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Motivation

Motivation

Identification problem in linear, Gaussian state-space models is well
understood

Identification problem in linearized DSGE models is still unresolved

DSGE model has a state-space form after it is solved
Link between deep parameters in DSGE models and its state-space form is not
analytical

Since lack of identification is a faulty design of any underlying model, it
creates problems for

Estimation
Drawing conclusions from structural models
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Motivation

Literature

Local identification:

Iskrev (2010), Komunjer & Ng (2011), Qu & Tkachenko (2012)

Global identification - special cases:

Fukac, Waggoner & Zha (2007), Morris (2013)

Global identification - general approaches:

Qu & Tkachenko (2017, 2022), Koci ↪ecki & Kolasa (2018)
No sufficient conditions for global identification
Only numerical algorithms to search for observationally equivalent parameter
sets
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Motivation

This paper

Still no sufficient conditions for global identification

A constructive proof whether the model is globally identified or not

Using methods from algebraic geometry (Gröbner basis)

No need to use numerical algorithms to search for observationally equivalent
sets of parameters

Can handle non-square systems and indeterminacy
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Setup

Model setup

Linearized DSGE model

Γ0(θ)

[
st
pt

]
= Γ1(θ)Et

[
st+1

pt+1

]
+ Γ2(θ)st−1 + Γ3(θ)εt

where:

st is vector of states

pt is vector of policy variables

Γi (θ)’s are matrices that explicitly depend on deep model parameters θ ∈ Θ

εt ∼ N(0,Σ(θ)) are exogenous variables (innovations to structural shocks,
measurement errors, sunspot shocks)
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Setup

Model solution

A stable model solution can be written as

st = A(θ)st−1 + B(θ)εt

pt = F (θ)st−1 + G (θ)εt

where A(θ), B(θ), F (θ), G (θ) are matrices that implicitly depend on deep
model parameters θ

From now on: A(θ) := A, A(θ̄) := Ā, etc.
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Setup

ABCD-representation

Using measurement equation for observables yt

yt = H

[
st
pt

]
+ Jεt

We arrive at the ABCD-representation of the linearized DSGE model

st = Ast−1 + Bεt

yt = Cst−1 + Dεt
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Setup

Assumptions

Assumption 1

(Stability) A is a stable matrix for all θ ∈ Θ.

Define N = APC ′ + BΣD ′, where P := E (sts
′
t)

Assumption 2

(Stochastic minimality) For all θ ∈ Θ, O = [C ′
...A′C ′

...A′2C ′
... . . .

...A′n−1C ′]′ has full

column rank and K = [N
...AN

...A2N
... . . .

...An−1N] has full row rank n (number of
states).

Generalization and unification of the framework used by Komunjer & Ng
(2011) and Koci ↪ecki & Kolasa (2018)
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Setup

Observational equivalence

We deal with a stationary Gaussian environment

We leave out intercept in the measurement equation (no loss of generality)

This allows us to define observational equivalence by using only second
moments

Define the z-spectrum of the ABCD-representation as
Φ(z) = H(z)ΣH ′(z−1), where H(z) = D + C (z In − A)−1B

Definition 1

θ and θ̄ are observationally equivalent (θ ∼ θ̄) if Φ(z) = Φ̄(z) for all z ∈ C in an
open annulus containing the unit circle.

12



Setup

Identification of ABCD-representation

Theorem 1

θ ∼ θ̄ iff
1) Ā = TAT−1,
2) C̄ = CT−1,
3) AQA′ − Q = T−1B̄Σ̄B̄ ′T ′−1 − BΣB ′,
4) CQC ′ = D̄Σ̄D̄ ′ − DΣD ′,
5) AQC ′ = T−1B̄Σ̄D̄ ′ − BΣD ′,
for some nonsingular matrix T and symmetric matrix Q.
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Setup

From ABCD-representation to DSGE (from ABCD to θ)

So far we have stated results for ABCD-representation, which is not
analytically linked to deep parameters θ

Relying only on Theorem 1 would imply the need to solve for all candidate
θ̄ ∈ Θ, and check if θ ∼ θ̄ is a singleton or not

We follow Koci ↪ecki & Kolasa (2018):

Develop the identification condition by combining Theorem 1 with restrictions
imposed on the DSGE model in its original form
This results in a system of nonlinear equations in θ̄ (and auxiliary “unknowns”),
which after some rearrangement becomes the set of polynomials
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Setup

Global identification

Definition 2

A linearized DSGE is globally identified at θ iff all admissible solutions to the
system below are such that θ̄ = θ

C = H̄sT A + H̄pF̄

D̄ = H̄sT B̄ + H̄pḠ + J̄

Γ̄s
0T A + Γ̄p

0 F̄ − Γ̄s
1T A2 − Γ̄p

1 F̄ A = Γ̄2T

Γ̄s
1T AB̄ + Γ̄p

1 F̄ B̄ − Γ̄s
0T B̄ + Γ̄3 = Γ̄p

0Ḡ

AQA′ − Q = B̄Σ̄B̄ ′ − BΣB ′

AQC ′ = B̄Σ̄D̄ ′ − BΣD ′

CQC ′ = D̄Σ̄D̄ ′ − DΣD ′

Dependence on θ̄: explicitly: Γ̄s
0, Γ̄p

0 , Γ̄s
1, Γ̄p

1 , Γ̄2, Γ̄3, Σ̄, H̄s , H̄p, J̄, implicitly:
B̄, D̄, F̄ , Ḡ , plus T , Q. Those in black are fixed numbers (for given θ).
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Implementation

Gröbner basis in a nutshell

Economics literature: Kubler & Schmedders (2010a, 2010b), Datta (2010),
Kubler et al. (2014), Foerster et al. (2016)

Calculating a Gröbner basis is analogous to Gaussian elimination in systems
of linear equations

The Gröbner basis makes the polynomial system “triangular”

The solution set of the initial polynomials is the same as its Gröbner basis

Exact arithmetics to get the Gröbner basis (floating point approximation used
only to get observationally equivalent points in numerical terms)

Conveys a lot of information: Is there a finite number of solutions? How
many?

If infinity of solutions (i.e. local nonidentification), it allows for analytical
insight what parameters should be fixed to achieve global identification

Specialized, highly efficient software available - we use SINGULAR

17



Implementation

Gröbner basis in toy examples

Example
x5 + y 2 + z2 = 4

x2 + 2y 2 = 5

xz = 1

⇒ Gröbner basis:


z7 − 3

2 z5 − 1
2 z3 + 1 = 0

y 2 − 1
2 z5 + 3

4 z3 + 1
4 z − 5

2 = 0

x + z6 − 3
2 z4 − 1

2 z2 = 0

Example
x2 − y 2 + x + y − z = 0

x2 + 2y 2 − 2x + y − z = 0

x3 − x2z − xy 2 − 2y 2z + x2 + xy + xz − yz + z2 = 0

⇒

Gröbner basis:

{
y 4 + y − z = 0

x − y 2 = 0
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Examples

An-Schorfheide (AS) model

An and Schorfheide (2007) + shock correlation as in Herbst and Schorfheide
(2016)

xt = Etxt+1 + gt − Etgt+1 −
1

τ
(Rt − Etπt+1 − Etzt+1)

πt = βEtπt+1 + κ(xt − gt)

Rt = ρmRt−1 + (1− ρm)[ψ1πt + ψ2(xt − gt)] + εm,t

zt = ρzzt−1 + ρzggt−1 + εz,t

gt = ρggt−1 + ρgzzt−1 + εg ,t

where st = [zt gt Rt ]
′, pt = [xt πt ]

′, yt = [Rt xt πt ]
′
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Examples

Point at which we check identification

Parameter Value Parameter Value
τ 2 ρzg 0.1
β 0.9975 ρgz -0.075
κ 0.33 ρm 0.75
ψ1 1.5 σz 0.3
ψ2 0.125 σg 0.6
ρz 0.9 σm 0.2
ρg 0.95
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Examples

Gröbner basis

0 = u2 − 1.8697u + 0.8697

...

ρ̄z = 0.9155 − 0.0155u

ρ̄zg = 0.2415 − 0.1415u

ρ̄g = 0.9345 + 0.0155u

ρ̄gz = 0.0209 − 0.0959u

τ̄ = 2

β̄ = 0.5351 + 0.4624u

κ̄ = 0.4912 − 0.1612u

ρ̄m = 0.75

ψ̄1 = 1.3131 + 0.1869u

ψ̄2 = 0.2516 − 0.1266u

v̄z = 0.1279 − 0.0379u

v̄g = 0.3128 + 0.6728u

v̄m = 0.04

The first line implies u = 1 or
u = 0.8697

For u = 1 we recover θ (point at
which we check identification)

For u = 0.8697 we get θ̄ 6= θ
(observationally equivalent
parameter vector)

Conclusion: model is locally,
but not globally identified at θ
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Examples

Gröbner basis for AS model with ρgz = ρzg = 0

...

ρ̄z = 0.9

ρ̄g = 0.95

τ̄ = 2

β̄ = 0.9975

κ̄ = 0.33

ρ̄m = 0.75w

ψ̄1(w − 1.3333) = 3.7211w − 4.2211

ψ̄2 = 2.7302 − 1.7368ψ̄1

v̄z = 0.09

v̄g = 0.36

v̄m = 0.04w2

No restrictions on w other than
θ̄ ∈ Θ

Conclusion: model is locally
unidentified at θ

Additional information:
explicitly given set of
parameters observationally
equivalent to θ
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Conclusions

Conclusions

Generalize identification framework in Komunjer & Ng (2011)

Apply Gröbner basis to find all observationally equivalent points (constructive
proof of identification)

Accommodate indeterminacy (see the paper)

Able to deal with medium-scale DSGE models

Observational equivalence in medium-sized DSGE models might be not so
widespread

Potential to solve global identification problem in many other models, for
which the sufficient condition doesn’t exist yet (e.g. Gaussian SVAR with
inhomogenous restrictions), or is the “Holy Grail” (e.g. Gaussian Affine Term
Structure Model)
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