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Introduction: Motivation

Since [Berry, 1994] and [Berry et al., 1995], the random coefficient logit demand model (BLP) has become the

workhorse model for demand estimation ( [Nevo, 2000], [Petrin, 2002], [Gentzkow and Shapiro, 2006],...)

I Only market level data required/ Random Coefficients (RC) allow for preference heterogeneity

Researchers impose strong restrictions on the distribution of RC (eg: normal/degenerate).

I Parametric restrictions pose serious credibility issues:

Contradictory micro evidence [Vij and Krueger, 2017], [Caputo et al., 2018] Details

Validity of counterfactuals? Simulations Counterfactuals

Interpretation of the estimated parameters? [McCulloch and Neuhaus, 2011], [Hui et al., 2021]

I Semi parametric approaches are rarely adapted to demand estimation( [Compiani, 2018], [Lu et al., 2019], [Wang, 2021])

Curse of dimensionality, stringent data requirements, arduous to implement ...

Our approach: create tools to detect a wrong distribution of RC and to sequentially correct for it
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Introduction: Contribution

This paper has 2 main contributions:

1 We construct new instruments, which are designed to detect misspecification in the distribution of RC

2 We tailor these instruments to undertake 3 distinct missions

I Test: we develop a specification test on the distribution of RC

I Model selection: help the econometrician decide which variables necessitate a RC

I Estimation: we show how these instruments can improve the estimation of the dist. of RC

New set of BLP instruments ( [Reynaert and Verboven, 2014], [Gandhi and Houde, 2019])

3 Empirical application to study the effects on Welfare and C02 emissions of different taxation schemes on cars

This paper relates to the literatures on BLP (estimation, asymptotics, instruments), on specification tests (in

structural models) More literature
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The model: the random utility

Consumer i derives utility uijt from good j ∈ {1, . . . , J} in market t ∈ {1, . . . ,T}

uijt = x ′1jtβ + ξjt︸ ︷︷ ︸
δjt

+x ′2jtvi + εijt

x1jt vector of product characteristics with no consumer heterogeneity, β represents preferences for x1jt

ξjt is unobserved product quality

δjt is the mean utility for product j , common to all consumers

x2jt vector of product characteristics with consumer heterogeneity

I vi vector of random coefficients which follows the distribution f

εijt an iid EV1 independent preference shock
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The model: Data Generating Process

Consumer chooses the product which maximizes his/her utility:

sjt = P(good j is chosen in market t|xt , ξt)

=

∫
RK2

exp
{
x′1jtβ + ξjt + x′2jtv

}
1 +

∑J
k=1 exp

{
x′1ktβ + ξkt + x′2ktv

} f (v)dv

Market shares are assumed to be generated by the true distribution f and the true parameter β

Identifying condition E[ξjt |zjt ] = 0 where zjt instruments (exogenous characteristics, cost shifters...)

Example of endogenous variable in xt : price

The econometrician observes (st , x2t , x1t , zt)t=1,...,T and wants to estimate β and f
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Inverse demand function and structural error

For any f̃ , define the demand function ρ(·, x2t , f̃ ):

ρ(·, x2t , f̃ ) : RJ → [0, 1]J

δ 7→
∫
RK2

exp
{
δ + x ′2jtv

}
1 +

∑J
k=1 exp

{
δk + x ′2ktv

} f̃ (v)dv

Inverse demand: [Berry, 1994] shows by applying Brouwer’s fixed point that for any (st , x2t) and for any f̃ , there exists

a unique δ∗ ∈ RJ such that:

st = ρ(δ∗, x2t , f̃ ) ⇐⇒ ρ−1(st , x2t , f̃ ) = δ∗

The structural error generated by (f̃ , β̃) is ξjt(f̃ , β̃) = ρ−1
j (st , x2t , f̃ )− x ′1jt β̃

The structural error is recovered numerically via a contraction mapping Back
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Identification

Exploiting [Wang, 2021], we derive mild but sufficient conditions for the non-parametric identification of f

Identification proposition Details

(f̃ , β̃) = (f , β)⇐⇒ E[ξjt(f̃ , β̃)|zjt ] = 0 as

Strongest condition: completeness condition on the instruments

This identification result gives us confidence that under rather weak conditions, we can detect a wrong distribution of

RC.
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Detecting a wrong distribution of RC: the role of instruments

Objective: construct instruments hD(zjt), which are “informative” about the distribution of RC

Consider a simple test H0 : f = f0 (assuming: β0 = β)

An instrument hD(zjt) is informative about the distribution of RC if it is:

I Valid: under H0, the instruments must not be correlated the structural error: E[ξjt(β0, f0)hD (zjt)] = 0

A sufficient condition: take hD (zjt ) function of exogenous variables zjt

I Powerful: under H1 : f = fa 6= f0, the instruments must be strongly correlated to the structural error: E[ξjt(β0, f0)hD (zjt)] 6= 0

Roadmap:

1 We derive an expression for the ideal instrument when fa known and infinite data

2 We derive 2 feasible approximations of this instrument (fa unknown or unspecified)
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Most Powerful Instrument (MPI)

We are under H1 : f = fa. What would be the ideal instrument to reject H0?

Def: the Most Powerful Instrument maximizes correlation with ξjt(f0, β0) in the class of measurable functions of zjt .

Decomposition of the structural error:

ξjt(f0, β0) = ξjt(fa, βa)︸ ︷︷ ︸
true error

+ ∆j (st , x2t , f0, fa)︸ ︷︷ ︸
correction term due to misspecification

We show MPI writes: h∗D(zjt) = αE[∆j (st , x2t , f0, fa)|zjt ] ∀α 6= 0

MPI designed to capture exogenous variation in the correction term

Difficulty: MPI is alternative specific! In practice, we don’t know the true alternative!
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“Global” Approximation of the MPI

By construction: ∆j (st , x2t , f0, fa) = ρ−1
j (st , x2t , f0)− ρ−1

j (st , x2t , fa)

We show:

∆j (st , x2t , f0, fa) = log


∫
RK2

exp(x′2jtv)

1+
∑J

k=1
exp
{
δkt+x′

2jk
v
} fa(v)dv

∫
RK2

exp(x′2jtv)

1+
∑J

k=1
exp
{
δ0
jt+x′

2jk
v
} f0(v)dv

 with δ0
jt = ρ−1

j (st , x2t , f0)

Challenges remaining to construct instruments:

I Some quantities are unknown to the econometrician: fa , δjt

Replace δjt by a known “close” substitute δ0
jt

Approximate fa with a discrete distribution (next slide)

I Some variables are endogenous: δ0
jt

Replace δ0
jt with δ̂0

jt = ̂E[δ0
jt |zjt ]
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Global approximation of the MPI: interval instruments

We replace fa by a discrete distribution

∫
R

exp
{
x ′2jtv

}
1 +

∑J
k=1 exp

{
δ̂0
kt + x ′2ktv

} fa(v)dv ≈
L∑

l=1

ωl

exp(x ′2jtvl )

1 +
∑J

k=1 exp(δ̂0
kt + x ′2ktvl )

with {vl}l=1,...,L L points chosen in the support of fa, and ωl the unknown weights associated with each point

We have the following approximation of the MPI

E[∆j (st , x2t , f0, fa)|zjt ] ≈ log

(
L∑

l=1

ωl πj,l (zjt)

)

We propose to use πj,l (zjt) as our new instruments (interval instruments).

local approximation
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General idea behind the test

In practice, the econometrician chooses a parametric family F0 = {f0(·|λ̃) : λ̃ ∈ Λ0} for the dist. of RC

I Notation: ξjt(F0, θ̃) ≡ ξjt(f0(·|λ̃), β̃)

Estimation of a pseudo-true value θ0 = (β0, λ0):

θ0 ≡ θ(F0) = Argmin
θ̃

E[ξjt(F0, θ̃)hE (zjt)
′]WE[hE (zjt)ξjt(F0, θ̃)]

hE (zjt) instruments for estimation, W weighting matrix Details estimation

We want to test: H0 : f ∈ F0. If pseudo true value unique:

H0 : f ∈ F0 =⇒ E[ξjt(F0, θ0)|zjt ] = 0 as =⇒ H′0 ∀hD(·), E[hD(zjt)ξjt(F0, θ0)] = 0

We propose a moment based test for H′0
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Test: Practical implementation

1 The researcher chooses a specification F0, instruments hE and estimates θ0

2 The researcher chooses hD and constructs test statistic:

S(hD ,F0, θ̂) =
1

T
ξ̂(F0, θ̂)′hD (z) Σ̂ hD (z)′ξ̂(F0, θ̂)

with some weights Σ̂

3 Decision rule for H′0 : E[hD(zjt)ξjt(F0, θ0)] = 0:

Under H′0, S(hD ,F0, θ̂)
d→ Z ′ΣZ with Z ∼ N (0,Ω0) Formula

Reject H′0 at level α if S(hD ,F0, θ̂) > q1−α with q1−α the 1− α quantile of Z ′ΣZ

Special case: hD = hE then the test is a Sargan-Hansen over id test
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Test: asymptotic properties

We study asymptotics when T goes to +∞

We prove the validity and consistency of our test under mild regularity conditions on the DGP and approx.

Theorem Assumptions

Consistent against alternatives of the form H′1 : E[hD(zjt)ξjt(F0, θ0)] 6= 0 (not H1 : f /∈ F0)

I Choice of hD critical to detect misspecification

I We suggest to choose our interval instruments, which are designed to detect mistakes in the dist of RC

Main challenge to prove result: many approximations in estimation of θ0 (numerical inversion, numerical

approximation of the integral...)

numerical approximations
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Theoretical properties of the MPI for the specification test

Why is the MPI a good instrument for our test?

1 Consistency: with the MPI, our test is consistent against H1 : f 6∈ F0
proof

2 Power in finite sample

I Power criteria: Non local approach from [Bahadur, 1960]: choose the test which minimizes the level α required to attain a given

power against a fixed alternative fa.

I In practice, compute the asymptotic slopes using [Geweke, 1981]:

chD (fa) = plim
1

T
S(hD ,F0, θ0)︸ ︷︷ ︸

test statistic

I It can also be interpreted as measure of speed of divergence in terms of population moments: Speed ≈ T × chD (fa)

I We show that the slope is maximized (under homoskedasticity) by the MPI
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Monte Carlo simulations: Specification Test

Objective: study the finite sample properties of our test and compare the performance of interval instruments with

other instruments in the literature simulation design

Size of the test: probability to reject H0 : f ∈ F0 when H0 is true.

I We simulate data with f normal and test normality of f

I Our simulations show that empirical size converges to the nominal size size

Power of the test: probability to reject H0 : f ∈ F0 under H1 : f /∈ F0

I We simulate data with f not normal and test normality of f

I Our simulations show interval instruments outperform the traditional instruments in term of power (“differentiation” and

“optimal’) power
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Model selection

Motivation: We want to know which variables display consumer heterogeneity and require a RC

I without having to estimate model for each possible combination!!!

Intuition: under misspecification, the structural error contains information about the true dist. of RC

Pedagogical Example: x2jt = (x∗2jt , x
†
2jt). Only one characteristic displays consumer heterogeneity!

I Reference model: H0 :“no consumer heterogeneity”

I 2 competing alternatives: H∗1 : “ x∗2jt presents consumer heterogeneity” vs H†1 : “ x†2jt presents consumer heterogeneity”

I Reminder: ξjt(f0(·|λ0), β0) the Structural Error under H0 (estimated via simple 2SLS)

Max Lesellier (TSE) August 23, 2022 15 / 18



Model selection

Motivation: We want to know which variables display consumer heterogeneity and require a RC

I without having to estimate model for each possible combination!!!

Intuition: under misspecification, the structural error contains information about the true dist. of RC

Pedagogical Example: x2jt = (x∗2jt , x
†
2jt). Only one characteristic displays consumer heterogeneity!

I Reference model: H0 :“no consumer heterogeneity”

I 2 competing alternatives: H∗1 : “ x∗2jt presents consumer heterogeneity” vs H†1 : “ x†2jt presents consumer heterogeneity”

I Reminder: ξjt(f0(·|λ0), β0) the Structural Error under H0 (estimated via simple 2SLS)

Max Lesellier (TSE) August 23, 2022 15 / 18



Model selection

Motivation: We want to know which variables display consumer heterogeneity and require a RC

I without having to estimate model for each possible combination!!!

Intuition: under misspecification, the structural error contains information about the true dist. of RC

Pedagogical Example: x2jt = (x∗2jt , x
†
2jt). Only one characteristic displays consumer heterogeneity!

I Reference model: H0 :“no consumer heterogeneity”

I 2 competing alternatives: H∗1 : “ x∗2jt presents consumer heterogeneity” vs H†1 : “ x†2jt presents consumer heterogeneity”

I Reminder: ξjt(f0(·|λ0), β0) the Structural Error under H0 (estimated via simple 2SLS)

Max Lesellier (TSE) August 23, 2022 15 / 18



Model selection

Motivation: We want to know which variables display consumer heterogeneity and require a RC

I without having to estimate model for each possible combination!!!

Intuition: under misspecification, the structural error contains information about the true dist. of RC

Pedagogical Example: x2jt = (x∗2jt , x
†
2jt). Only one characteristic displays consumer heterogeneity!

I Reference model: H0 :“no consumer heterogeneity”

I 2 competing alternatives: H∗1 : “ x∗2jt presents consumer heterogeneity” vs H†1 : “ x†2jt presents consumer heterogeneity”

I Reminder: ξjt(f0(·|λ0), β0) the Structural Error under H0 (estimated via simple 2SLS)

Max Lesellier (TSE) August 23, 2022 15 / 18



Model selection

Motivation: We want to know which variables display consumer heterogeneity and require a RC

I without having to estimate model for each possible combination!!!

Intuition: under misspecification, the structural error contains information about the true dist. of RC

Pedagogical Example: x2jt = (x∗2jt , x
†
2jt). Only one characteristic displays consumer heterogeneity!

I Reference model: H0 :“no consumer heterogeneity”

I 2 competing alternatives: H∗1 : “ x∗2jt presents consumer heterogeneity” vs H†1 : “ x†2jt presents consumer heterogeneity”

I Reminder: ξjt(f0(·|λ0), β0) the Structural Error under H0 (estimated via simple 2SLS)

Max Lesellier (TSE) August 23, 2022 15 / 18



Model selection

Motivation: We want to know which variables display consumer heterogeneity and require a RC

I without having to estimate model for each possible combination!!!

Intuition: under misspecification, the structural error contains information about the true dist. of RC

Pedagogical Example: x2jt = (x∗2jt , x
†
2jt). Only one characteristic displays consumer heterogeneity!

I Reference model: H0 :“no consumer heterogeneity”

I 2 competing alternatives: H∗1 : “ x∗2jt presents consumer heterogeneity” vs H†1 : “ x†2jt presents consumer heterogeneity”

I Reminder: ξjt(f0(·|λ0), β0) the Structural Error under H0 (estimated via simple 2SLS)

Max Lesellier (TSE) August 23, 2022 15 / 18



Selecting between 2 alternatives

Under H∗1 , we can show:

ξjt(f0(·|λ0), β0) = x ′1jtγ1 + x†2jtγ2 + E[∆j (st , x
∗
2t , f
∗

0 (·|λ∗0 ), f ∗a )|zjt ] + u∗jt with E[u∗jt |zjt ] = 0

I Earlier, we showed E[∆j (st , x
∗
2t , f
∗

0 (·|λ∗0 ), f ∗a )|zjt ] ≈
∑L

l=1 ωlπ
∗
j,l (zjt).

Under H∗1 , a good linear regression model for ξjt(f0, β0) is M∗1 :

M∗1 : ξjt(δλ0
, β0) = x ′1jtα1 + x†2jtα2 +

L∑
l=1

ωlπ
∗
j,l (zjt) + u∗jt

Conversely, under H†1 a good linear regression model writes:

M†1 : ξjt(δλ0
, β0) = x ′1jtγ1 + x∗2jtγ2 +

L∑
l=1

ωlπ
†
j,l (zjt) + u†jt

Select the most relevant alternative by selecting the best fitting model (R2, AIC,...)
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Sequential selection procedure

1 The econometrician estimates θ0 under a parametric restriction H0 : f ∈ F0 (Initial stage F0 degenerate =⇒ logit)

2 The econometrician selects one alternative of the form Hk
1 : fk /∈ F0,k following procedure in previous slide

3 Test H0 : f ∈ F0 against the chosen alternative H k̃
1 by applying our specification test

Repeat stages 1-3 until the test no longer rejects H0 : f ∈ F0 or when the econometrician decides to stop (estimation

becomes intractable...)
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Conclusion

Misspecification in the distribution of RC can substantially affect counterfactuals in the BLP demand model

In this paper, we construct novel instruments which are designed to detect misspecification in the distribution of RC

We develop a moment-based specification test for the distribution of the RC

We show these interval instruments can be effectively used to estimate the dist of RC

We provide a procedure to select the variables, which display consumer heterogeneity

We use these new instruments to compare the effects on pollution of different taxation schemes in the German car market
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Estimation

Estimation: f ∈ F0 and we want to estimate true parameter θ∗

Motivation: parameters associated with RC are notoriously difficult to estimate : [Knittel and Metaxoglou, 2008]...

I Should the interval instruments be used to estimate the model?

The traditional approach: the literature proposes several approximations of the optimal instruments ( [Reynaert and

Verboven, 2014], [Gandhi and Houde, 2019], [Conlon and Gortmaker, 2019],...)

I We show declining performance of these instruments when distribution becomes more complex (eg: mixture)

Approximating E
[
∂ξjt (θ∗)

∂θ

∣∣∣∣zjt]can be challenging:

I large dimension on zjt

I requires good first stage estimate of θ∗
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MPI and Estimation

Standard estimation can be interpreted as finding θ̂, which minimizes test statistic associated with H0 : θ∗ = θ0

We can show that the MPI maximizes the asymptotic slope of the GMM objective function when evaluated at

parameter θ0 6= θ∗

I The optimal instrument is a local approximation of the MPI around θ∗ detail

Challenge: the MPI and interval instruments are defined for a fixed candidate θ0 (whereas in estimation procedure:

many candidates: θ1, θ2,...)

I Slightly modify our interval instruments to make them suitable for estimation

Discussion of merits and weaknesses of taking interval vs approximations of the optimal instruments further discussion
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Monte Carlo simulations: Estimation

Objective: Compare the finite sample performance of our interval instruments with other instruments in the literature

simulation design

We simulate data with f Gaussian and Gaussian mixture and estimate the parameters with different sets of

instruments

I Our simulations show:

Similar performance between the three sets of instruments when we estimate a simple Gaussian as RC estimation gaussian

Interval instruments outperform the traditional instruments when f is a Gaussian mixture estimation mixture
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Micro evidence

With individual data, there are several studies that highlight multi-modal preference distributions (following [Train, 2016]

estimation procedure).

[Caputo et al., 2018] uses data from choice experiments in the US and shows that willingness to pay for meat

characteristics such as Certified US product or Guaranteed tender follow a bi-modal distribution.

[Vij and Krueger, 2017] uses household travel survey data from San Francisco Bay Area, United States and show that

value for time in-vehicle, and for walking, biking, waiting are not normally distributed and found to be asymmetric or

bi-modal in the case of biking.

Also high rates of rejection of the J test which is a specification test

Back



Simulation evidence 1
Principle

Principle: We simulate the BLP model but estimate it by making the wrong assumption on the random coefficients we

either assume that there is no random coefficient at all (logit), either that the random coefficient follows a normal.

Focusing on 1 product and we compute the price elasticities and cross-price elasticies using the 2 estimators and

compare them with the true price and true cross-price elasticities.

⇒ Most notably estimated cross-price elasticities are completely wrong therefore substitution parterns are completely

wrong.

DGP is the same as in other simulations DGP Back



Simulation evidence 2
Distribution of random coefficients

Figure 1: Approximation of Densities
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Simulation evidence 3
Effect on price elasticities

Figure 2: Price Elasticity
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Simulation evidence 4
Effect on cross-price elasticities

Figure 3: Cross Price elasticity
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Related literature

Non-parametric identification of random coefficients in BLP models: [Fox and Gandhi, 2016], [Fox et al., 2012],

[Wang, 2020]

Flexible estimation of random coefficient in BLP models: [Lu et al., 2019], [Compiani, 2018], [Fox et al., 2011]

Practical implementation of BLP estimation: [Skrainka and Judd, 2011], [Dubé et al., 2012], [Reynaert and Verboven,

2014], [Lee and Seo, 2015], [Conlon and Gortmaker, 2019], [Gandhi and Houde, 2019]

Non-normality of random coefficient: [Fosgerau and Hess, 2009], [Vij and Krueger, 2017], [Caputo et al., 2018]

Misspecification: [White, 1982], [?], [McCulloch and Neuhaus, 2011] [Andrews and Shapiro, 2017], [Hui et al., 2021]
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NFP algorithm

1 Choose starting values θ̃ = (β̃, λ̃)

2 Derive starting values for the mean utilities δ0 = X1β

3 Solve the contraction H times for all (j , t)

δjt = δjt + log(sjt)− log(ρ̂j (δt , x2t , f0(·|λ̃)))

with ρ̂j (δt , x2t , f0(·|λ̃)) an approximation of ρj (δt , x2t , f0(·|λ̃)) to obtain δ̂(s, x2, f0(·|λ̃))

4 Back out the linear parameters and obtain an estimate of the structural error using 2SLS

δ̂(s, x2, f0(·|λ̃)) = xβ̃ + ξjt , ξ̂(s, x2, f0(·|λ̃)) = δ̂(s, x2, f0(·|λ̃))− x1β̂(F0, λ̃)

β̂(F0, λ̃) =
(
x′1hE (z)(hE (z)′hE (z))−1hE (z)′x1

)−1
x′1hE (z)(hE (z)′hE (z))−1hE (z)′δ̂(s, x2, f0(·|λ̃))

5 Outer loop minimization problem with respect to λ̃

Argmin
λ̃

ξ̂′hE (z)Ŵ hE (z)′ξ̂

Back



Assumptions for identification

1 Strict exogeneity: E [ξjt |zjt ] = 0 a.s

2 Completeness: for any measurable function g(·) such that E[g(st , xt)] <∞, if E[g(st , xt)|zt ] = 0 a.s , then

g(st , xt) = 0 a.s

3 P(st , x2t , x1t , zt) is observed by the econometrician and market shares st are generated by the model

4 xt is such that P(x ′txt is positive definite) > 0 for any t

5 There exists some x̄t in Supp(xt) and an open set D ⊂ RJ such that δt = x̄1tβ0 + ξt varies on D

6 Let X = {xt ∈ Supp(xt) | x ′txt is dp}. We assume that that P(X > 0)

7 vi ⊥ (xt , ξt , εijt)

Back



Non-parametric identification

The identification result below implies that under fairly weak conditions, the data identifies the distribution of random

coefficients nonparametrically.

Proposition

Under the assumptions in A, the distribution of random coefficients f and the homogeneous preference parameters β are

non-parametrically identified.

(f̃ , β̃) = (f , β)⇔ ∀j E[ξjt(f̃ , β̃)|zjt ] = E
[
ρ−1
j (st , x2t , f̃ )− x ′1jt β̃

∣∣∣∣zjt] = 0 as

This identification result gives us confidence that under weak conditions, it is possible for the econometrician to detect

a wrongly specified distribution.

Back



Most Powerful Instrument: “Local” Approximation

By exploiting the properties of the inverse demand function( C∞ and bijective in st), we derive a first order expansion of

∆(st , x2t , f0, f ) around f0:

∆(st , x2t , f0, f ) =

(
∂ρ(δ0

t , x2t , f0)

∂δ

)−1 ∫
RK2

[
exp(δ0

t + x2tv)

1 +
∑J

k=1 exp
{
δ0
kt + x2jkv

} − ρj (δ0
t , x2t , f0)

]
f (v) +R0

with δ0
t = ρ−1(st , x2t , f0) and R0 = o

(∫
RK2 |f (v)− f0(v)|dv

)
.

Same challenges: f unknown , δ0
jt endogenous

I Same solutions as previously

Local as the approximation is accurate when f close to f0 in the L1 norm

global approximation
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Details“Local” Approximation of the MPI

We obtain this result by observing that for any density f0, we can construct artificial market shares s0
t such that

ρ−1(st , x2t , f ) = ρ−1(s0
t , x2t , f0) and then we can take a Taylor expansion of ρ−1(s0

t , x2t , f0) around st .

Max Lesellier (TSE) August 23, 2022 5 / 27



Remarks on the test

Rejecting H′0 : E(hD(zjt)ξjt(f , θ)) = 0 implies rejecting H0, ie (f , θ) 6= (f0, θ0). But not rejecting H′0 does not imply

H0, ie it does not imply (f , θ) = (f0, θ0)

In practice the test may lose power in some cases

Other tests can be considered (Score, ICM)

Other types of misspecification (missing variables, heteroskedasticity, some nonlinearities in the indirect utility) do not

generate correlation between zjt and ξjt(f , θ), random logit models are very general [McFadden and Train, 2000]

IVs are exogenous by construction (BLP instruments) or assumption (cost shifters)

⇒ Idea: Find a better hD to maximize power, then we can determine when to increase flexibility of F0
Back



Details test implementation

Under the null H0 : f ∈ F0, under assumptions (B)-(E) and for any Σ̂ such that plim Σ̂ = Σ,

S(hD ,F0, θ̂)
d→ Z ′ΣZ , Z ∼ N (0,Ω0)

where

Ω0 =

(
I|hD |0 G

) Ω(F0, hD) Ω(F0, hD , hE )

Ω(F0, hD , hE )′ Ω(F0, hE )


I|hD |0

G ′


with

Ω(F0, hD , hE ) = cov

(∑
j

ξjt(f (.|λ0), β0)hD(zjt),
∑
j

ξjt(f (.|λ0), β0)hE (zjt)

)
G = −Γ(F0, θ0, hD)

[
Γ(F0, θ0, hE )′WΓ(F0, θ0, hE )

]−1
Γ(F0, θ0, hE )′W

Γ(F0, θ0, h) = E

∑
j

h(zjt)
∂ξjt(f0(.|λ0), β0)

∂θ′


Back



Validity and consistency theorems

Theorem

Let θ̂ = θ̂(F0, Ŵ , hE ) be the BLP estimator associated with distributional assumption F0, weighting matrix Ŵ , estimating

instruments hE . Under assumptions (B)-(E)

Under H0 : f ∈ F0

P(S(hD ,F0, θ̂) > q1−α)→ α

where q1−α is the 1− α quantile of Z ′ΣZ Formula

Under H′1 : E
[∑

j hD(zjt)ξjt(f0(.|λ0), β0)
]
6= 0

∀q ∈ R+ P(S(hD ,F0, θ̂) > q)→ 1

Back



Assumptions for validity and consistency 1

First assumption is regular and ensures bounded 2nd moments of (zjt , xjt , ξjt)

Second assumption ensures estimation is possible assuming f ∈ F0

Assumption (A)

(i) (zt , xt , st)Tt=1 are iid across markets such that the probability model holds at (f , θ)

(ii) Exogeneity: ∀j E[ρ−1
j (st , x2t , f )− x ′1jtβ|zjt ] = 0 as

(iii) Finite moment conditions: x2t has bounded support and x1t has finite 4th moments

Assumption (C)

F0 is such that

(i) λ0 belongs to the interior of Λ0 with Λ0 compact

(ii) λ̃ 7→ ρ(δ, x2t , f0(·|λ̃)) is well defined and continuously differentiable on Λ0

(iii) ∀(λ, λ′) such that λ 6= λ′, ∃v∗ ∈ Supp(F0) such that f0(v∗|λ) 6= f0(v∗|λ′)



Assumptions for validity and consistency 2

Third assumption ensures proper identification and estimation of θ0 and allows for inference

Assumption (D)

Given F0 which satisfy Assumption (C) and for some weighting matrix W and Σ

(i) Finite IV moments: hE (zjt) and hD (zjt) are not perfectly colinear and have finite 4th moments

(ii) Local identification: Γ(F0, θ0, hE ) = E
[∑

j hE (zjt)
∂ξjt (f0(.|λ0),β0)

∂θ′

]
and Γ(F0, θ0, hD ) are full rank (ie of rank |θ0|)

(iii) Global identification of θ0: ∀θ̃ 6= θ0:

E

∑
j

ξjt (f0(·|λ̃), β̃)hE (zjt )′
WE

∑
j

hE (zjt )ξjt (f0(·|λ̃), β̃)

 > E

∑
j

ξjt (f0(·|λ0), β0)hE (zjt )′
WE

∑
j

hE (zjt )ξjt (f0(·|λ0), β0)



(iv) W and Σ are symmetric positive definite and Ŵ
P→ W, Σ̂

P→ Σ

(v) θ̂ minimizes the BLP objective and satisfies the FOC of the minimization problem:

∂ξ̂(f (.|λ̂), β̂)

∂θ

′

hE (z)Ŵ ξ̂(f (.|λ̂), β̂)′hE (z) = 0

Back



Numerical error assumption

Major difficulty is numerical approximations. 3 types of numerical approximations:

1 Integral in the demand has to be approximated

2 Fixed point: s = ρ(δ, x2, f0(|̇λ̃)) is never fully satisfied in practice

3 Observed market shares ŝ are empirical probability masses, in practice there is a finite number of individuals in each

market Back

Assumption (E)

Let R be the number draws to compute ρ, nt the number of individuals in market t, H the stopping time of NFP and

ε ∈ (0; 1) the contraction constant in NFP

T

R
−→

T→+∞
0, ∀t

T

nt
−→

T→+∞
0,
√
TεH −→

T→+∞
0
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Proof of consistency

H1 : f /∈ F0 =⇒ E[ξjt(f0(·|λ0), β0)|zjt ] 6= 0 a.s

=⇒ E[ξjt(f0(.|λ0), β0)|zjt ]2 > 0 a.s

=⇒ E
[
E[ξjt(f0(.|λ0), β0)|zjt ]2

]
> 0

=⇒ E
[
E[ξjt(f0(.|λ0), β0)E[ξjt(f0(.|λ0)|zjt ]|zjt ]

]
> 0

=⇒ E
[
ξjt(f0(.|λ0), β0)E[ξjt(f0(.|λ0)|zjt ]

]
> 0

=⇒ ∀α 6= 0 H′1 : E
[
ξjt(f0(.|λ0), β0)αE[∆

ξjt
0,a|zjt ]︸ ︷︷ ︸

h∗
D

(zjt )

]
> 0

back
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Simulations: set-up

Setting close to [Dubé et al., 2012] and [Reynaert and Verboven, 2014] Implementation

Indirect utility is given by

uijt = 2 + xajt + 1.5xbjt − 2pjt + xcjtvi + ξjt + εijt , ξjt
iid∼ N (0, 1), εijt

iid∼ EV (1)

I T ∈ {50, 100, 200} , J = 12

I xa, xb , xc are normal and correlated

I Price is endogenous pjt = 1 + ξjt + ujt +
∑c

k=a xkjt + c1jt + c2jt

Estimation is always done assuming normality, ie F0 = N (µ, σ2)

vi ∼ f and f varies between a normal (size), mixture of normals (power), etc...

We consider different sets instruments:

I Differentiation instruments [Gandhi and Houde, 2019]; “Optimal instrument “ [Reynaert and Verboven, 2014]; Interval instruments

back
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Setting close to [Dubé et al., 2012] and [Reynaert and Verboven, 2014] Implementation

Indirect utility is given by

uijt = 2 + xajt + 1.5xbjt − 2pjt + xcjtvi + ξjt + εijt , ξjt
iid∼ N (0, 1), εijt

iid∼ EV (1)

I T ∈ {50, 100, 200} , J = 12

I xa, xb , xc are normal and correlated

I Price is endogenous pjt = 1 + ξjt + ujt +
∑c

k=a xkjt + c1jt + c2jt

Estimation is always done assuming normality, ie F0 = N (µ, σ2)

vi ∼ f and f varies between a normal (size), mixture of normals (power), etc...

We consider different sets instruments:

I Differentiation instruments [Gandhi and Houde, 2019]; “Optimal instrument “ [Reynaert and Verboven, 2014]; Interval instruments

back

Max Lesellier (TSE) August 23, 2022 7 / 27



Simulations: set-up
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Simulations: empirical size

Size = probability to reject the null when the null is true. We work under the null f is normal and check that empirical

size equal nominal size.

J test(1) = J test with differentiation IVs, J test(2) = J test with optimal IVs

I test(1) test with interval IVs and differentiation IVs for estimation

I test(2) test with interval IVs and optimal IVs for estimation Details back

Number of markets T=50 T=100 T=200

Test type J test(1) I test(1) J test(2) I test(2) J test(1) I test(1) J test(2) I test(2) J test(1) I test(1) J test(2) I test(2)
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Simulations: Power against mixture of normals

Power = probability to reject the

null when the null is not true

True distribution f is a mixture of

normals back
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−4 0 4 8
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y

distributions

mixture (p=0.1)
mixture (p=0.2)
mixture (p=0.3)
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mixture (p=0.5)

Figure 6: Densities of the True Distributions

Number of markets T=50 T=100 T=200

Test type J test(1) I test(1) J test(2) I test(2) J test(1) I test(1) J test(2) I test(2) J test(1) I test(1) J test(2) I test(2)

Mixture 1 0.257 0.997 0.726 0.993 0.185 1 0.964 0.999 0.225 1 1 1

Mixture 2 0.279 1 0.589 0.999 0.221 1 0.919 0.999 0.277 1 0.999 1

Mixture 3 0.312 0.996 0.397 0.993 0.251 1 0.704 1 0.326 1 0.981 1

Mixture 4 0.338 0.984 0.236 0.973 0.289 1 0.375 0.997 0.404 1 0.684 1

Mixture 5 0.347 0.925 0.142 0.905 0.326 0.997 0.111 1 0.458 1 0.162 1

Figure 7: Empirical Power, Gaussian Mixture Alternatives
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Simulations: Power against gamma distribution

Power = probability to reject the

null when the null is not true

True distribution f are gamma dist.

back
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gamma 1
gamma 2
gamma 3
gamma 4
gamma 5

Figure 8: Densities of the True Distributions

Number of markets T=50 T=100 T=200

Test type J test(1) I test(1) J test(2) I test(2) J test(1) I test(1) J test(2) I test(2) J test(1) I test(1) J test(2) I test(2)

Gamma 1 0.194 0.12 0.133 0.088 0.12 0.092 0.086 0.082 0.101 0.15 0.069 0.132

Gamma 2 0.428 0.752 0.131 0.737 0.495 0.965 0.092 0.963 0.798 1 0.088 1

Gamma 3 0.489 0.958 0.155 0.964 0.606 1 0.131 1 0.883 1 0.176 1

Gamma 4 0.449 0.996 0.217 0.992 0.551 1 0.259 1 0.801 1 0.437 1

Gamma 5 0.415 1 0.36 0.997 0.468 1 0.55 0.999 0.705 1 0.872 1

Figure 9: Empirical Power, Gaussian Mixture Alternatives
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f ∈ F0, the MPI has the form: h∗D(zjt) = E
[
∆
ξjt
θ0,θ∗

|zjt
]

with ∆
ξjt
θ0,θ∗

= ξjt(θ0)− ξjt(θ∗).

By taking a Taylor expansion of ξjt(θ0) around θ∗, we obtain:

∆
ξjt
θ0,θ∗

=

[
∂ξjt(θ

∗)

∂λ
(λ0 − λ∗) + x ′1jt(β

∗ − β0)

]
+ o(||θ0 − θ∗||2)

θ0 is in a neighborhood of θ∗, the MPI h∗D is a linear combination of the optimal instruments h∗E .

h∗D(zjt) = E
[
∆
ξjt
θ0,θ∗

|zjt
]
≈ E

[
∂ξjt(θ

∗)

∂θ

∣∣∣∣zjt]′︸ ︷︷ ︸
h∗
E

(zjt )

(θ0 − θ∗)

back
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Comparison between approximated ”optimal instruments” and interval instruments

Both the approximated optimal instruments by [Reynaert and Verboven, 2014] and the interval instruments can be

interpreted as approximations of the MPI.

I [Reynaert and Verboven, 2014] takes fully advantage of the parametric assumption f ∈ F0 and should be more ”precise” in

parametric case

I requires good first stage estimates

I what is estimated when the distribution is misspecified?

Interval instruments:

I by construction, less sensitive to a poor first stage estimates

I interval instruments can be derived without estimating the full model (with the simple logit specification)

I possible interpretation of the estimates even when distribution is misspecified.

back
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Simulations estimation: set-up

Setting close to [Dubé et al., 2012] and [Reynaert and Verboven, 2014] Implementation

Indirect utility is given by

uijt = 2 + xajt + 1.5xbjt − 2pjt + xcjtvi + ξjt + εijt , ξjt
iid∼ N (0, 1), εijt

iid∼ EV (1)

I T ∈ {50, 100, 200} , J = 12

I xa, xb , xc are normal and correlated

I Price is endogenous pjt = 1 + ξjt + ujt +
∑c

k=a xkjt + c1jt + c2jt

Estimation is always done assuming the right specification: f ∈ F0

vi ∼ f and f varies between a normal, mixture of normals, etc...

We consider different sets instruments:

I Differentiation instruments [Gandhi and Houde, 2019]; “Optimal instrument “ [Reynaert and Verboven, 2014]; Interval instruments
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Simulations: estimation of a mixture

Consider a setting where f ∈ F0 and f is a mixture of 2 normal components:

f (v) = 0.25fL(v) + 0.75fH(v), fL ∼ N (−2, 0.5) fH ∼ N (4, 0.5)

We work under the null and try to estimate the parameters (pL, β3L, β3H , σ3L, σ3H) using the different instruments

back

Instruments Differentiation ”Optimal” Interval Global

Parameter β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL

Sample size true -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25

T=50, J=12
bias 0.204 0.175 -0.024 -0.043 0.025 0.074 0.057 0.026 -0.11 0.01 0.015 -0.005 -0.045 0.006 0.004

√
MSE 0.618 0.723 0.28 0.35 0.072 0.359 0.481 0.212 0.281 0.035 0.274 0.387 0.225 0.256 0.023

T=100, J=12
bias 0.222 0.213 0.017 -0.063 0.025 0.053 0.035 0.018 -0.065 0.007 0 -0.016 -0.027 0.006 0.001

√
MSE 0.569 0.689 0.248 0.304 0.067 0.278 0.398 0.154 0.21 0.028 0.132 0.268 0.156 0.2 0.005

T=200, J=12
bias 0.166 0.147 0.008 -0.049 0.017 0.072 0.104 0.033 -0.074 0.01 -0.006 -0.027 -0.015 -0.001 0.001

√
MSE 0.427 0.571 0.171 0.259 0.048 0.148 0.23 0.118 0.179 0.014 0.088 0.219 0.108 0.164 0.003

Figure 10: Estimation of the mixture parameters
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Simulations: estimation of a mixture

Consider a setting where f ∈ F0 and f is a mixture of 2 normal components:

f (v) = 0.25fL(v) + 0.75fH(v), fL ∼ N (−2, 0.5) fH ∼ N (4, 0.5)
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back
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Parameter β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL β3L σ3L β3H σ3H pL

Sample size true -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25 -2 0.5 4 0.5 0.25

T=50, J=12
bias 0.204 0.175 -0.024 -0.043 0.025 0.107 0.135 0.057 -0.132 0.01 -0.007 -0.011 -0.042 0.004 0.003

√
MSE 0.618 0.723 0.28 0.35 0.072 0.342 0.49 0.223 0.307 0.028 0.241 0.334 0.212 0.242 0.017

T=50, J=12
bias 0.222 0.213 0.017 -0.063 0.025 0.016 -0.002 0.009 -0.05 0.003 -0.001 -0.001 -0.028 0.009 0.001

√
MSE 0.569 0.689 0.248 0.304 0.067 0.176 0.321 0.146 0.181 0.011 0.123 0.221 0.142 0.161 0.005

T=50, J=12
bias 0.166 0.147 0.008 -0.049 0.017 0.021 0.041 0.018 -0.057 0.003 0.002 -0.007 -0.015 0.007 0.001

√
MSE 0.427 0.571 0.171 0.259 0.048 0.148 0.23 0.118 0.179 0.014 0.091 0.173 0.098 0.121 0.003

Figure 12: Estimation of the mixture parameters
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Simulations: estimation of a Gaussian

Consider a setting where f ∈ F0 and f is a Gaussian: v ∼ N (1.5, 0.5)

We work under the null and try to estimate the parameters (β0, α, β1, β2, β3, σ3) using the different instruments

back

Instruments Differentiation ”Optimal” Interval global

Parameter β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3

Sample size True 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5 2 -2 1.5 1 1.5 0.5

T=50, J=12
bias -0.16 0.032 -0.03 -0.028 -0.032 -0.003 -0.09 0.018 -0.016 -0.014 -0.018 -0.003 -0.15 0.03 -0.028 -0.026 -0.03 -0.004

√
MSE 0.293 0.057 0.212 0.209 0.138 0.067 0.27 0.053 0.214 0.211 0.138 0.067 0.288 0.056 0.212 0.209 0.138 0.066

T=50, J=12
bias -0.088 0.017 -0.001 0 -0.027 0.001 -0.052 0.01 0.007 0.007 -0.02 0.001 -0.081 0.016 0.001 0.002 -0.026 0.001

√
MSE 0.199 0.039 0.146 0.146 0.101 0.045 0.189 0.037 0.148 0.147 0.099 0.047 0.197 0.039 0.146 0.145 0.1 0.044

T=50, J=12
bias -0.038 0.007 -0.012 -0.012 -0.004 0.002 -0.017 0.003 -0.006 -0.007 -0.001 0 -0.032 0.006 -0.009 -0.01 -0.004 0

√
MSE 0.132 0.026 0.11 0.11 0.073 0.032 0.127 0.025 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.032

Figure 13: Estimation of a gaussian random coefficient
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Simulations: estimation of a Gaussian

Consider a setting where f ∈ F0 and f is a Gaussian: v ∼ N (1.5, 0.5)

We work under the null and try to estimate the parameters (β0, α, β1, β2, β3, σ3) using the different instruments

back

Instruments Differentiation ”Optimal” Interval local

Parameter β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3 β0 α β1 β2 β3 σ3
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bias -0.088 0.017 -0.001 0 -0.027 0.001 -0.052 0.01 0.007 0.007 -0.02 0.001 -0.074 0.014 -0.016 -0.016 -0.013 0.001

√
MSE 0.199 0.039 0.146 0.146 0.101 0.045 0.189 0.037 0.148 0.147 0.099 0.047 0.185 0.036 0.151 0.152 0.099 0.044

T=50, J=12
bias -0.038 0.007 -0.012 -0.012 -0.004 0.002 -0.017 0.003 -0.006 -0.007 -0.001 0 -0.032 0.006 -0.009 -0.01 -0.004 0.001

√
MSE 0.132 0.026 0.11 0.11 0.073 0.032 0.127 0.025 0.109 0.109 0.069 0.032 0.129 0.026 0.109 0.109 0.069 0.031

Figure 14: Estimation of a gaussian random coefficient
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Simulations implementation details

For each setting, we estimate the model for 1000 replications

For each replication, we choose 3 different starting values and we select the set of parameters with the lowest objective

function

Market shares are integrated using product rules

Minimization is performed with nloptr ( algorithm: NLOPT-LD-LBFGS)

Threshold for the outer loop: 1e-9. Threshold for the inner loop:1e-13

We use squarem and a C++ implementation to speed up the contraction (we also parallelize over markets using 14

independent cores)

Back



Simulations instruments details

J test(1): differentiation instruments + exogenous characteristics (polynomial terms) + cost shifters (15 instruments/

degrees of overidentification:8)

I test(1): First stage instruments from J test(1); Testing instruments are 7 interval instruments, points chosen as

follows: {µ̂, (µ̂+ k(max(0.25, σ̂)), k(max(0.25, σ̂))} (for k = 1, 2, 3)

J test(2): First stage instruments are from J test(1); Second stage instruments are optimal instruments (approximation

of E
[
∂ρ−1

j (st ,x2t ,λ)

∂λ

∣∣∣∣zt])+ exogenous characteristics (polynomial terms) + cost shifters (12 instruments)

I test(2): First stage instruments from J test(2); Testing instruments are 7 interval instruments, points chosen as

follows: {µ̂, (µ̂+ k(max(0.25, σ̂)), k(max(0.25, σ̂))} (for k = 1, 2, 3) Back



Outline

6 Estimation

7 Empirical application (preliminary)
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Introduction: Empirical application

We want to study the effects on welfare and C02 emissions of different taxation schemes in the German car market

I compare the performance of fuel tax and product tax

The counterfactuals hinge on substitution patterns and the shape of preference heterogeneity

I The literature on this topic imposes restrictive assumptions on the dist of RC

How do the tools we develop in this paper help us?

I Model selection: which variables to augment with a RC? size, horsepower, engine type, height, weight, fuel costs, CO2 emission,

price

I Specification test: is the normality assumption on the RC on price rejected by the data?

I Estimation: need of “informative” instruments to estimate a more flexible distribution
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Data

Most of the data was provided to us by Kevin Remmy (Mannheim)

Data on state level new car registrations, publicly available by German Federal Motor Transport Authority (KBA) from

2012 to 2018.

→This gives us 112 markets defined by state-year pairs

Data on car characteristics (General German Automobile Club): price, horsepower, engine type, size, weight, fuel

costs, CO2 emission, ...

We scraped cost shifters: distance to the plant, price of steel, average cost of labor in assembly country, exchange

rates between Germany and production country

We aggregate by Brand, Model, FuelType, Body and remove very low shares → 33,760 observations
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Summary statistics

Figure 15: Summary Statistics (Sales weighted)

Year

2012 2013 2014 2015 2016 2017 2018

Diesel

Price/income 0.74 0.72 0.73 0.72 0.71 0.69 0.68

Size (m2) 8.31 8.31 8.32 8.36 8.42 8.48 8.53

Horsepower (kW/100) 1.09 1.07 1.11 1.11 1.14 1.16 1.21

Fuel cost (euros/100km) 7.90 7.18 6.63 5.53 4.94 5.25 5.83

Fuel cons. (Lt./100km) 5.19 4.98 4.89 4.73 4.61 4.61 4.71

CO2 emission (g/km) 136.19 130.50 127.69 123.58 120.42 120.49 123.27

Nb. of products/market 133 138 146 150 151 149 143

Gasoline

Price/income 0.46 0.46 0.46 0.46 0.46 0.45 0.43

Size (m2) 7.23 7.27 7.28 7.30 7.36 7.46 7.53

Horsepower (kW/100) 0.79 0.78 0.80 0.82 0.85 0.88 0.91

Fuel cost (euros/100km) 9.48 8.61 8.11 7.27 6.69 7.06 7.40

Fuel cons. (Lt./100km) 5.76 5.47 5.40 5.31 5.25 5.34 5.38

CO2 emission (g/km) 135.80 128.18 125.27 122.89 121.22 122.86 123.26

Nb. of products/market 157 171 179 185 186 193 188

Note: Provided statistics are sales weighted averages across products. Total number of markets (State*Year) is 112
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Results logit and nested logit

OLS IV

Price/income −0.542∗∗∗ −2.448∗∗∗ −2.410∗∗∗

(0.035) (0.118) (0.048)

log(within market shares) 0.432∗∗∗

(0.006)

Fuel Cost −0.127∗∗∗ −0.136∗∗∗ −0.089∗∗∗

(0.006) (0.006) (0.004)

Size(m2) −0.207∗∗∗ −0.101∗∗∗ 0.038∗∗∗

(0.010) (0.012) (0.008)

Horsepower(KW/100) 0.331∗∗∗ 1.431∗∗∗ 0.985∗∗∗

(0.030) (0.072) (0.028)

Foreign −0.568∗∗∗ −0.577∗∗∗ −0.466∗∗∗

(0.018) (0.019) (0.012)

Height(m) 0.335∗∗∗ 0.759∗∗∗ 0.323∗∗∗

(0.075) (0.082) (0.048)

Gasoline 0.620∗∗∗ 0.499∗∗∗ 0.260∗∗∗

(0.019) (0.021) (0.013)

Constant −8.678∗∗∗ −10.146∗∗∗ −7.054∗∗∗

(0.150) (0.178) (0.099)

Market FE Yes Yes Yes

Observations 39,888 39,888 39,888

R2 0.372 0.326 0.746
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Variable selection

covariate/test Value statistic critical value

J test 539.0 16.9

I test all 3292.0 47.4

I test price 826.2 42.1

I test fuel cost 766.8 42.1

I test size 1334.4 42.1

I test horsepower 781.9 42.1

I test gazoline 28.5 42.1

I test Foreign 177.2 42.1

I test Height 411.1 42.1
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Results standard BLP

Figure 16: Standard BLP estimation

estimate standard error

Price/income -1.50e+00 1.16e-01

sd Price 3.30e-01 4.36e-02

Fuel Cost -1.22e-01 5.69e-03

sd Fuel Cost 1.11e-07 1.19e-22

Size(m 2̂) -1.83e+00 6.51e-02

sd size 9.40e-01 6.50e-02

Horsepower(KW/100) 4.19e-01 6.90e-02

sd Horsepower 4.69e-01 2.97e-02

Foreign -6.18e-01 2.02e-02

Height(m) 1.97e-01 7.59e-02

Gasoline 5.19e-01 2.04e-02

constant -3.88e+00 1.77e-01

BLP with random coefficients on price, fuel cost, power, size
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Specification test

covariate/test Value statistic critical value

J test 2390.3 16.9

I test all 1388.7 37.7

I test price 112.7 42.1

I test fuel cost 86.3 42.1

I test size 246.2 42.1

I test horsepower 101.6 42.1

I test gazoline 89.0 42.1

I test Foreign 95.8 42.1

I test Height 87.4 42.1
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Results logit and nested logit

Figure 17: Estimation results - Logit and Nested Logit

OLS IV

(1) (2) (3) (4) (5)

Price/income −0.442∗∗∗ −2.338∗∗∗ −3.103∗∗∗ −2.372∗∗∗ −2.992∗∗∗

(0.043) (0.126) (0.155) (0.065) (0.068)

log(within market shares) 0.410∗∗∗ 0.466∗∗∗

(0.007) (0.007)

Fuel Cost −0.171∗∗∗ 0.002 −0.164∗∗∗ 0.007∗∗ −0.078∗∗∗

(0.007) (0.005) (0.007) (0.003) (0.005)

Size(m2) −0.239∗∗∗ −0.189∗∗∗ −0.089∗∗∗ −0.023∗∗ 0.067∗∗∗

(0.011) (0.013) (0.014) (0.009) (0.009)

Horsepower(KW/100) 0.312∗∗∗ 1.028∗∗∗ 1.817∗∗∗ 0.750∗∗∗ 1.249∗∗∗

(0.034) (0.069) (0.091) (0.033) (0.036)

Foreign −0.465∗∗∗ −0.458∗∗∗ −0.415∗∗∗ −0.407∗∗∗ −0.376∗∗∗

(0.019) (0.020) (0.020) (0.013) (0.012)

Height(m) 0.701∗∗∗ 0.358∗∗∗ 1.017∗∗∗ 0.118∗∗ 0.452∗∗∗

(0.081) (0.084) (0.087) (0.054) (0.051)

Gasoline 0.602∗∗∗ 0.003 0.402∗∗∗ −0.073∗∗∗ 0.114∗∗∗

(0.022) (0.023) (0.025) (0.014) (0.016)

Constant −8.255∗∗∗ −9.588∗∗∗ −10.011∗∗∗ −7.058∗∗∗ −7.080∗∗∗

(0.173) (0.188) (0.207) (0.121) (0.110)

State FE & Year FE X X X

Observations 33,760 33,760 33,760 33,760 33,760

R2 0.372 0.290 0.301 0.701 0.757

Adjusted R2 0.371 0.289 0.300 0.700 0.757

Note: Brand and car body FE’s are included in each regression

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Feasible approximation of the MPI: Riemann sum

Integral approximation: we approximate directly the integral in which f appears with a finite Riemann sum∫
RK2

k(x ′2tv , st ,F0, θ0)(f0(v|λ0)− f (v))dv ≈
L∑

k=1

vL − v0

L
h(x ′2tvk , st ,F0, θ0)︸ ︷︷ ︸

known

αk︸︷︷︸
unknown

with

- αk = f (vk )− f0(vk |λ).

-L: number of points in the Riemann sum: {vk}k=1,...,L

-The approximation of the MPI is a linear combination of known terms

→ Each element corresponds to one instrument → interval instruments

back
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Principle behind interval instruments

Decompose the error term ξjt(F0, θ0):

ξt(F0, θ0) = ξt(f , θ) + (id −M)(∆(st , x2t ,F0, f ))︸ ︷︷ ︸
correction term due to misspecification

where ∆(st , x2t ,F0, f ) = ρ−1(st , x2t , f0(·|λ0))− ρ−1(st , x2t , f ) and

M(·) = x′1t

E

∑
j

x1jthE (zjt )′

WE

∑
j

hE (zjt )x′1jt

−1 E

∑
j

x1jthE (zjt )′

WE

∑
j

hE (zjt ) .



1 Approximate the correction term by taking a first order ”expansion” of ρ−1
j (st , x2t , f ) = ρ−1

j (s0t , x2t , f0(·|λ0))

around st

∆j (st , x2t ,F0, f ) = −e′j
(
∂ρ(δ0

t , x2t , f0(.|λ0))

∂δ

)−1 ∫
RK2

exp(δ0
t + x2tv)

1 +
∑J

k=1 exp
{
δ0
kt + x ′2jkv

} (f (v)− f0(v |λ0))dv +R0 where

R0 = o
(∫
|f0(.|λ0)− f (v)|dv

)
, δ0

t = ρ−1(st , x2t , f0(.|λ0))
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Principle behind interval instruments

2 Approximate the integral which appears in the correction term approximation with a Riemann sum

∫
R

exp
(
δ0
jt + x2jtv

)
1 +

∑J
k=1 exp

(
δ0
kt + x2ktv

) (f0(v |λ0)− f (v))dv ≈
v1 − v0

L

L∑
l=1

exp
{
δ0
jt + x2jtvk

}
1 +

∑J
k=1 exp {δkt + x2ktvl}︸ ︷︷ ︸

known

αk︸︷︷︸
unknown

where αk = f0(vk |λ0)− f (vl ) is unknown and {vl}l=1,...,L points chosen on a grid over the support of f0(·|λ0)− f (·)

3 Exogenize the characteristics and δ0
t , can be done in 2 ways

I Project x on the instruments hE (z) and consider only the exogenous part of δ0, ie δ0
jt = x′1jtβ0 as in [Reynaert and Verboven, 2014]

I Estimate the expectation of (id −M)∆(F0, f ) conditional on z using a Sieve estimator, which in practice is not better than the

1st option
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2 Approximate the integral which appears in the correction term approximation with a Riemann sum

∫
R

exp
(
δ0
jt + x2jtv

)
1 +

∑J
k=1 exp

(
δ0
kt + x2ktv

) (f0(v |λ0)− f (v))dv ≈
v1 − v0

L

L∑
l=1

exp
{
δ0
jt + x2jtvk

}
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Interval instruments implementation

1 Given (F0, Ŵ , hE ) obtain a BLP estimator with the method of your choice

2 Exogenize (x1, x2) by projecting them on hE (z)

3 Interval Instruments ĥ∗D(z) write

ĥ∗D(z) = (IJ×T − x1(x ′1hE (z)Ŵ hE (z)′x1)−1(x ′1hE (z)Ŵ hE (z)′)∆̂L

∆̂jt,L =

{
e′j

(
∂ρ(x1t β̂, x2t , f0(.|λ̂))

∂δ

)−1

η̂t,l

}
l=1,...,L

where ej = (0, 0, . . . , 1︸︷︷︸
jthterm

, . . . , 0, 0), β̂ = β̂(F0, Ŵ , hE ) and λ̂ = λ̂(F0, Ŵ , hE ) are estimators of β0 and λ0, and

η̂jt,l =
exp(x ′1jt β̂ + x ′2ktvl )

1 +
∑J

k=1 exp(x ′1kt β̂ + x ′2jtvl )

for some (vl )
L
l=1 which are L points taken in the support of f0(·|λ̂). back



Interval instruments implementation
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Construction of the instruments in practice

Objective: Approximate h∗D(zjt) = E(∆jt(F0, f )|zjt)

⇒ We build a vector of L interval instruments ĥ∗D(zjt) using a first order approximation of ξjt(F0, f )− ξjt and a guess on

the support of f Principle Implementation

We prove that under certain conditions a linear combination of ĥ∗D(zjt) approximates h∗D , and when L is large that

they have similar slopes Sketch proof

To prevent many / weak IV problems, L cannot be too large in practice

For similar reasons, ĥ∗D can be used for estimation with great effect Details

Max Lesellier (TSE) August 23, 2022 27 / 27
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Interval instruments sketch proof

→ We show that there exists some α ∈ RL
∗ and some IV vector ĥ∗D(zjt) such that

lim
L→∞

α′ĥ∗D(zjt) = h∗D(zjt)

→ In other words there exists a linear combination of ĥ∗D which approximates h∗D

→ A linear combination of ĥ∗D gives a smaller slope than using ĥ∗D , ie Cα′ ĥ∗
D
6 Cĥ∗

D
, therefore

lim
L→∞

Cα′ ĥ∗
D

= lim
L→∞

Cĥ∗
D

= Ch∗
D

Back
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