Checkmate! Losing with Borders, Winning with Centers. The Case of European Integration

> Ketevani Kapanadze CERGE-EI

EEA-ESEM Congress, 2022

Image: A math a math

∢ ≣ ▶

Motivation I:

Winners and Losers of European Integration

- The EU Eastern enlargement in 2004 and joining Schengen in 2008 are one of the greatest examples in history of international trade integration and abolishing border controls.
- In the recent paper by Campos et al. (2020), authors find strong evidence for positive net benefits from EU membership, despite considerable heterogeneity across countries.
- The "European integration effects heterogeneity" within countries is neglected in the empirical studies. European integration might affect different sub-regions within countries in different ways. For whom does integration generate beneficial or adverse effects at sub-regional level?
- This is the first study which present estimates of the effect of joining EU and Schengen across all CEECs sub-regions, individually.

Geographical Proximity Matters

Based on NEG theoretical models, the economic integration shock should have affected the internal economic geography.

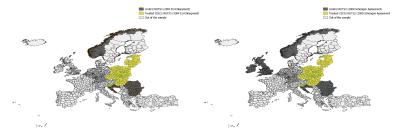
Borders=Winners:

- Better access to the foreign market would increase the market area of the border regions and foster the settlement of firms close to the national border.
- Borders=Losers:
 - Low economic potentials on both sides of the border and adverse effects of increased competition are considerable, particularly in low-wage industries

Empirical Literature Review

Building on Hanson (1998) and Redding & Sturm (2008)

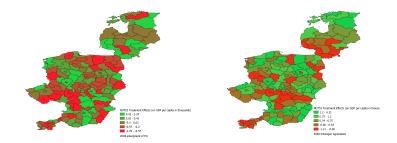
Effect of European Integration on Border vs. Interior Sub-Regions


Paper By	Main Results	Treated	Comparision Group	Methods
Brülhart, Crozet, Koening (2004)	(+)	Border regions in EU-15	Interior Regions	Simulation Analysis
Brulhart & Koening (2005)	(+)	Border regions in NMS-10	Interior Regions	Simulation analysis
Niebuhr (2008)	(+)	Border regions in NMS-10	Interior Regions	Simulation Analysis
Brakmmann & Vogel (2011)	(-, NE)	German's Eastern border regions	Interior regions	Difference in Difference
Brakman et al (2012)	(+)	Border regions in EU	Interior regions	Difference in Difference
Heider (2018)	(+)	German's Eastern border regions	Interior regions	Triple Difference
Mitze et al. (2018)	(EU15 +, NM10 NE)	Border regions in EU	Interior regions	Spatial-time incremental difference in difference model
My paper	First Stage: (+ -) Second Stage: (-)	All regions in CEECs Border regions in CEECs	Non-EU/SCH regions Interior regions in CEECs	Disaggregeted Synthetic Control Method OLS

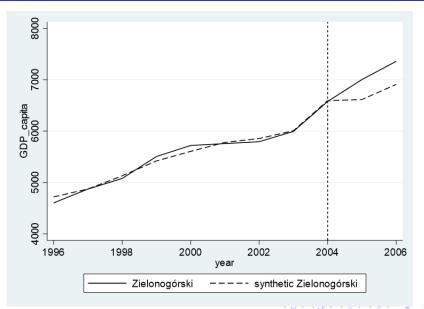
In estimating the net benefits from EU and SCH memberships in CEECs sub-regions, I address the following main questions.

- What would be the level of per capita income in each sub-region if the country it belongs had not joined the EU and SCH? construct
- Do all sub-regions benefit from economic integration, specifically is there a significant economic gap among border and interior regions ? compare
- If yes, do facilitators interacted with the geographical proximity of being a border or not reduce the existing economic gap? complement

Sample Treated & Control Groups


- Treated Group: Czech Republic, Poland, Hungary, Slovenia, Slovakia, Lithuania, Latvia, and Estonia
- **Control Group (EU)**: Bulgaria, Romania, Croatia, and Norway
- Control Group (SCH): Bulgaria, Romania, Croatia, Norway, Ireland and United Kingdom.

- Annual Regional Database of the European Commission's Directorate-General for Regional and Urban Policy platform (ARDECO)
 - Dataset includes 14 European countries and 437 NUTS3 regions
 - GDP per capita (constant prices, in EUR), population, total Employment & GVA per capita (constant prices, in EUR). Sectoral decomposition: employment and GVA per capita in agriculture, industry, & Wholesale, retail, transport, accommodation, food, information, and communication sectors.
 - Data coverage: 1990-2015


- Typology and the size of NUTS3 are collected from the Geographic Information System of the Commission (GISCO) database
- Eurostat and the DIVA-GIS shapefiles
- Terrain map and hillshade data from European Environment Agency (EEA)
- EU accession referendum data from European Election and Referendum Database

Stage I: Disaggregated Synthetic Controls Regional Treatment Effects (RTEs)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Disaggregated: Poland

$RTE_i = \beta Border_i + X_i + \epsilon_i$

- RTE_i is the effect of the European integration in NUTS3 i
- \blacktriangleright β shows if and how post-accession trends differ between border and interior regions

Dependent variable:	(1)	(2)	(3)	(4)	(5)	(6)
RTEs on GDPPC	EU	EU	EU	SCH	SCH	SCH
Land Border (25km)	-0.189**			-0.312*		
	(0.066)			(0.146)		
Internal EU Border		-0.222**			-0.292*	
		(0.065)			(0.143)	
External EU Border			-0.087			-0.165
			(0.109)			(0.241)
Constant	0.224	0.080	1.132	-3.460***	-3.765***	-2.791**
	(2.263)	(2.262)	(2.263)	(0.788)	(0.986)	(0.925)
Controls	YES	YES	YES	YES	YES	YES
Country Fixed Effects	YES	YES	YES	YES	YES	YES
Observations	140	125	66	140	125	66
R ²	0.380	0.312	0.495	0.480	0.513	0.558

Dependent variable:	(1)	(2)	(3)	(4)	(5)	(6)
RTEs on GDPPC	EU	EU	EU	SCH	SCH	SCH
Land Border (25km)	-0.189**			-0.312*		
	(0.066)			(0.146)		
Internal EU Border		-0.222**			-0.292*	
		(0.065)			(0.143)	
External EU Border			-0.087			-0.165
			(0.109)			(0.241)
Constant	0.224	0.080	1.132	-3.460***	-3.765***	-2.791**
	(2.263)	(2.262)	(2.263)	(0.788)	(0.986)	(0.925)
Controls	YES	YES	YES	YES	YES	YES
Country Fixed Effects	YES	YES	YES	YES	YES	YES
Observations	140	125	66	140	125	66
R ²	0.380	0.312	0.495	0.480	0.513	0.558

Dependent variable:	(1)	(2)	(3)	(4)	(5)	(6)
RTEs on GDPPC	EU	EU	EU	SCH	SCH	SCH
Land Border (25km)	-0.189**			-0.312*		
	(0.066)			(0.146)		
Internal EU Border		-0.222**			-0.292*	
		(0.065)			(0.143)	
External EU Border			-0.087			-0.165
			(0.109)			(0.241)
Constant	0.224	0.080	1.132	-3.460***	-3.765***	-2.791**
	(2.263)	(2.262)	(2.263)	(0.788)	(0.986)	(0.925)
Controls	YES	YES	YES	YES	YES	YES
Country Fixed Effects	YES	YES	YES	YES	YES	YES
Observations	140	125	66	140	125	66
R ²	0.380	0.312	0.495	0.480	0.513	0.558

Dependent variable:	(1)	(2)	(3)	(4)	(5)	(6)
RTEs on GDPPC	EU	EU	EU	SCH	SCH	SCH
Land Border (25km)	-0.189**			-0.312*		
	(0.066)			(0.146)		
Internal EU Border		-0.222**			-0.292*	
		(0.065)			(0.143)	
External EU Border			-0.087			-0.165
			(0.109)			(0.241)
Constant	0.224	0.080	1.132	-3.460***	-3.765***	-2.791**
	(2.263)	(2.262)	(2.263)	(0.788)	(0.986)	(0.925)
Controls	YES	YES	YES	YES	YES	YES
Country Fixed Effects	YES	YES	YES	YES	YES	YES
Observations	140	125	66	140	125	66
R ²	0.380	0.312	0.495	0.480	0.513	0.558

- Facilitators are important in cross-border interactions because they may reduce within country inequalities.
- Facilitators: non-mountainous, positive attitudes toward EU, and employment share in service sector.
- Economic gap among internal border vs. interior remains.

- I construct all individual CEECs' NUTS3 regional treatment effects and find that effects of European integration are heterogeneous at sub-regional level.
- I show that, in the course of European integration, annual GDP per capita in border regions lost more relative to interior areas by approximately €300, which is 10% of annual GDP per capita.
- Moreover, I show that a strong gap among border and interior regions remains even with moderators.