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Abstract

Despite the truthful dominant strategy, participants in strategy-proof me-
chanisms submit manipulated preferences. In our model, participants dislike
rejections and enjoy the confirmation from getting what they declared de-
sirable. Formally, the payoff from a match decreases in its position in the
submitted ranking such that a strategic trade-off between preference inten-
sity and match probability arises. This trade-off can trigger the commonly
observed self-selection strategies. We show that misrepresentations can per-
sist for arbitrarily small report-dependent components. However, honesty
is guaranteed to be optimal if and only if there is no conflict between the
quality and feasibility of a match. We substantiate the theory with already
existing evidence and provide novel testable predictions.
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1 Introduction

Since revealing the true preferences is a dominant strategy1 in strategy-proof
mechanisms, there is no gain from sophisticated strategizing or costly informa-
tion acquisition about others. Consequently, such mechanisms are deemed fair:
they “level the playing field.” However, there is extensive experimental and field
evidence (Hakimov and Kübler, 2021; Hassidim et al., 2017a) that participants
misrepresent their preferences, in particular, by skipping popular options in the
submitted ranking. Instead of designating non-truthful strategies a mistake, rese-
archers recently suggested more complex preferences under which such strategies
can be optimal. To identify the origin of such deviations, testable predictions for
all competing theories are needed.

In our model, report-dependent utility introduces a strategic motive into a mat-
ching mechanism that is strategy-proof with respect to standard preferences. On
top of the utility garnered from the assignment, a participant receives an addi-
tional payoff that decreases in the rank of the matched option in her submitted
rank-ordered list (ROL). This component can be positive and, for instance, reflect
the “warm glow” from being accepted at a top choice, or the enjoyment from
telling other participants (and herself) that she did not have any rejections and
“got exactly what she asked for.” When she is assigned to an option ranked at the
bottom, this utility can turn negative to reflect, for instance, the frustration from
having been rejected by every higher-ranked option or the consternation that the
reported preferences are not mutual. Striving for the former positive emotions or
avoiding the latter negative feedback can upset the strategy-proofness and lead to
the observed patterns of misrepresentations. Disregarding such emotional factors,
report-dependent utility can also arise due to signaling motives2 or because it is
imposed by the other market side.3

One may think that report-dependent utility is negligibly small in real-life settings
and, thus, its effect on reported preferences in strategy-proof mechanisms vanis-
hes. However, for any ROL, we can construct a robust set of beliefs such that this
ROL is strictly optimal for any report-dependent and report-independent prefe-
rence. By Proposition 1, participants may strictly prefer non-truthful ROLs when
arbitrarily small report-dependent utility is added to arbitrarily strong “standard
preferences.” For instance, the constructed beliefs are reasonable for low-priority
participants, and we predict the pattern suggested by the data: such participants
order options by chances of admission rather than preferences. Truthful reporting

1In line with much of the mechanism-design literature, we are sloppy in the use of the game-
theoretic term “dominant” and employ it as a synonym for “always optimal,” see Börgers (2015,
Chapter 4) for a discussion.

2For instance, if one side’s ROL is hard information, while the priorities of the other side are
unknown, a match with a reported top choice can be used as information consistent with a high
priority to a third party with similar preferences but less information than the other side. A
participant might also be interested in signaling to the receivers that her preferences are in line
with theirs.

3For example, some private universities in the centralized admission program in Turkey offer
“preference scholarships,” which reduce tuition for students that rank them among the top ranks.
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is most prevalent when there is no conflict between preferences and admission
probabilities. We confirm this observation in Proposition 2: even arbitrarily large
report-dependent payoffs cannot render deviations from the truth profitable in
such cases.

In their seminal experimental paper on school choice, Chen and Sönmez (2006)
coin the small-school bias and the district-school bias: participants hide their
preferences for competitive options or fake a preference for options where they
expect high chances of admission. A self-selection strategy can manifest itself in
both biases. For instance, Chen and Pereyra (2019) link Mexican school-choice
data with survey data, and document that 22% of students “self-select,” i.e., they
do not rank their most-preferred school first. Out of these participants, 23% would
have gotten into their favorite school if they had ranked it first. Under classical
preferences, such ROLs are generically dominated and would require (wrong) knife-
edge beliefs that assign probability zero to obtaining the skipped options, making
the student indifferent between a truthful and a self-selecting ROL. Such equilibria
are not robust to minimal belief perturbations. Under report-dependent utility,
self-selection can be rationalized as such preferences entail a strategic trade-off
akin to the immediate acceptance (Boston) mechanism. We capture self-selection
by considering jump and swap deviations that either move a less-preferred option
forward or a more-preferred option backward in the ranking.

We contribute to the rich literature on strategy-proof mechanisms. The dominance
of the truthful strategy for proposers in deferred-acceptance (DA) and top-trading
cycles (TTC) mechanisms was established by Roth (1982a,b). If only one side of
the mechanism is strategy-proof, two-sided strategic matching with incomplete
information is complicated (Roth, 1989; Ehlers and Massó, 2007; Fernandez et al.,
2022). We focus on the incentives of the strategy-proof side, while inducing the
other side to be truthful, e.g., through objective priorities such as in school choice.
In a survey of the large experimental literature, Hakimov and Kübler (2021) do-
cument that truthfulness in DA and TTC is non-negligible and correlates with
factors that do not impede strategy-proofness. In Section 3.1, we discuss these
observations in the light of report-dependent preferences. We predict (i) a pattern
of misrepresentations under common values consistent with Li (2017), (ii) that
weak preferences trigger manipulations consistent with Klijn et al. (2013), and
(iii) how more information about priorities can reduce truthfulness rates consis-
tent with Pais and Pintér (2008).

The economic literature mainly offers two strands of explanation. First, partici-
pants may fail to see the dominance of the truthful strategy and, hence, simply
make a mistake in a complex mechanism. In this vein, there are efforts to make the
strategy-proofness more apparent. For instance, Li (2017) introduces the concept
of obvious strategy-proofness and, indeed, finds that truthfulness rates are higher
in an obviously strategy-proof sequential serial dictatorship than in its static ver-
sion that does not have this property. However, the different performances of the
two mechanisms can have alternative preference-based explanations such as our
model. Somewhat at odds with explanations based on limited understanding is
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that misrepresentations persist in high-stakes environments with participants of
high cognitive ability (Hassidim et al., 2017b; Rees-Jones and Skowronek, 2018;
Shorrer and Sóvágó, 2017). Katuščák and Kittsteiner (2020) find evidence that
participants in TTC falsely perceive a trade-off between preference and feasibi-
lity, and they propose an alternative framing that nudges toward honesty. In our
model, this trade-off originates in preferences rather than misunderstanding.

We contribute to a second branch of literature that rationalizes the “mistakes”
as an optimal decision by a participant that fully understands the rules but has
richer preferences. While Antler (2015) considers preferences that directly depend
on the reported preferences of others, we consider preferences that directly depend
on the own report. Dreyfuss et al. (2019) and Meisner and von Wangenheim (2021)
study DA with expectation-based loss aversion, where proposers use the ROL to
manage their expectations, which become their reference point. As in this paper,
beliefs become crucial while they generically do not affect behavior in the classical
framework. Although results appear similar, the desire to avoid disappointment
with respect to expectations is a fundamentally different channel to drive misre-
presentations. The frustration from rejections or the joy that reported preferences
reciprocate is independent of expectations.4 Our predictions in Section 3.1 enable
us to differentiate between both theories.

2 The model

A participant in a matching mechanism submits a rank-ordered list (ROL) that
ranks n options from set S. This mechanism is strategy-proof with respect to
standard (report-independent) preferences, and we always use this term referring
to standard preferences. An ROL is a bijection R : S → J1, nK := {1, . . . , n}
that maps each option s into a rank r ∈ J1, nK. Let sRr = R−1(r) be the r-th
ranked option of some R, and we will sometimes display this function as a list,
R = (sR1 , s

R
2 , . . . , s

R
n ).

An entry of vector v = (vs)s∈S ∈ Rn represents the report-independent payoff
from a match with option s ∈ S. In addition, the participant receives report-
dependent payoff ρ(r) when she is assigned to her r-th ranked option, where ρ is
a strictly decreasing function ρ : J1, nK → R. Here, ρ(1) > 0 reflects the joy from
experiencing no rejections and being accepted by the (reported) top choice, and
ρ(n) < 0 reflects the chagrin from being rejected by every other option.

Thus, the expected payoff from submitting ROL R is

Uρ(v|R) =
∑
s∈S

fRR(s)

(
vs + ρ(R(s))

)
=

n∑
r=1

fRr
(
vsRr + ρ(r)

)
, (1)

where fRr is the probability of matching with sRr under ROL R. To economize on

notation, we will use accents to denote ROLs, and then let sR̃r = r̃, f R̃r = f̃r, and

4Alternatively, ego-utility as formalized by Köszegi (2006) captures similar emotions, but
there the self-regarding utility component inherently depends on beliefs about oneself.
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vsR̃r = vr̃. Without loss of generality, we relabel S := {1, . . . , n} with v1 ≥ v2 ≥
· · · ≥ vn, and we let the “true” ROL be denoted by R = (1, 2, . . . , n).

For a fixed mechanism and given all others’ ROLs, priorities and capacities, we call
an option s attainable if there exists some ROL R such that the given mechanism
assigns our participant to option s. In a strategy-proof mechanism, this is the
case if and only if she is assigned to s when ranking it first. Let As ∈ {0, 1}
be a binary variable determining whether option s is attainable (1) or not (0).
The attainability distribution P is a probability distribution over attainability
states (As)s∈S . Since attainability is a key concept in this paper, we open this
black box in an exemplary setting in the appendix for three well-known strategy-
proof mechanisms: deferred-acceptance (DA), top-trading cycles (TTC), and serial
dictatorship (SD). By Lemma 2 in the appendix, a strategy-proof mechanism
matches our participant to her highest-ranked attainable option. For any ranking
R̃,

f̃r = Pr(Ar̃ = 1, At̃ = 0 ∀t < r). (2)

Given v, ρ and an attainability distribution P , we are interested in the optimal
ROL R∗ with

Uρ(v|R∗) ≥ Uρ(v|R̃) ∀R̃ 6= R∗, (3)

and we call R∗ strictly optimal if all inequalities above are strict.

Working with the reduced attainability framework also permits the definition of an
outside option and thereby allows for truncated ROLs. An outside option o ∈ S
can be a fictional option that never rejects the participant such as remaining
unmatched (also called getting matched to oneself). In our reduced from, this
means that o is always attainable, regardless of the other participants’ ROLs. It
does not matter if o is a (fictional) option that has unlimited capacity or, for
example, a district school at which the participant is a student with the highest
priority. An outside option in this sense is also dependent on the mechanism. To
illustrate, for the first chooser in SD, all schools are essentially outside options.
Because no participant is ever assigned to an option ranked behind such an option
o, f̃r = 0 for all r > R̃(o). Therefore, the order of options ranked r > R(o)
is irrelevant, and in this sense ranking an option worse than o corresponds to
dropping it from the ranking. In the following, we only consider ROLs listing only
acceptable options that are preferred over a possible outside option o. Any ROL
listing an unacceptable option s with vs < vo, i.e., any ROL R̃ with R̃(s) < R̃(o),
can be improved upon by dropping s behind o in the ranking.

3 Analysis

In this section, we first characterize which ROLs can be rationalized under report-
dependent preferences, and we characterize for which attainability distributions
the truthful ROL is optimal. Finally, we use our insights to formulate predictions
based on the model. To illustrate our first result, consider Table 1, which lists all
possible attainability states and the corresponding payoff for each complete ROL
with three options, S = {1, 2, 3}. There is no safe outside option. For each ROL,
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there are four states in which the participant ends up with her top choice, two
states in which she is matched to her second choice, one state that matches her to
her last choice. Which of these ROLs is optimal depends on the probability of each
state, report-independent utilities v, and the report-dependent utility function ρ.

Attainability 1, 2, 3 1, 3, 2 2, 1, 3 2, 3, 1 3, 1, 2 3, 2, 1
A1 A2 A3 uv uρ uv uρ uv uρ uv uρ uv uρ uv uρ
1 1 1 v1 ρ(1) v1 ρ(1) v2 ρ(1) v2 ρ(1) v3 ρ(1) v3 ρ(1)
1 1 0 v1 ρ(1) v1 ρ(1) v2 ρ(1) v2 ρ(1) v1 ρ(2) v2 ρ(2)
1 0 1 v1 ρ(1) v1 ρ(1) v1 ρ(2) v3 ρ(2) v3 ρ(1) v3 ρ(1)
1 0 0 v1 ρ(1) v1 ρ(1) v1 ρ(2) v1 ρ(3) v1 ρ(2) v1 ρ(3)
0 1 1 v2 ρ(2) v3 ρ(2) v2 ρ(1) v2 ρ(1) v3 ρ(1) v3 ρ(1)
0 1 0 v2 ρ(2) v2 ρ(3) v2 ρ(1) v2 ρ(1) v2 ρ(3) v2 ρ(2)
0 0 1 v3 ρ(3) v3 ρ(2) v3 ρ(3) v3 ρ(2) v3 ρ(1) v3 ρ(1)

Table 1: All possible ROLs with three options and the corresponding payoffs in
each possible attainability state. The report-independent utility uv is listed on the
left, and the report-dependent utility uρ is listed on the right.

We start with the insight that for any ROL we can construct attainability dis-
tributions such that this ROL is optimal, and this is true for arbitrary strictly
decreasing5 report-dependent and report-independent utilities. If an outside op-
tion exists, we fix it and only alter the attainability distribution regarding options
that are acceptable with respect to this outside option.

Proposition 1. For every ROL R̃ listing only acceptable options, there is an
attainability distribution P̃ such that R̃ is strictly optimal for every vector of
report-independent utilities v and every function ρ given any attainability distri-
bution P in an open ball around P̃ .

The construction of P̃ in the appendix is easy to illustrate with Table 1. Take an
arbitrary ROL, say R̃ = (2, 3, 1), and only consider the states in the fourth, sixth,
and seventh line, i.e., states in which, aside from one, all options are unattainable.
Here, we see that state-by-state all ROLs garner the same payoff in the report-
independent component. If we put all probability weight on state (0, 1, 0), the
participant is indifferent between ROLs (2, 1, 3) and (2, 3, 1) which she strictly
prefers over all others. To make the weak preference over (2, 1, 3) strict, we now
shift a sufficiently small probability mass p to state (0, 0, 1). In this state, our ROL
(2, 3, 1) outperforms ROL (2, 1, 3) such that it is strictly preferred in expectation.
This pmust not be too large as p > p could, for instance, render a deviation to ROL
(3, 2, 1) profitable in expectation. Since optimality is strict given such a P̃ and
expected utility is continuous in P , we can construct an open environment around
P̃ while maintaining optimality, which reflects that the construction is not a knife-
edge case. Because we can also sprinkle small probability masses ε over all other

5If, for instance, ρ(r) = ρ(n) for all r ≥ r, it is always weakly optimal to rank options in the
true order from rank r onward. If r = 1, we are in the standard setting without report-dependent
utility such that the true ROL is dominant.
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states while maintaining optimality, the optimum is robust to small perturbations
in the distribution over all states. If there is a safe outside option, an additional
constraint on p is necessary to prevent profitable deviations to truncated ROLs.
In Prediction 1 in Section 3.1, we again pick up the intuition behind this result.

According to Proposition 1, we can construct attainability distributions such that
any ROL of acceptable options becomes optimal regardless of how the true (i.e.,
report-independent) preferences rank these options. While we can modify beliefs
on priorities and ROLs of the other players such that a participant in DA or
TTC faces the attainability distribution constructed above, this is not true for all
strategy-proof mechanisms. For instance, a lottery that ignores all priorities and
ROLs and allocates options at random is strategy-proof, but by construction be-
liefs about ROLs or priorities have no impact on the fixed attainability distribution
as seen in the example in the appendix. Alternatively, consider the first chooser
in SD.6 Because this participant always gets what she ranked first independently
of others’ ROLs, all options are always attainable, making the true top-choice an
endogenous outside option such that all others are unacceptable. Altering her
beliefs about other player’s ROLs has no impact on the attainability distribution
such that this participant will rank her true top-choice first for all beliefs.

Moreover, some information environments impose restrictions on attainability. For
example, designating a priority option (such as a district school) essentially means
imposing that it is always attainable. That is, it is an endogenous outside option
and therefore determines which options are acceptable. By Proposition 1, we can
rationalize moving the outside option upwards in the ranking, but we cannot rati-
onalize moving it downwards as this would imply listing an unacceptable option,
which is never optimal. To illustrate, consider a proposing student in DA who
knows to have the highest priority at their district school and the lowest priority
everywhere else. For this student, we can construct beliefs about the submissions
of other students such that any ROL that only ranks schools weakly preferred
over the district school is optimal. However, we cannot construct beliefs such that
this student would like to rank an unacceptable option, i.e., a school they consider
strictly worse that their district school. Similarly, conditional on the information
that some school is the district school, we cannot construct an attainability dis-
tribution such that this school is not attainable: any belief consistent with such
an attainability distribution would contradict the condition that our student has
highest priority at the district school.

In the next proposition, we characterize attainability distributions such that the
true ROL is always optimal. Submitting the true order implied by any given
vector v is optimal for any ρ if and only if (4) holds. In words, this condition
means that there does not exist any deviation that increases the probability of
matching with the r top-ranked options for any r. It describes the attainability
distributions such that

∑r
r=1 fr ≥

∑r
r=1 f̃r for any ROL R̃ and all r ∈ J1, nK.

6In our decision-theoretic setting, being first chooser in SD is another mechanism than being
last chooser or having a random order in SD.
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Proposition 2. Fix an arbitrary vector v and a non-truthful ROL R̃ = (1̃, . . . , ñ).

Then, Uρ(v|R) ≥ Uρ(v|R̃) for all ρ if and only if

r∑
r=1

(
P (Ar = 1, At = 0∀t < r)−P (Ar̃ = 1, At̃ = 0∀t < r)

)
≥ 0 ∀r ∈ J1, nK. (4)

Hence, the true ROL R is optimal for every function ρ if and only if the above
inequalities hold against all non-truthful ROLs.

Suppose condition (4) is violated for some R̃ and r = 1. This means that the
participant’s most-preferred option is not the most attainable option. There is
another option such that ranking it first yields a higher probability of assignment
to the (reported) top choice than when ranking the true favorite first. That is,

there exists some R̃ such that f̃1 > f1. For example, this is true if there is a safe
outside option o 6= 1. In this case, a participant gets certain utility ρ(1) + vo from
ranking option o = 1̃ first, while the expected utility from the true ROL is below
f1(v1 + ρ(1)) + (1 − f1)(v2 + ρ(2)). As f1 < f̃1 = 1 for any non-outside option
favorite, we can set a sufficiently high ρ(1) (and low ρ(2)) to make ranking the
safe option first optimal. That is, Proposition 2 requires a high level of robustness
for honesty in the sense that functional values of ρ can be arbitrarily large.

Similar constructions of ρ can make a non-truthful deviation R̃ profitable whenever
(4) is violated for any r > 1. Intuitively, massively inflating ρ(r) for all r ≤ r leads
to incentives such that maximizing the probability of being assigned to one of the
r highest-ranked options becomes of first-order importance. Consequently, ROL R̃
yields a higher expected profit than the true ROL for some constructed functions
ρ for any violation of (4). If, to the contrary, all the inequalities of (4) hold, no
decreasing function ρ can upset the optimality of ordering options according to
the given v.

In general, comparing all possible ROLs can be tedious because attainability can
be interdependent, implying the possibility of complicated profitable deviations.
We now focus on popular deviations commonly observed in the data. We capture
self-selection strategies with jump deviations that simply move forward one option
in the ranking. In fact, according to Hakimov and Kübler (2021, Section 3.4.1),
a special case of a jump deviation, simply swapping the first two options in the
true ROL, is the modal manipulation in many studies. We say R̃ is an `-k-jump
deviation from the true ROLR if the rank of some option ` > k is moved forward to
R̃(`) = k and the options ranked worse in R move down by one rank, R̃(r) = r+1
for all r ∈ Jk, `− 1K. That is,

R = (1, . . . , k − 1,k, k + 1, . . . , `, `+ 1, . . . , n),

R̃ = (1, . . . , k − 1, `, k, . . . , ` − 1, `+ 1, . . . , n).

Only underlined ranks are affected as both ROLs list identical options at all ranks
r 6∈ Jk, `K, i.e., r = r̃ for all such r, while k̃ = ` and r̃ + 1 = r for all r ∈ Jk, `− 1K.
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In all strategy-proof mechanisms, R and R̃ generate identical match probabilities
for each option ranked r 6∈ Jk, `K. For example in DA, the first k− 1 proposals are

identical, implying fr = f̃r for all r < k. The next (`− k+ 1) proposals differ but
involve the same options in different order. At any step t > `, the participant is
rejected by exactly the same options under both ROLs such that fr = f̃r for all
r > `. Compared to R, R̃ shifts more match probability weight to option ` = k̃

such that f̃k = f` + δR,R̃` with δR,R̃` ≥ 0. This probability mass is shifted from
the options which declined in the ranking such that for all r ∈ Jk, `− 1K, we have

f̃r+1 = fr + δR,R̃r with δR,R̃r ≤ 0 and
∑`−1

r=k δ
R,R̃
r = −δR,R̃` . Probability mass δR,R̃r is

the probability that both r and ` are attainable, while each option ranked better
than r is unattainable. The following lemma is true for any `-k-jump deviation
from an arbitrary (not necessarily true) ROL.

Lemma 1. The `-k-jump deviation R̃ from ROL R̂ is strictly profitable, i.e.,
Uρ(v|R̂) < Uρ(v|R̃), if and only if

`−1∑
r=k

(
(f̂r − f̂`)(ρ(r)− ρ(r + 1)) + δR̂,R̃r (ρ(k)− ρ(r + 1))

)
<

`−1∑
r=k

δR̂,R̃r (vr̂−v̂̀). (5)

Inequality (5) is an algebraic rearrangement of Uρ(v|R̂) < Uρ(v|R̃), and it reflects
the trade-off between match utility and attainability probability: In a profitable
jump deviation, the loss (or gain) in report-independent payoff on the right-hand
side is compensated by the gain (or loss) in the report-dependent payoff on the left-
hand side. For example, having an option ` with a high attainability probability
“jump” over more preferred options that are almost unattainable can be beneficial.
In such a case, f` is large and fr ≈ 0 for the jumped options r. Moreover,
the probability shifts δr ≈ 0 are also small. In combination, (5) holds, making
the jump profitable. It can also be profitable to have an option ` with a high
attainability probability jump options r ∈ Jk, `−1K that are also likely attainable.
The reason is that in such cases the probability shifts |δr| are large and the decrease
on the left-hand side can be stronger than the increase on the right-hand side when
preferences are not strong, i.e., when (vr − v`) is small for all r ∈ Jk, `− 1K.

Proposition 1 may be counter-intuitive. Since honesty is the best policy without
report-dependent utility, one may expect to recover this property as function ρ
becomes close to constant. This intuition can be maintained if the attainability
distribution has full support in the sense that all attainability states have positive
weight. For any non-truthful ROL R̂, there must be some pair of options that is
adjacently ranked in the order reversing v, i.e., there is some ` such that v̂̀−1

< v̂̀.
Consider another ROL that swaps these two options such that they do reflect the
order of v. According to (5), this (`− 1)-`-swap is profitable if

(f̂`−1 − f̂` + δR̂,R̃`−1 )(ρ(`− 1)− ρ(`)) < δR̂,R̃`−1 (v̂̀−1
− v̂̀) = δR̂,R̃` (v̂̀− v̂̀−1

). (6)

Since −δR̂,R̃`−1 = δR̂,R̃` > 0 under the full-support assumption and v̂̀ > v̂̀−1
, the

right-hand side is strictly positive, while the left-hand side approaches zero as
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(ρ(`− 1)−ρ(`))→ 0. A series of such adjacent swaps culminates in the true ROL
being optimal.

Corollary 1. Consider an attainability distribution P with a strictly positive
weight on all attainability states. For all v, there exists a sufficiently small ε > 0
such that the true ROL is optimal if (ρ(r)− ρ(r + 1)) < ε for all r.

The proof follows from the argument above. However, reminiscent of Proposition
2, it is not true that sufficiently weak report-independent preferences v imply a
non-truthful ROL is optimal: even if |vs− vs′ | < ε for all pairs s, s′ ∈ S, condition
(4) guarantees that the truthful ROL is optimal for any ε > 0. Reminiscent of
Proposition 1, Corollary 1 needs the full-support condition.

We continue to consider (`−1)-`-swaps as above, since 1-2-swaps in the true ROL
are the most popular manipulation. Inequality (6) tells us when an (`− 1)-`-swap

in the true ROL R is unprofitable. In such a swap from R to R̂, ̂̀− 1 = ` and̂̀= `− 1, we have f`−1 = f̂` − δR̂,R`−1 = f̂` + δR̂,R` so that (6) can be expressed as

f̂`−1 − f`−1

δR̂,R`

<
v`−1 − v`

ρ(`− 1)− ρ(`)
. (7)

Since the right-hand side and δR̂,R` are positive, this inequality always holds when

f̂`−1 < f`−1. In words, swapping two options `−1 and ` in the true ROL is always
unprofitable when it decreases the probability of matching with the option on rank
`− 1.

Corollary 2. If the optimal ROL is an (` − 1)-`-swap R̂ of the true ROL R, it
must be that this deviation increases the probability of assignment to the (`− 1)-

th ranked option, f̂`−1 > f`−1. Otherwise, (v`−1−v`)/(ρ(`−1)−ρ(`)) must be sufficiently
large.

Such a deviation can be in line with the priority-option bias or the small-option
bias discussed in the next section. However, the insight above is more general. If,
compared to option ` − 1, ` is (perceived to be) less popular among competitors
with higher priority, swapping those options in the ranking can be profitable even
when option ` is smaller that option `−1 or when the participant has low priority
at both options.

3.1 Predictions
Our results put under scrutiny the alleged advantage that the success of strategy-
proof mechanisms does not depend on beliefs. However, they are only interesting
if the constructed attainability distributions actually arise from reasonable beliefs
in mechanisms in use. Proposition 1 should not be interpreted as an “anything-
goes statement” voiding any predictive power of the model. While attainability
distributions exist for each ROL to be optimal under any v and ρ, our theory
predicts concrete ROLs to be optimal for given attainability distributions and

10



preferences. In this section, we provide some testable predictions of our model,
and we discuss experimental evidence consistent with the predictions in the online
appendix.

In the proof of Proposition 1, we fix an ROL and then construct an attainability
distribution such that this ROL is strictly optimal. This construction is easiest to
illustrate in SD without an outside option when there are in total n participants,
capacities sum up to n, and our participant is last to choose. If she knew the
reported ROLs of all others, she would optimally rank first the option that is left
over—let us call it a1—as she is assigned to this option with certainty and for all
her ROLs. Similarly, if there is a small probability that instead another option
a2 will be left over, it would optimally be ranked second, and so on. That is, if
ak is the k-th likely option to be left over, it is the k-th most attainable option,
and the optimal ROL of the final chooser in SD is (a1, a2, . . . , an), independent of
her preferences. If we consider a participant in DA or TTC who knows to have
the lowest priority, an analogous logic applies. In DA, such a participant gets
what others do not want because she gets rejected whenever another proposer
approaches her tentative match. In TTC, such a participant gets what others do
not want because no option points at her as long as other participants are present.
Hence, in all three mechanisms and for every combination of the other participants’
ROLs, the state is such that only one option is attainable. Essentially, this is the
construction of the attainability distribution in Proposition 1, and it implies the
following prediction.

Prediction 1. Suppose all options have unit capacity and there are n options and
participants. All n participants have a common preference vector v.7 Consider a
participant who knows to have the lowest priority at all options. In DA, TTC, or
(priority-ordered) SD, and for any v and any ρ, this participant optimally ranks
options from most to least attainable.

Indeed, Li (2017, treatment SP-RSD) records non-truthful deviations that are
consistent with Prediction 1. Unfortunately, the popularity of ROL (4, 3, 2, 1) in
his common-value setting confounds two preference-based explanations. This ROL
is also the only top-choice monotone8 ROL that starts with the most attainable
option. Hence, in keeping with Meisner and von Wangenheim (2021, Proposition
1), this ROL is also rationalizable for the lowest-priority agent under expectation-
based loss aversion (EBLA). In the online appendix, we discuss how the experiment
can be modified to disentangle the theories.

Li’s common value setting with common priority rankings gives rise to additional
predictions. As in many other studies, the most common manipulation in Li
(2017) is the 1-2-swap (2, 1, 3, 4). If we consider the first-ranked options in the

7We allow for indifference, vk = vk+1 and, hence, we can split up an option s with capacity
qs > 1 into qs separate options with unit capacity over which the participants are indifferent.

8Meisner and von Wangenheim (2021, Proposition 1) show that only such ROLs can be
optimal in their setting. An ROL is top-choice monotone if it reverses the order of options
preferred to the reported top choice and preserves the order of the other options.
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modal deviations for each priority score separately, we observe a monotonicity:
lower scores tend to rank worse options first. A line of reasoning behind such
deviations becomes clear in Prediction 2, which slightly alters the informational
setting of Li (2017).

Prediction 2. Suppose all options have unit capacity and there are n options and
participants. All n participants have a common preference vector v. All options
have the same priority ranking over participants, and each participant k knows to
have the k-th priority. In DA, TTC, or SD (in order of priority) and for any ρ,
this participant optimally ranks the k-th preferred option (according to v) first.

Here, all options are attainable to the highest-priority participant 1 who just
chooses her favorite, and all ROLs ranking option 1 first are payoff-equivalent.
Given the behavior of the higher-priority participants, participant k essentially
selects her final match with certainty. In this Nash equilibrium, also participants
with standard preferences or EBLA optimally submit such a report. However, in
both these cases the participant is indifferent between an ROL with the predicted
structure and the true ROL or any other ROL only ranking options s < k already
selected by others. In contrast, under report-dependent utility the preference is
strict because the match is certain and ρ(1) > ρ(r) for all r > 1. Consequently, a
participant is willing to pay up to (ρ(1)−ρ(k)) > 0 to perform a jump manipulation
in the true ROL. In general, we can distinguish our theory from others that simply
treat ROLs as lotteries over match outcomes such that identical lotteries yield the
same utility. Opposed to such approaches, a jump deviation can be profitable even
when δr = 0 for all jumped options r, see (5).

According to our model, participants in Li (2017) apply the logic behind Prediction
2 probabilistically as they can only imperfectly infer their priority rank from their
privately observed priority score. Hence, participants with medium or high priority
scores and either sufficiently large (ρ(1) − ρ(2)) (or sufficiently small (v1 − v2))
prefer ROL (2, 1, 3, 4) over the true ROL, which brings us to our next prediction.
Based on (7) with v1 ≈ v2, this prediction gives conditions conducive to swaps
that are consistent with the priority-option bias, the small-option bias, and the
similar-preference bias coined by Chen and Sönmez (2006).

Prediction 3. Consider a participant and her two most preferred options 1 and 2,
and let the report-independent preferences over the two be weak, i.e., v1 = v2 + ε
with very small ε > 0. In DA, TTC, and SD, the participant’s ROL reverses the
order of 1 and 2, if one of the following is true:

• the capacity of 2 is significantly larger compared to 1, but the options do
not differ in terms of relative priority and popularity; or

• the participant’s relative priority at 2 is significantly higher compared to 1,
but the options do not differ in terms of capacity and popularity; or

• the perceived popularity of 2 is significantly lower compared to 1, but the
options do not differ in terms of capacity and priority.
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The experiment on preference intensities by Klijn et al. (2013) provides evidence in
line with this prediction. This observation is at odds with EBLA, since according
to Meisner and von Wangenheim (2021) the profitability of this swap does not
depend on v.

Given a mechanism, an attainability distribution corresponds to beliefs about the
reported preferences of other participants, but these beliefs do not have to be
rational or even correct in any sense. In many settings, forming these beliefs
correctly is complicated–even absent the usual biases in belief formation–because
it is often unclear how the other side evaluates the proposers. Such aggregate
uncertainty is persistent and does not vanish as markets grow large. This point is
worth stressing as it raises the question of whether the classical mechanisms really
allocate the popular options to those participants who have the highest priorities
or to those who merely think they do, when pessimistic high-priority participants
shy away from applying. For example, a “hard-easy gap” (Dargnies et al., 2019)
can be used to induce biased beliefs in experimental subjects if options evaluate
participants according to a score in their own test. According to Prediction 3, such
induced optimism or pessimism can trigger a swap deviation. Indeed, Rees-Jones
and Skowronek (2018) find that overconfident participants tend play the truthful
strategy more often, which is in line with our theory (but also with EBLA).

At first glance, Proposition 2 seems to imply that honesty for all preference re-
alizations cannot be obtained in any strategy-proof mechanism. It suggests that
truthful ROLs can only be guaranteed for arbitrary report-dependent components
if the individual preferences reverse the popular preferences, and this must be
violated for most types by definition of popularity. However, Proposition 2 not
only holds in settings in which preferences are (believed to be) maximally nega-
tively correlated such that each participant believes nobody else likes what she
likes. The following prediction exploits the case in which (4) holds with equality
as no participant knows enough to rank options according to attainability. The
following prediction9 is a corollary of Proposition 2.

Prediction 4. Suppose all participants believe all ROLs and priority rankings of
others are equally likely and that all options have the same capacity. Consider a
participant who does not know her relative priority at any option. In DA or TTC,
and for any v and any ρ, this participant ranks options according to v, i.e., she
submits the true ROL.

Imagine all participants have preferences such that their vs are individual iid draws
and they all believe that options individually and privately draw priorities uni-
formly at random. Expecting that other participants are truthful implies that each
ROL is submitted with the same probability, which together with the uniformly
drawn priorities implies that all options are equally likely to be attainable so that
(4) holds with equality for all participants. That is, in settings where preferen-

9The idea that a lack of information about others’ preferences limits the benefits of strategic
manipulations is not special to our model, see Roth and Rothblum (1999) or Coles and Shorrer
(2014).
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ces are maximally unknown such that a central mechanism collecting preferences
has the largest benefit, report-dependent preferences do not cause problems in
strategy-proof mechanisms. Pais and Pintér (2008) support Prediction 4 in spirit
as they find that truthfulness rates in DA and TTC are highest when participants
know nothing about the others’ preferences (and priorities). In contrast to the
standard model, our model can explain this observation: learning which options
are likely to be contested can incentivize misrepresentations to avoid rejections
from these options. In the online appendix, we formulate a prediction tailored to
their setting.

Prediction 4 can also serve to differentiate the effects of EBLA and report-dependent
utility. Under EBLA, a participant never submits the true ROL if the attainability
probability of her most-preferred option is sufficiently low, regardless of the attai-
nability of other options, see Meisner and von Wangenheim (2021, Proposition 2).
The true top choice is ranked down purely to avoid disappointment. In contrast,
a participant with report-dependent utility needs a more attainable option to take
its place in the ranking. In the setting of Prediction 4 such an option does not
exist such that the true top choice is reported.

4 Discussion

We have investigated the impact of report-dependent utility on behavior in strategy-
proof mechanisms and established an inherent motive for self-selection. For any
arbitrary ranking of acceptable options, we can construct beliefs such that this
ROL is optimal even if report-dependent payoffs are arbitrarily small. In our mo-
del, honesty can be guaranteed if and only if there is no conflict between where
a participant wants to be assigned and what she finds feasible. In the data and
in line with our theory, truthfulness is indeed negatively associated with the per-
ceived attainability of preferred options. More research is necessary to identify
whether this trade-off between match quality and probability is preference-based
or originates from misconceptions about the mechanism. This model leads to tes-
table predictions to distinguish it from other approaches. Our insights also raise
questions not answered in this paper, and we now briefly discuss some of these
questions.

First, our decision-theoretic analysis does not consider strategic interaction and
how equilibrium effects affect reporting behavior. However, our setting straightfor-
wardly extends to multiple decision-makers, and it can be shown that preference
misrepresentations persist in game-theoretic equilibrium. Suppose there are two
participants whose private type consists of v and possibly a signal about relative
priority such as test scores. Given a type distribution, participant 1 can compute
an attainability distribution given her own type and a strategy, i.e., a mapping
from types into ROLs, of participant 2. The optimal ROLs for all her types con-
stitute her best response against the corresponding fixed strategy of player 2. If
both players best-respond to each other, we have a Bayesian Nash equilibrium.
In larger games, we can proceed in a similar fashion. In general, the existence of
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a Bayesian Nash equilibrium is guaranteed by Milgrom and Weber (1985). It is
easy to construct examples in which inefficiency (or justified envy) with respect to
v persists in equilibrium allocations of TTC (or DA). That is, report dependence
not only obstructs classical mechanisms from incentivizing truthful input, but also
from implementing the allocations they are designed for.

There is a plethora of sources for a report-dependent payoff component, such as
self-regarding concerns, aversion to rejections, or signaling motives in a larger
game. The take-away message of this paper varies by context. First, market de-
signers should be wary of factors that introduce report-dependent utility through
the backdoor. For instance, changing the Turkish college admission mechanism
to DA does not lead to a truthful dominant strategy if universities offer “prefe-
rence scholarships,” see Footnote 3. Second, report-dependent utility can also be
generated by emotional factors, and under such an assumption growing evidence
of non-truthful play in the field and in the lab can be explained. We thus cau-
tion against taking reported preferences at face value for policy decisions, and we
emphasize the importance of participants’ beliefs despite the strategy-proofness.

While we claim that our predictions in Section 3.1 are supported by experimen-
tal data, some readers might demand other evidence, and question whether the
emotional motives play a relevant role in these experimental settings. In this con-
text, our model may explain a preference for randomization observed in the field.
Some participants deliberately introduce additional uncertainty which is incon-
sistent with standard preferences and, in particular, with EBLA which inherently
entails an aversion to uncertainty. Each applicant in the German clearinghouse for
university programs in medical fields has to submit three ROLs to three different
procedures at the same time. Dwenger et al. (2018) document that applicants in-
tentionally submit contradictory preferences and thereby essentially delegate their
outcome to a suboptimal stochastic process. Through the lens of our model, ap-
plicants may prefer to delegate agency of their choice to mitigate emotional costs
when the outcome differs from the reported preferences. Alternatively, contra-
dicting ROLs can be used to justify ex-post that the outcome is in fact consistent
with (one of the) reported preferences.

We did not investigate how to remedy the problems caused by non-truthful ROLs.
This point immediately links to open empirical questions, aside from confirming
our predictions. While we have argued for several plausible channels, our theory is
silent on where the report dependence actually comes from. If misrepresentations
are caused by disappointment aversion, it might be beneficial to tell participants
that rejections are common in order to reduce the weight of gain-loss utility, pa-
rameter η in Dreyfuss et al. (2019) or Meisner and von Wangenheim (2021). In
our model, the effect of such an announcement is ambiguous. While ρ(r) might
increase for large r because rejections are perceived as less dramatic, ρ(1) might
also increase because a prevalence of rejections might lead to more pride in avoi-
ding them. As an alternative, releasing information about the attainability of all
options independent of the final allocation would make misrepresentations futile
as a tool to avoid information about rejections. To what extend avoiding negative
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feedback about the own priority drives report-dependent utility is an empirical
question. In the field, self-image protection does not seem to be the main driving
factor. For instance, the self-selecting Mexican students studied by Chen and Pe-
reyra (2019) know their own exam scores, and the cut-off scores for admission at
each school are published after the match has finalized.

Recently, dynamic mechanisms have been suggested as a promising way to induce a
truthful preference revelation. In settings with homogeneous priorities, sequential
serial dictatorship could reduce misrepresentations by letting participants choose
sequentially in order of their priority as suggested by Li (2017) or Meisner and von
Wangenheim (2021). The uncertainty about attainability which can cause non-
truthful reporting in static mechanisms can be reduced in dynamic mechanisms.
For instance, iterative DA mechanisms (Bó and Hakimov, 2018, 2020a) or pick-an-
object mechanisms (Bó and Hakimov, 2020b) do exactly that. First, they reveal
if a favored option has already been selected by higher-priority agents, implying
that unattainable options do not affect the choice. Second, they reveal if a favored
option is still attainable, implying that ex-ante low attainability probabilities do
not affect the choice. When participants only select from a pool of options left
once it is their turn to choose, they can also credibly brag that they obtained their
most-preferred option. The experimental evidence in favor of these mechanisms
is in line with our theory. Under constraints on the possible preferences, stability
or efficiency can be ensured despite report-dependent payoffs.

The attainability reduced form is not helpful when Lemma 2 does not apply.
Immediate acceptance (IA, also known as the Boston mechanism) is a popular
such (non-strategy-proof) mechanism. Here, the participant is not assigned to her
highest-ranked attainable option. Therefore, match probabilities do not follow (2).
For instance, consider student i3 in the example in the appendix with IA and Ri1 =
(s2, s1, s3). Submitting ROL (s1, s2, s3) assigns i3 to s3. If she reported (s2, s1, s3)
instead, she would be accepted at s2. So s2 is available in the first step, but given
i1 and i4 apply in the first step, s2 has to reject i3 in the second step. For this
reason, utility changes due to a deviation to another ROL are more complicated to
evaluate. As illustrated, the swap deviation from (s1, s2, s3) to (s2, s1, s3) can shift
match probability from s3 to s2, which is impossible in a strategy-proof mechanism.
This built-in feature of IA incentivizes ranking downwards competitive options and
moving upwards safer options in the ranking. Report-dependent utility amplifies
these incentives, but also gives rise to distinct incentives. Consequently, we can
distinguish our theory from the idea that participants in DA submit manipulated
ROLs because, for whatever reason, they think they play IA. For example, consider
a participant in Li (2017) who has no report-dependent utility and who incorrectly
assumes to play IA. For her, the commonly submitted ROL (4, 3, 2, 1) is dominated
by any other ROL not ranking 4 first.

However, Lemma 2 still applies when strategy-proof mechanisms are constrained
by only allowing truncated ROLs. These mechanisms still assign our participant
to her highest-ranked attainable option, but they impose that an outside option o
(not getting matched) must have a rank R̃(o) ≤ k for some k < n. Without report
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dependence, this constraint provides incentives to rank better more attainable
options to avoid falling back to option o. However, Lemma 2 ensures that all
options in the optimal truncated ROL are ordered with respect to v. Under
report-dependent utility, the latter does not hold anymore for the same reasons
as in the unconstrained mechanisms. Since the incentives to rank better more
attainable options are already present in the unconstrained mechanism, truncated
ROLs can be optimal under report-dependent utility. As the incentives go in the
same direction, the welfare loss due to truncation constraints is expected to be
lower under report-dependent utility. If each participant also has an endogenous
outside option o′ (such as a district school) and only prefers less than k options
over it, the optimal ROL already satisfies the truncation constraint as all options
ranked below o′ are irrelevant.

The fact that participants respond to advice appears to be incompatible with
preference-based explanations. If the rules are fully understood, truthfulness ra-
tes should not increase when correct advice to report truthfully is provided, but
they do. However, incorrect advice to self-select has an even larger effect in the
opposite direction. For instance, the “wrong advice” in Guillen and Hing (2014)10

is “Since the top schools will have many applicants you should be realistic and
apply to schools where you are likely to gain acceptance. If your local school is
quite good you should put it as your first preference.” This advice is bad in terms
of report-independent utility, but it is good advice when participants care about
how they ranked the school they end up with. The advice can be interpreted
as a shift in mental focus from the report-independent to the report-dependent
utility component. Similarly, advice suggesting truthful revelation may emphasize
the report-independent dimension. Indeed, the “correct advice” in the same pa-
per reads “The mechanism is designed so that truthful reporting maximizes your
chances of getting favored schools. You should rank the schools in order of their
true value to you.” Here, the final sentence invokes a “true value,” which attracts
more attention to a payoff that is unrelated to a rank in the ROL. Thereby, the
focus is shifted in a similar fashion.

Appendix

Attainability and examples
In any deterministic strategy-proof mechanism, we can employ the attainability
distribution P as a reduced form summarizing beliefs about the other participants’
ROLs, the options’ priorities and their capacities, and we can use this distribution
to calculate our participant’s distribution over match outcomes for each ROL.
For a given mechanism, the attainability state is fully determined by the other
participants’ ROLs, the options’ priorities and capacities. Since the participant
is always matched to the highest-ranked attainable option but cannot influence
attainability herself, it is in her best interest to rank options according to v if
report-independent utility is all she cares about.

10They consider TTC. Similar observations exist for DA (Ding and Schotter, 2017, 2019).
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Lemma 2. A strategy-proof mechanism assigns a participant to her highest-
ranked attainable option such that match probabilities are given by (2).

Proof of Lemma 2. Consider any strategy-proof mechanism. Fix arbitrary ROLs
of all other participants and let s be the highest-ranked attainable option in R̃,
our participant’s ROL.

Suppose the participant is matched with s′ ranked before s. But then, since s′ is
unattainable (i.e., she would not get in if ranked first), she would prefer R̃ over her
true ROL if s′ was her most preferred option, a contradiction to strategy-proofness.

Suppose she is matched with s′′ ranked behind s. But then, if R̃ was the true
ROL, she would prefer a match with s over s′′, and ranking s first would achieve
this match, again a contradiction to strategy-proofness.

Let us consider Example 13.1 in Haeringer (2018), a school-choice setting with four
students, {i1, i2, i3, i4}, and three schools, {s1, s2, s3}. Schools s1 and s3 have unit
capacity, while s2 has two seats. We focus on the attainability state of student i1
given the other participants submit the following ROLs:

Ri2 = (s1, s2, s3), Ri3 = (s1, s2, s3), Ri4 = (s2, s3, s1),

Rs1 = (i1, i2, i3, i4), Rs2 = (i3, i4, i1, i2), Rs3 = (i4, i1, i2, i3),

where Ri is the ROL of agent i. We always mean the static implementation of the
mechanisms, in which all participants simultaneously submit their ROLs in the
beginning.

First, we consider student-proposing deferred acceptance (DA, with this abbrevia-
tion we always refer to the strategy-proof proposing side, not the possibly strategic
receiving side). If i1 submits Ri1 = (s2, s1, s3), she is assigned to s1. Therefore, s1

is attainable for her, but s2 is not—she does not get in despite ranking it first. If,
alternatively, i1 ranked school s3 first, she would get in: In step 1, only student i3
gets rejected and moves on to school s2 which accepts her, and the algorithm ter-
minates. Consequently, s3 is attainable as well. Second, we consider top-trading
cycles (TTC). If i1 ranks s1 first, she forms a cycle with it in the first round.
Similarly, she would be part of a (bigger) cycle in the first round if she ranked s2

or s3 first. Therefore, each school is attainable. Third, we consider serial dicta-
torship (SD) in the order (i4, i3, i2, i1). In this setting, i1 gets to choose last and is
matched to the remaining option, s3, for every possible ROL. Table 2 summarizes
this analysis by stating the attainability state for each mechanism for the given
ROLs.

The attainability states in Table 2 correspond to fixed ROLs of the other par-
ticipants and capacities. An attainability distribution P is a probability distri-
bution over such states, and it corresponds to a probability distribution over the
other ROLs (and possibly capacities) in the same fashion as above. Attainabi-
lity states are usually not independent even when all participants’ preferences are
independently distributed. For instance, if each of our exemplary participants
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Mechanism Attainability state
As1 As2 As3

DA 1 0 1
TTC 1 1 1
SD (last chooser) 0 0 1

Table 2: The attainability states for each of the three discussed mechanisms and
the given ROLs and priorities.

independently draws vs1 from a uniform distribution on [0.5, 1.5], but vs2 and vs3
independently from a uniform distribution on [0, 1], school s1 is more in demand.
If then additionally all three participants independently draw an individual pri-
ority score which determines the priority order at all options, attainability of s1

makes attainability of s2 or s3 more likely.

The three mechanisms above are deterministic: given all ROLs the allocation is
certain. The attainability reduced form can also incorporate stochastic mecha-
nisms. For instance, consider a lottery that independently of the ROL randomly
assigns student i1 to s1 and s3 with probability 1/4, each, and to s2 with proba-
bility 1/2. Trivially, the true ROL is always optimal here because the ROL does
not affect the allocation. We can extend our setting such that in addition to the
ROLs of all other players, a chance player (“Nature”) influences the attainability
state. In this example, the attainability distribution simply assigns probabilities
1/4, 1/4, and 1/2 to attainability states (1, 0, 0), (0, 0, 1), and (0, 1, 0), respectively.
Such a chance player can also represent tie-breaking when priorities are weak, or
randomize over the order of choice in SD. In contrast, attainability is not a helpful
concept when Lemma 2 does not apply. With Immediate acceptance, we discuss
such a non-strategy-proof example in Section 4.

Proofs

Proof of Proposition 1. Fix any arbitrary ROL R̃ = (1̃, 2̃, . . . , ñ), any function
ρ, and any report-independent utility vector v. We construct an attainability
distribution P̃ such that R̃ is strictly optimal. We assume that option n with
vn = 0 is a safe outside option, but the proof is straightforward to alter for the
case without outside options. This is just a normalization of the payoffs given that
the participant can improve upon any ROL listing an unacceptable option with
vn+1 < vn by simply dropping it behind the outside option.

The constructed P̃ only puts positive weight on R̃(n) states. Let those weights
and states be qr̃ = Pr(Ar̃ = 1 = An, As = 0 ∀s 6= r̃, n), and let

qr̃ > qr̃+1 ∀r ≤ R̃(n) (8)

with
∑R̃(n)

r=1 qr̃ = 1. We first only compare R̃ to ROLs R̂ of the same length as R̃,
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i.e., R̂(n) = R̃(n), and note that

Uρ(v|R̃)− Uρ(v|R̂) ≥
R̃(n)∑
r=1

qr̃
(
ρ(r)− ρ(R̂(r̃))

)
, (9)

because in each state both ROLs either yield the same report-independent utility
vr̃ or R̂ yields vn = 0 < vr̃ such that we can restrict attention to comparing
report-dependent utility. Since ρ is decreasing and (8) holds, R̃ puts the largest
ρ(r) on the most likely states. Hence, (9) is positive by the classical rearrangement

inequality. Any longer ROL with R̂(n) > R̃(n) can only perform worse because it

only additionally ranks options that are never attainable under P̃ , which can only
decrease report-dependent utility.

Next, we compare R̃ to truncations of itself. Suppose R̂(r̃) = R̃(r̃) for all r < t <

R̃(n), and let R̂(n) = t. That is, R̂ lists the same options on ranks r < t and
drops all other options. Note that

Uρ(v|R̃) ≥
t∑

r=1

qr̃(vr̃ + ρ(r)) +

(
1−

t∑
r=1

qr̃

)
ρ(R̃(n)) ∀t < R̃(n)

as (vr̃ + ρ(r)) > (0 + ρ(R̃(n)) for all r ∈ Jt+ 1, R̃(n)− 1K. Hence, with Uρ(v|R̂) =∑t−1
r=1 qr̃(vr̃ + ρ(r)− ρ(t)) + ρ(t), we have

Uρ(v|R̃)− Uρ(v|R̂) ≥

(
1−

t−1∑
r=1

qr̃

)(
ρ(R̃(n))− ρ(t)) + qt̃(vt̃ + ρ(t)− ρ(R̃(n))

)
,

which is positive for all t if

qt̃ ≥

(
1−

t−1∑
r=1

qr̃

)
ρ(t)− ρ(R̃(n))

vt̃ + ρ(t)− ρ(R̃(n))
=

(
1−

t−1∑
r=1

qr̃

)
α ∀t < R̃(n), (10)

where α ∈ (0, 1) because ρ(t) > ρ(R̃(n)) for all t < R̃(n). If additionally (8) holds,

also all other truncated ROLs of length t yield a lower expected payoff than R̃.

Because R̃ is a strict utility maximizer given the distribution P̃ constructed above
and expected utility is continuous in P , we can construct an open ball around P̃
such that both (8) and (10) hold for all P in this open ball.

Proof of Proposition 2. First, note that

Uρ(v|R)− Uρ(v|R̃) =
n∑
r=1

(
vr(fr − f̃R̃(r)) + ρ(r)(fr − f̃r)

)
= ∆v + ∆ρ,

where ∆v > 0 as strategy-proofness implies a first-order stochastic dominance of
the true lottery with respect to the report-independent utility.
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Suppose (4) is violated for some r of ROL R̃, and let the difference in (4) be
∆r < 0. We construct a decreasing ρ such that ρ(r) → ρ(1) for all r ≤ r and
ρ(r)→ 0 for all r > r. Then, we have

Uρ(v|R)− Uρ(v|R̃)→ ∆v + ρ(1)
r∑
r=1

(fr − f̃r) + 0 = ∆v + ρ(1)∆r,

which can be made arbitrarily negative by increasing ρ(1) > −∆v/∆r > 0. Hence,

there are functions ρ such that Uρ(v|R) < Uρ(v|R̃).

Suppose (4) holds for all r, and fix any arbitrary v and ρ. Under strategy-

proofness, Uρ(v|R)− Uρ(v|R̃) ≥ ∆ρ, and we see that (4) implies

∆ρ =
n−1∑
r=1

(fr − f̃r)ρ(r) + ρ(n)

((
1−

n−1∑
r=1

fr

)
−

(
1−

n−1∑
r=1

f̃r

))

=
n−1∑
r=1

(fr − f̃r)(ρ(r)− ρ(n))

=
n−1∑
r=1

(fr − f̃r)
n−1∑
i=r

(ρ(i)− ρ(i+ 1))

=
n−1∑
r=1

(ρ(r)− ρ(r + 1))

(
r∑
i=1

fi −
r∑
i=1

f̃r

)
> 0,

as for each r the first factor is positive for any decreasing ρ and the second factor
is positive when (4) holds.

Proof of Lemma 1. By definition, Uρ(v|R̂)− Uρ(v|R̃) < 0 if and only if

m∑
r=1

(
f̂r (vr̂ + ρ(r))− f̃r (vr̃ + ρ(r))

)
< 0

∑̀
r=k

(
f̂r (vr̂ + ρ(r))− f̃r (vr̃ + ρ(r))

)
< 0

`−1∑
r=k

(
f̂r (vr̂ + ρ(r))− (f̂r + δR̂,R̃r ) (vr̂ + ρ(r + 1))

)
+ f̂`(v̂̀+ ρ(`))− (f̂` + δR̂,R̃` )

(
v̂̀+ ρ(k)

)
< 0

`−1∑
r=k

(
f̂r (ρ(r)− ρ(r + 1))− δR̂,R̃r (vr̂ + ρ(r + 1))

)
+ f̂`(ρ(`)− ρ(k))− δR̂,R̃`

(
v̂̀+ ρ(k)

)
< 0

`−1∑
r=k

(
f̂r(ρ(r)− ρ(r + 1))− δR̂,R̃r ρ(r + 1)

)
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+ f̂`(ρ(`)− ρ(k))− δR̂,R̃` ρ(k) <
∑̀
r=k

δR̂,R̃r vr̂.

Because (ρ(k) − ρ(`)) =
∑`−1

r=k(ρ(r) − ρ(r + 1)) and −δR̂,R̃` =
∑`−1

r=k δ
R,R̃
r , we can

rewrite the above as (5),

`−1∑
r=k

(
(fr − f`)∆r + δR,R̃r (ρ(k)− ρ(r + 1))

)
<

`−1∑
r=k

δR,R̃r (vr − v`).
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