supply in period t with respect to i. These elasticities are defined in a ceteris
paribus way, holding all taxes, transfers and prices except i fixed (hence the partial instead of the
total derivative).

It considerably simplifies the analysis if income effects on labor supply are ruled out. Specifically,
Assumption 4 implies that labor supply in a given period t is only affected through changes in the
wage in the same period as the following Lemma shows.C.2

Lemma C.1. Own- and Cross Price Elasticities of Labor Supply without Income Effects. Let As-
sumptions 1-4 be satisfied. For all (k0, η) and for all t ≥ 0 we have

ε̃lt(k0,η),1−τk
= ε̃lt(k0,η),Ts = ε̃lt(k0,η),rs = 0 ∀s and ε̃lt(k0,η),ws = 0 ∀s 6= t.

whereas

ε̃lt(k0,η),wt =
γl(k0, η)

(
1− p(yl(k0, η))

)
1 + γl(k0, η)p(yl(k0, η))

.

Thereby,

γl(k0, η) =
v′(l(k0, η))

l(k0, η)v′′(k0, η)

denotes the Frisch elasticity of labor supply and

p(yl) = −
∂ ln(1− τ′l (y

l))

∂ ln(yl)
=

ylτ′′l (y
l)

1− τ′l (y
l)

denotes the local rate of labor tax progressivity.

Proof. See Appendix A.2.3.

These results together with Lemmas 1 imply the following corollary.

Corollary C.1. Relation between Policy Elasticities. Let Assumptions 1-4 be satisfied. Then the net-of-
capital-tax elasticity of equilibrium labor in period t is given by

εLt,1−τk =
Yk

σY ε̃Lt,wt

1 + Yk

σY ε̃Lt,wt

εKt,1−τk

and the net-of-capital-tax elasticities of equilibrium factor prices are given by, respectively,

εrt,1−τk = −
Yl

σY

1 + Yk

σY ε̃Lt,wt

εKt,1−τk and εwt,1−τk =
Yk

σY

1 + Yk

σY ε̃Lt,wt

εKt,1−τk .

C.2 With this assumption the Frisch-, Hicksian- and Marshallian elasticities of labor supply all coincide. Allowing for
income effects would require estimates of all three elasticities rather than one single wage-elasticity of labor supply.
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Proof. From Lemma C.1 we know that εLt,1−τk = ε̃Lt,wt εwt,1−τk . Plugging in the expression of εwt,1−τk

from Lemma 1 and rearraning terms gives the result.

We have expressed the the equilibrium labor elasticities in terms of estimated statistics and the equi-
librium capital elasticities εKt,1−τk . Thus, what is left to do is to relate the latter to actual evidence.

C.2 The Equilibrium Capital Elasticities

The equilibrium capital elasticities can be decomposed in an analogous way to the equilibrium labor
elasticity,

εKt,1−τk = ε̃Kt,1−τk +
∞

∑
s=0

ε̃Kt,Ts εTs,1−τk +
∞

∑
s=0

ε̃Kt,rs εrs,1−τk +
∞

∑
s=0

ε̃Kt,ws εws,1−τk , (C.1)

where

ε̃Kt,i =
∂ ln Kt

∂ ln i

denotes the elasticity of capital supply in period t with respect to i holding all other tax instruments
and prices fixed.

Lemma 1 already expressed εws,1−τk and εrs,1−τk in terms of estimated statistics and the unmeasured
equilibrium capital elasticities. The following Lemma does the same for the tax elasticity of the
transfer εTs,1−τk .

Lemma C.2. Decomposition of Revenue Effect. Let Assumptions 1-4 be satisfied. Then for all s ≥ 0 the
elasticty of the transfer with respect to the net-of-tax rate can be decomposed as

εTs,1−τk =
Yk

T

[
− 1t≥ta(1− τk) + τkεKs,1−τk

]
︸ ︷︷ ︸

εex
Ts ,1−τk

+
Y
T

εKs,1−τk

σ + α̃kε̃Ls,ws

α̃kαl
[(

EΓ[τ
′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
+ τ̄′l

)
− τk

]
︸ ︷︷ ︸

εend
Ts ,1−τk

.

Proof. See Appendix A.2.4.

The first line, εex
Ts,1−τk

, captures the revenue effect of capital tax reductions when prices are exoge-

nous. The government mechanically loses −1t≥ta(1− τk)
Yk

T in revenue. However, because capital
tax reductions encourage investment, there would be a positive ‘behavioral’ effect of τk

Yk

T εKs,1−τk . In
the absence of income effects on labor supply, this would be the only revenue effects if prices were
constant.
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The second line, εend
Ts,1−τk

captures the revenue effects due to changing factor prices. If labor supply
were to be inelastic, this effect would be proportional to τ̄′l − τk. When labor supply is elastic the in-
crease in wages accompanied by the investment increase, induces higher labor effort. The associated
revenue effect is positive and proportional to EΓ[τ

′
l ]ε̃Ls,ws + CovΓ

(
τ′l , yl ε̄l,1−τk

)
.

Because of Lemma C.2 one can decompose the equilibrium capital elasticity as follows.

Corollary C.2. Decomposition of Equilibrium Capital Elasticity. Let Assumptions 1-4 be satisfied.
Then

εKt,1−τk =ε̃Kt,1−τk +
∞

∑
s=0

ε̃Kt,Ts ε
ex
Ts,1−τk

(C.2)

+
∞

∑
s=0

ε̃Kt,rs εrs,1−τk +
∞

∑
s=0

ε̃Kt,ws εws,1−τk +
∞

∑
s=0

ε̃Kt,Ts ε
end
Ts,1−τk

.

Proof. Follows directly from Lemma C.2.

The first line describes the elasticity of the equilibrium capital stock if factor prices were to be con-
stant. This is the policy elasticity entering the tax formulas in Saez and Stantcheva (2018). Note that
this elasticity itself consists of two terms. The first one, ε̃Kt,1−τk is the elasticity of capital with respect
to the net-of-capital-tax rate if the transfer were not to adjust. However, the fact that the policy ex-
periment requires a budget neutral change in the transfer implies that also agents’ reactions to the
change in this transfer need to be accounted for. The terms in the second line capture that equilib-
rium prices, and hence also the equilibrium transfer, adjust. These price and transfer responses in
turn affect agents’ capital supply.

Lemma C.3. Tax-Elasticity of Capital Supply. Let Assumptions 1-4 be satisfied and let ta = 0. Then for
all t ≥ 0 we have that

ε̃Kt,1−τk =tβ
C
K

γc,

where

γc = −
∫ c0(k0, η)

C
uc(k0, η)

c0(k0, η)
(
ucc(k0, η)

)dΓ

denotes the consumption weighted average inter-temporal elasticity of substitution. As a consequence we have

ε̃Kt,1−τk =tε̃K1,1−τk .

Proof. See Appendix A.2.5.

This result implies that from the supply elasticity of capital in period one (or any other arbitrary
period following the tax change) one can recover the whole path {ε̃Kt,1−τk}∞

t=1.
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Estimates. As discussed in the main text, arguably the currently best available estimates are those
obtained by Jakobsen et al. (2020) using administrative Danish data. The authors exploit two dif-
ferent natural experiments emanating from a 1989 wealth tax reform, with which they estimate the
elasticity of wealth with respect to wealth taxes for (i) households between the 97.6th and 99.3rd
percentile of the wealth distribution and (ii) households in the top percentile of the wealth distribu-
tion. They refer to the former as the “moderately wealthy” and to the latter as the “very wealthy”,
a classification which I adopt in the following. While I used their estimates on the former group of
households in the main text, I report both in what follows.
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Figure C.1: Capital Supply Elasticity: data (solid line) from Jakobsen et al. (2020), Figures V (left panel) and VII
(right panel); treatment on the treated; net-of-wealth-tax elasticities are translated to net-of-capital-tax elasticities using
the return of r = 6.58%; model (dotted line), ε̃Kt ,1−τk = tε̃K1,1−τk .

The black solid lines in Figure 1 depict their estimated wealth elasticity with respect to the net-
of-capital-tax rate for the first eight years following the reform, where the net-of-wealth-tax elas-
ticities are translated into net-of-capital-tax elasticities using the benchmark return on capital
(r = 6.58%). By Lemma C.3, this elasticity is linear in time, ε̃Kt,1−τk = tε̃K1,1−τk , implying that
in principle an estimate one year after the reform is sufficient to obtain the whole path of supply
elasticities. However, in order to make use of all the available evidence, I regress their estimates
{ε̂K1,1−τk , ε̂K2,1−τk , ..., ε̂K8,1−τk} on time (red dotted line). The left panel shows the estimates for the
“moderately wealthy” and the right panel those of the “very wealthy”. In both cases the model
implied linear relationship does square very well with the data.

Lemma C.4. Policy Elasticity with Exogenous Prices. Let Assumptions 1-4 be satisfied and let ta = 0.
In addition assume that Fkl(k, l) = 0 for all (k, l) ≥ 0. Then

εex
Kt,1−τk

= t
1− β

1− β(1− τkr)
ε̃K1,1−τk ≤ tε̃K1,1−τk = ε̃Kt,1−τk .

Proof. See Appendix A.2.6.
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The policy elasticity εex
Kt,1−τk

of Lemma C.4 is the one entering the tax formulas in the exogenous
factor price setting of Saez and Stantcheva (2018). Contrary to the supply elasticity ε̃Kt,1−τk of
Lemma C.3, it takes into account the effect of budget neutral adjustments in the transfer on agents’
savings decision. Observe that when the initial capital tax rate is τk = 0 the policy elasticity with con-
stant prices coincides with the pure supply elasticity to capital tax changes, that is εex

Kt,1−τk
= ε̃Kt,1−τk .

The reason is that in this case the additional savings induced by the lowering of the capital tax rate
do not generate additional revenue and therefore no additional unearned income to the agents.
However, when τk > 0 the investment increase induced by the tax cut increases tax revenue and
therefore the agents’ transfer income over time. Agents want to partially consume their higher fu-
ture government income, which reduces their savings. As a consequence, the policy elasticity is
muted.

I derived Lemmas C.3 and C.4 by making use of envelope conditions. Specifically, using house-
holds’ intra- and inter-temporal optimality conditions, one can recover the unmeasured elasticities
{ε̃Kt,1−τk}∞

t=9 and {εex
Kt,1−τk

}∞
t=1 with the estimates in Jakobsen et al. (2020). To derive the policy elas-

ticities with endogenous prices, I use the same principle. Before stating the next proposition, which
relates the unmeasured policy elasticities (εKt,1−τk) to the estimated supply elasticity in period one
(ε̃K1,1−τk), I shall briefly sketch its proof.

First, denoting the net return to capital by r̄ = (1− τk)r, the expression (C.1) can be simplified toC.3

εKt,1−τk =
∞

∑
s=0

ε̃Kt,r̄s

[
1 + εrs,1−τk

]
+

∞

∑
s=0

ε̃Kt,Ts

[
εTs,1−τk +

(1− τ̄′l )Y
l + (1− EΓ[τ

′
l ])Y

l ε̃L,w

T
εws,1−τk

]
,

which decomposes the policy elasticity into two weighted sums of price effects {ε̃Kt,r̄s}∞
s=0 and in-

come effects {ε̃Kt,Ts}∞
s=0.C.4 Second, again using the optimality conditions of the households’ opti-

mization problem, I derive expressions for all these price and income effects that again only depend
on ε̃K1,1−τk , the capital supply response in the first period. Third, I use Lemma C.2 to substitute out
εTt,1−τk , and subsequently Corollary C.1 to substitute out εLt,1−τk , εrt,1−τk and εwt,1−τk . This yields an
equation with the period-t policy elasticity εKt,1−τk on the left hand side and the whole the sequence
of policy elasticities {εKs,1−τk}∞

s=1 on the right hand side. Finally, I solve this infinite system of equa-
tions (for t = 1, 2, 3, ...) using a guess-and-verify approach. The guess is educated by the well known
fact that in the neighborhood of the steady state the speed of convergence in the neoclassical growth
model and related frameworks is constant.

The following proposition summarizes the result and thereby the main methodological contribution
of this paper.

C.3 Relative to the proof in the Appendix, here I already use that when the labor tax schedule features a constant rate of
progressivity, we have CovΓ

(
τ′l , yl ε̃ls ,ws

)
= 0.

C.4 Note that ε̃Kt ,1−τk = ∑∞
s=0 ε̃Kt ,r̄s .
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Proposition C.1. Policy Elasticity with Endogenous Prices. Let Assumptions 1-4 be satisfied and let
ta = 0. In addition assume that Fkl(k, l) > 0 for some (k, l) > 0. Then the path εKt,1−τk of equilibrium
capital elasticities with respect to the net-of-capital-tax rate is given by

εKt,1−τk =
(

1− (λ(s))t
)

εK∞,1−τk ∀t ≥ 0,

where the long-run capital elasticity is given by

εK∞,1−τk =
αk

αl
σ + α̃kε̃L,w

α̃k < ∞

and λ(s) ∈ (0, 1) is a constant that depends only on the vector of sufficient statistics

s =
(

ε̃K1,1−τk , ε̃L,w, r, τk, σ,
Yl

Y
,

Yk

Y

)
and satisfies

dλ(s)
dε̃K1,1−τk

< 0.

Proof. See Appendix A.2.7.

Proposition C.1 expresses the policy elasticity εKt,1−τk in terms of actually estimated objects. The
long-run capital elasticity is finite. The increase in capital supply following a reduction in τk is not
fully accommodated for by capital demand as the marginal product of capital decreases. Conse-
quently, the equilibrium interest rate declines, discouraging investment. In the long run, the equi-
librium capital stock will hence settle at a finite level.

The capital supply elasticity ε̃K1,1−τk determines how quickly the capital stock grows to its final level,
that is the speed of convergence. Specifically, the higher ε̃K1,1−τk , the quicker the policy elasticity
converges to its long run value εK∞,1−τk .

Figure 2 plots the path of policy elasticities implied by exogenous prices (Lemma C.4, dashed line)
and endogenous prices (Proposition C.1, dash-dotted line). The left panel is the same as in Figure 2
of the main text, while the right panel depicts the policy elasticities when the supply elasticities of
the “very wealthy” in Jakobsen et al. (2020) are targeted.

The discounted average elasticities that enter the optimality condition are then simply weighted
averages over the paths of elasticities:

Corollary C.3. Discounted Average Capital Elasticity. Let Assumptions 1-4 be satisfied and let ta = 0.

(a) Let Fkl(k, l) = 0 for all (k, l) ≥ 0. Then the discounted average capital elasticity is given by

ε̄ex
K,1−τk

= (1− β)
∞

∑
t=0

βtεKt,1−τk =
β

(1− β)
(
1− β(1− τkr)

) ε̃K1,1−τk .
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Figure C.2: Equilibrium Capital Elasticities: black solid line and red dotted line as in Figure C.1; red dashed
line: policy elasticities with exogenous prices (σ = ∞); blue dash-dotted line: policy elasticities with endogenous prices
(σ = 0.6, γl = 0.5). Left (right) panel based on responses of “moderately wealthy” (“very wealthy”) in Jakobsen et al.
(2020).

(b) Let Fkl(k, l) > 0 for some (k, l) ≥ 0. Then the discounted average capital elasticity is given by

ε̄K,1−τk = (1− β)
∞

∑
t=0

βtεKt,1−τk =
β(1− λ(s))
1− λ(s)β

αk

αl
σ + α̃kε̃L,w

α̃k .

Proof. Part (a) follows directly from Lemma C.4, part (b) from Proposition C.1.

Part (a) of Corollary C.3 gives the discounted average capital elasticity ε̄K,1−τk under the assumption
of exogenous prices. This is the policy elasticity entering the formulas in Saez and Stantcheva (2018).
By contrast, part (b) gives the discounted average capital elasticity when prices are endogenous.

C.3 Idiosyncratic Risk

In Appendix B, I show that for a large set of social welfare functions, the theoretical results derived
in the main text extend to a more general model with uninsurable idiosyncratic labor- and capi-
tal income risk. However, the mapping of the unmeasured policy elasticities εKt,1−τk and εLt,1−τk

to actually estimated supply elasticities, is derived within the deterministic modeling structure of
the main text. In principle, these elasticities may differ with a stochastic income process. For ex-
ample, it is well known that in the standard incomplete markets model of Aiyagari (1994) agents
save partially for precautionary reasons and such savings motive may somewhat reduce the capital
elasticity. However, as is convincingly argued in Krusell and Smith (1998) (see in particular their
Sections III.D. and IV.C.), because most of the capital is held by rich agents, whose savings behav-
ior is guided mainly by intertemporal concerns rather than by insurance motives, these modelling
features have only a very small quantitative impact on the evolution of aggregate capital. I hence
abstract from incorporating risk when deriving the mapping.
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D Sensitivity Analysis

D.1 Sensitivity with Respect to the Return on Wealth

In this section, I perform the same quantitative analysis as in the main text assuming that the return
on wealth is r = 5%, respectively r = 9%. Different assumption on capital depreciation are needed
for the new interest rates to be consistent with equilibrium. In turn this affects the net capital income
shares, whereas the gross capital income share of α̃k = 0.4 is unaffected. Specifically, with r = 5%
we have δ = 0.054 and αk = 0.242, while with r = 9% we have δ = 0.014 and αk = 0.365.

Figure D.1 repeats the analysis of Figure 1 in the main text. In particular, the black lines translate the
net-of-wealth-tax elasticities of wealth that are measured by Jakobsen et al. (2020) to net-of-capital-
tax elasticities, where the capital tax only applies to the return on wealth. The left (right) panel
shows the so obtained elasticities when a return of r = 5% (r = 9%) is assumed. Naturally, different
assumptions on the return change the implied net-of-capital-tax elasticities quite substantially. For
example, while with r = 5% we have for the eight-year elasticity ε̂K8,1−τk ≈ 0.5, with r = 5% we
have ε̂K8,1−τk ≈ 1.1.
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Figure D.1: Capital Supply Elasticity: data (solid line) from Jakobsen et al. (2020), Figure V; treatment on the
treated; net-of-wealth-tax elasticities are translated to net-of-capital-tax elasticities using the return of r = 5% (left panel)
and r = 9% (right panel); model (dotted line), ε̃Kt ,1−τk = tε̃K1,1−τk .

This, in turn affects the deducted policy elasticities, which are depicted in Figure D.2 for the bench-
mark values of the substitution- and labor supply elasticities. The corresponding average dis-
counted equilibrium elasticities are summarized in Table D.1. Assuming exogenous prices, the
policy elasticity that is consistent with the estimated supply responses increases from 1.05 when
r = 5% to 1.38 when r = 9%. With endogenous prices and the benchmark capital-labor substitution
elasticity elasticity of σ = 0.6, the policy elasticity increases from 0.30 (r = 5%) to 0.49 (r = 9%).

How the different elasticity values impact the marginal excess burden, is summarized in Table D.2.
The total excess burden increases with the return on capital. It is 7 cents per mechanically raised

D-1



0 20 40 60 80
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

C
ap

ita
l E

la
st

ic
iti

es

r=5%

0 20 40 60 80
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

C
ap

ita
l E

la
st

ic
iti

es

r=9%

Figure D.2: Equilibrium Capital Elasticities: black solid line and red dotted line as in Figure 1; red dashed
line: policy elasticities with exogenous prices (σ = ∞); blue dash-dotted line: policy elasticities with endogenous prices
(σ = 0.6, γl = 0.5); assumed return r = 5% (left panel) and r = 9% (right panel).

Return on capital r endogenous prices (σ = 0.6) exogenous prices (σ = ∞)

5.00% 0.304 1.049
6.58% 0.385 1.237
9.00% 0.485 1.378

Table D.1: Discounted Average Elasticities: ε̄K,1−τk for different values of the return (r); Frisch elasticity γl = 0.5.

dollar with r = 5% but 22 cents with r = 9%. The composition of the various subcomponents is
similar as with in the benchmark interest rate of r = 6.58%.

Return on capital r MEBK MEBL MEBP MEB

5.00% 0.2157 0.0215 −0.1642 0.0729
6.58% 0.2589 0.0196 −0.1497 0.1287
9.00% 0.3441 0.0190 −0.1456 0.2174

Table D.2: Decomposition of the Marginal Excess Burden: Components of the marginal excess burden
(MEB); numbers in dollar per mechanical dollar in capital tax revenue raised; MEBK: loss in capital income tax rev-
enue due to lower savings; MEBL: loss in labor income tax revenue due to lower labor supply; MEBP: revenue impact
of changing factor prices due to differential taxation of capital and labor; Frisch elasticity: γl = 0.5; capital-labor substi-
tution elasticity: σ = 0.6.

Figure D.3 depicts the welfare effects of a marginal increase in the capital tax rate, the case of r = 5%
in the left and the case of r = 9% in the right panel. In both cases, the equity effect exhibits a similar
downward sloping shape as in the benchmark. The main difference is the due to the difference in
the marginal excess burden that reduces the welfare gains when the interest rate is higher. Yet, in
either case doe the bottom 60 percent of the US income distribution gain from capital tax increases.
When r = 5% the status quo is optimal for households in the 71th percentile, while with r = 9% it
is optimal for households around the 67th percentile. Thus, overall the qualitative – and to a large
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extent quantitative – features are similar as in the benchmark case.
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Figure D.3: Welfare Change: in USD per dollar of revenue mechanically raised; EQ: equity effect, MEB: marginal
excess burden; value p on x-axis corresponds to the social welfare function that concentrates the whole welfare weight
at percentile p of the total gross income distribution; Frisch elasticity of labor supply: γl = 0.5; substitution elasticity:
σ = 0.6.
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Figure D.4: Optimal Capital Tax Rates: sufficient statistics formula; value p on the x-axis corresponds to the
social welfare function that concentrates the whole welfare weight at percentile p of the total gross income distribution;
capital-labor substitution elasticities σ = 0.6 (endogenous prices) and σ = ∞ (exogenous prices); benchmark Frisch
elasticity of labor supply (γl = 0.5).

Finally, Figure D.4 shows the ‘optimal’ tax rates, that is the tax rates predicted by the sufficient
statistics formula (9) together with those predicted by the formula (10) that assumes exogenous fac-
tor prices. As is discussed in Section 5.3 and, in more detail, in Appendix E, this condition becomes
somewhat inaccurate when it predicts tax rates far away from the status quo. Thus, especially for
welfare functions that value only the lowest earners, the ‘true’ optimal tax rates can be expected to
be slightly lower than those in the graph. Yet, we observe that overall the picture is similar as with
the benchmark interest rate. Naturally, given the lower excess burden, optimal tax rates are higher
when the interest rate is lower both in the case with exogenous and endogenous prices. A robust
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quantitative feature is that the bottom 60% of the US income distribution would like to see signif-
icant increases in the capital tax rate, though the desired tax rates are strongly declining in labor
income.

D.2 Sensitivity with Respect to Capital-Labor Substitution and Labor Supply

Elasticities

In this section, I provide a sensitivity analysis of my results with respect to variations in the substi-
tution elasticity σ and the Frisch elasticity of labor supply γl. Specifically, on top of my benchmark
elasticity of σ = 0.6, I consider σ = 0.3, which is at the low end of the empirical range, the Cobb-
Douglas case (σ = 1), which is typically assumed in the parametric macroeconomics literature, as
well as a very high value of σ = 1.6, which was put forward by Piketty (2014) and which is above
all empirical estimates I am aware of. As for the Frisch elasticity of labor supply, I consider, on top
of my benchmark value γl = 0.5, the case of completely inelastic labor supply (γl = 0) and the case
of γl = 1, which should bracket most of the empirical evidence.

Discounted Average Tax-Elasticities of Capital and Labor. Table D.3 summarizes values of the
discounted average elasticities of capital and labor that are consistent with the quasi-experimental
evidence from Jakobsen et al. (2020) for the different combinations of substitution- and Frisch elas-
ticities.

γl\σ 0.3 0.6 1.0 1.6 ∞

Discounted average capital elasticity: ε̄K,1−τk = (1− β)∑∞
t=0 βtεKt,1−τk

0.0 0.202 0.335 0.462 0.594 1.237
0.5 0.272 0.385 0.497 0.617 1.237
1.0 0.321 0.422 0.523 0.634 1.237

Discounted average labor elasticity: ε̄L,1−τk = (1− β)∑∞
t=0 βtεLt,1−τk

0.0 0.000 0.000 0.000 0.000 0.000
0.5 0.091 0.077 0.065 0.053 0.000
1.0 0.154 0.133 0.114 0.094 0.000

Table D.3: Discounted Average Elasticities of Capital and Effective Labor: ε̄K,1−τk (upper panel) and
ε̄L,1−τk (lower panel) for different values of substitution elasticities (σ) and Frisch elasticities of labor supply (γl).

The upper panel summarizes the values of the discounted capital elasticity ε̄K,1−τk . While the Frisch
elasticity has only a very small effect on capital equilibrium capital accumulation, there is consider-
able variability with regards to the substitution elasticity. Generally, ε̄K,1−τk is increasing in σ. In the
polar case with perfect factor substitutability it is ε̄K,1−τk = 1.24. The more complementary capital
and labor are, the stronger the endogenous response of the gross interest rate due to tax changes.
Since this endogenous equilibrium effect mitigates the change in the net return to capital, it has a
moderating effect on the elasticity of capital. For the range of empirically plausible estimates, it is
between one 0.2 and 0.63, that is substantially lower than the naive elasticity that one obtains when
assuming constant factor prices.
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The lower panel summarizes the discounted labor elasticities. In the absence of income effects, this
elasticity is zero when factor prices are constant (σ = ∞). Naturally, it is also zero when labor
supply is assumed to be inelastic (γl = 0). With the benchmark value for the Frisch elasticity
of γl = 0.5 we have ε̄L,1−τk ∈ (0.05, 0.09), while with the high end estimate of γl = 1 we have
ε̄L,1−τk ∈ (0.09, 0.15) for the range of plausible values of σ. Observe that the elasticity of equilibrium
labor supply increases in the degree of complementarity between capital and labor, since the wage
responses are stronger when complementarity is higher.

γl MEBK MEBL MEBP MEB

Low-end Substitution Elasticity: σ = 0.3
0.0 0.143 0.000 −0.207 −0.064
0.5 0.193 0.024 −0.186 0.032
1.0 0.228 0.041 −0.171 0.098

Benchmark Substitution Elasticity: σ = 0.6
0.0 0.238 0.000 −0.172 0.066
0.5 0.273 0.021 −0.158 0.136
1.0 0.299 0.036 −0.148 0.187

Cobb-Douglas Case: σ = 1.0
0.0 0.328 0.000 −0.142 0.186
0.5 0.353 0.017 −0.133 0.237
1.0 0.371 0.031 −0.126 0.276

Very high-end Substitution Elasticity: σ = 1.6
0.0 0.421 0.000 −0.114 0.307
0.5 0.438 0.014 −0.109 0.353
1.0 0.450 0.025 −0.104 0.371

Constant Factor Prices: σ = ∞
0.0 0.878 0.000 0.000 0.878
0.5 0.878 0.000 0.000 0.878
1.0 0.878 0.000 0.000 0.878

Table D.4: Decomposition of the Marginal Excess Burden: Components of the marginal excess burden (MEB)
for different values of substitution elasticities (σ) and Frisch elasticities of labor supply (γl); numbers in dollar per
mechanical dollar in capital tax revenue raised; MEBK: loss in capital income tax revenue due to lower savings; MEBL:
loss in labor income tax revenue due to lower labor supply; MEBP: revenue impact of changing factor prices due to
differential taxation of capital and labor.

Marginal Excess Burden. Table D.4 summarizes the three components of MEB for the same com-
binations of substitution- and Frisch elasticities as above. The lowest panel corresponds to the case
of exogenous factor prices (σ = ∞). As discussed in the main text, the exclusion of income effects
implies that the decomposition is trivial in this case. Specifically, absent changes in the equilibrium
wage, a change in the capital tax rate will not affect labor supply and hence keep labor income tax
revenue constant (MEBL = 0). Furthermore, assuming away factor price changes implies that that
MEBP = 0 too. Consequently, the total marginal excess burden consists exclusively of the revenue
loss due to a reduction in agents’ savings. This revenue loss of MEB = MEBK = 0.88, however, is
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substantial.

By contrast, with any combination of substitution- and Frisch elasticity in the range of empirical
evidence, is the marginal excess burden is below 40 cents per mechanically raised dollar. As dis-
cussed above, a rise in the capital tax rate increases the gross return to capital. This mitigates the
equilibrium reduction in the net return (1− τk)r, which has a moderating effect on the investment
decline. Consequently, the capital tax revenue loss coming from the investment reduction MEBK is
much lower than in the case with exogenous prices. Furthermore, when the substitution elasticity
is finite, the capital tax induced reduction in wages lowers labor supply and thus negatively affects
labor income tax revenue whenever the labor supply elasticity is positive (γl > 0). Naturally the
contribution of MEBL to the overall excess burden is increasing in the labor supply elasticity. Since
the equilibrium wage decline is stronger when capital and labor are strong compliments, MEBL is
decreasing in the substitution elasticity σ. Finally, the decrease in wages and the accompanied in-
crease in the gross return to capital have a direct revenue impact themselves. Specifically, since in
the status quo capital is taxed at a higher average rate than labor (τk > τ̄′l ), the effect of changing
factor prices on revenue is positive, that is the price responses’ contribution to the excess burden is
negative (MEBP < 0). This effect is significant, an order of magnitude higher in absolute value than
MEBL. Consequently, we have in all cases MEB < MEBK.D.1
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Figure D.5: Welfare Effect of a Marginal Tax Increase: in USD per dollar of revenue mechanically raised; vary-
ing substiution elasticity σ; r = 6.58%; value p on the x-axis corresponds to the social welfare function that concentrates
the whole welfare weight at percentile p of the total gross income distribution.

The three panels of Figure D.5 show the welfare gains of capital tax increases across the income dis-
tribution for the three different values of γl. Furthermore, within each panel I depict the gains for all
the different values of the capital-labor substitution elasticity. We observe that the more complemen-
tary capital and labor are (the lower σ is) the lower is the marginal excess burden, implying higher
welfare gains for the very bottom of the distribution. However, since also the depressing wage ef-

D.1 The negative value of −0.064 when σ = 0.3 and γl = 0 would imply that on top of the mechanical dollar raised, the
government would receive an additional 6 cents. However, this is a somewhat pathological case. Specifically, the
very high capital-labor complementarity (σ = 0.3) implies very large price movements, with a large positive impact
on government revenue MEBP << 0 since capital is taxed at a higher rate than labor. However, note that if the labor
elasticity was really zero, the government could achieve more revenue directly by taxing labor at higher rates than
capital, in which case MEBP and thus MEB would be positive.
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fects are stronger with a lower σ the welfare change is decreasing more strongly as one moves to the
right of the income distribution. Furthermore, the welfare gains of capital tax increases are declining
in γl (compare different panels) because the wage depressing effect induces stronger labor supply
reductions when γl is high, increasing the excess burden. In all cases do the lines cross the x-axis
between the 63rd and the 70th percentile of the total income distribution.

Overall, a robust finding is that for all combinations of σ and γl do the bottom 60 percent of the
total income distribution desire capital tax increases, while the top 30 percent desire capital tax
decreases. The gains of tax increases at the very bottom of the income distribution, and hence the
optimal Rawlsian tax rates, depend crucially on the substitution elasticity. In particular, lower values
of σ imply higher Rawlsian tax rates because stronger endogenous factor price responses result in a
lower marginal excess burden of capital taxation.
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E Global Solution Method with a Nested Parametric Model

As described in Section 5.3, when the sufficient statistics formula (9) predicts tax rates far away from
the status quo – as it does for example with a Rawlsian welfare objective – the policy prescription
may be inaccurate. The reason is that the elasticities and the distributional statistics entering the
formula are endogenous to the tax system. Usually, they are estimated locally, that is small variations
around the status quo tax system are exploited in the empirical analysis. Thus, a potential concern
is that these statistics may change when taxes are substantially altered.

To address this worry, in this section I use a parametric version of my model, which I calibrate
such that it (locally) replicates all the statistics entering the formula. I then perform a sequence
of counter-factual tax changes, that is I compute the whole transitional equilibrium path for all
variables when the tax rate is changed once-and-for-all from its status quo to a new tax rate τk ∈
{..., 0.39, 0.40, 0.41, 0.42, 0.43, ...}, where the transfer T adjusts to ensure budget balance period-by-
period. I compute the welfare effect of each of this potential tax changes for each agent in the model
economy and thus find the tax rate τk that would maximize each agent’s welfare.

Note that the simplified model of the main text exhibits an indeterminate steady state wealth distri-
bution. Such a model is unsatisfying when one wants to explore the reasons of inequality, in which
case it is important for the model to endogenously generate a realistic wealth distribution (which ver-
sions of my more general model in Appendix B are capable of). However, for the exercise I perform
in the present section, the indeterminate wealth distribution is an appealing feature. It allows me
to isolate the approximation error due to the use of sufficient statistics formula (which I am inter-
ested in here) from the approximation error made when the wealth and income distribution is not
perfectly matched (an issue parametric models have to deal with in general). Specifically, I can pick
joint density of (k0, η), such that the joint distribution of wealth and labor income – including its
precise correlation structure – in the model economy is exactly identical to the one in the SCF. Each
type of agent (k0, η) in my model economy corresponds to one observation in the SCF and I pick
the mass of this type to equal the corresponding sampling weight in the SCF. The model will then,
for any chosen social welfare function, exactly replicate the same (initial) values of ḡk and g̃l that are
used in the sufficient statistics analysis of the main text.

I use GHH preferences

u(c, l) =

(
c− l

1+ 1
γl

1+ 1
γl

)1− 1
γ̃c

1− 1
γ̃c

,

which satisfy Assumption 4. I pick the benchmark Frisch elasticity of labor supply of γl = 0.5.

Note that with GHH preferences the parameter γ̃c does not exactly coincide with the (weighted
average) intertemporal elasticity of substitution γc (see Lemma C.3 for the definition). The latter
is heterogeneous across the population. In any case, I calibrate the parameter γ̃c such that, with
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small tax changes, the model generated path of net-of-tax elasticities of the equilibrium capital stock
{εKt,1−τk}∞

t=1 exactly replicates the dash-dotted blue line in Figure 2. The fact that this is possible is a
numerical confirmation that my analytically derived long-rund capital elasticity εK∞,1−τk as well as
the analytically derived speed of convergence λ (see Proposition C.1) are correct. I obtain a value of
γ̃c = 0.5 and a consumption weighted average intertemporal elasticity of substitution of γc = 0.4.
This is well in the middle of empirical estimates, which is further reassuring me that the quasi-
experimental estimates of Jakobsen et al. (2020), which I use to discipline the policy elasticities, are
reasonable.

I pick the discount factor β = 0.963, which is consistent with a steady state interest rate of r = 6.58%
and a status quo-capital income tax rate of τk = 0.415.

Technology is characterized by a CES production function

F(K, L) =
(

α
1
σ K

σ−1
σ + (1− α)

1
σ L

σ−1
σ

) σ
σ−1

,

where σ = 0.6 and α is calibrated such that the gross capital share is α̃k = 0.4. As explained in
the main text, given labor income, wealth and an interest rate of r = 6.58% this is consistent with a
capital depreciation rate of δ = 3.85% per annum.

I use the same parameterisation of the constant-rate-of-progressivity labor tax code as in the main
text (p = 0.181 and τ0 calibrated to match the labor income weighted average marginal tax rate of
22.5%). I calibrate the transfer T and – as a residual in the government budget constraint – expendi-
tures G, such that the model matches a transfer-expense ratio of 71% as reported by the OECD.E.1

As for the ability distribution, I follow the strategy of Saez (2001). Since in the data we do not
observe η, w and l separately but only total labor income yl(η) = ηwl, I compute each agent’s
ability η, which rationalizes her observed labor income. Specifically, optimizing households must
satisfy the intra-temporal labor supply condition, which is equivalent to

l =
[
(1− τ0)(1− p)(yl)1−p] 1

1+ 1
γl ,

and thus provides a mapping from observed labor income yl to unobserved labor supply l. Given
the model implied steady state wage w (pinned down by r through the capital-labor ratio), the

E.1 For this purpose I include in transfers subsidies form the labor income tax schedule at low labor incomes. I obtain
a ratio of lump-sum transfers to aggregate income of T/Y = 10.5%. However, note that the precise calibration of
T does not affect my results. Specifically, to the extent that a different T changes savings behavior, the parameter
γ̃c adjusts in order to generate the same net-of-tax-elasticities of equilibrium capital. As for the welfare analysis, I
present my welfare gains in monetary amounts. What matters in this respect is how many additional dollars the
household receives, which is independent of the initial transfer once γ̃c is recalibrated to generate the same net-of-
tax elasticities of the equilibrium capital stock, and hence the same net-of-tax elasticity of government revenue (see
Appendix C.2).
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agent’s labor productivity is then given by

η =
yl(η)

wl
.

Using this parameterization, I then perform the policy experiments explained above. I rank house-
holds according to their total initial gross income and find the tax rate τk that maximizes the respec-
tive income percentiles’ welfare. The result is the dash-dotted blue line in Figure 7. We see that
the sufficient statistics formula approximates the optimal tax rates obtained with this global method
remarkably well, though it somewhat overstates the tax rates that are optimal for the bottom of the
income distribution.
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