The Working Capital Channel

Melinda Suveg

The Research Institute of Industrial Economics

24 August 2022, EEA Conference Milan

Intro duction	Model	Regression	Data	Result I	Result II	Conclusion
•0	0000	0	000	00	00	00

Motivation and Summary

- 1. What is the working capital channel?
 - The assumption that firms must pre-fund their wage bill before sales.
- 2. Why is the working capital channel important?
 - A standard explanation for the price puzzle in VAR.
 - Model the price puzzle in DSGE: Christiano, Eichenbaum and Evans (2005)
 - The only direct supply-side transmission mechanism.
- 3. Is there any direct evidence for the working capital channel?
 - DSGE calibration has been arbitrary: How much WC firms need?
 - No: indirect industry-level (Barth and Ramey, 2001) or pass-through from bank landing rates (Gaiotti and Secchi, 2006).
- 4. New direct micro-data evidence:

A firm that pre-funds all of its sales in a quarter **increases its price by around 1 % after 4-5 months** following a percentage unit increase in the policy rate.

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
○●	0000	O	000	00	00	00
Contribu	ition					

• Firm-level evidence using policy rates

- 1. analogous to NKM, central bank models such as in UK, Sweden.
- 2. credit spread shocks \neq monetary policy shocks (Gilchrist and Zakrajsek, 2012).
- Inform parameter calibration in DSGE: WC holdings, price stickiness.
- The partial effect of a "total" interest rate change: **anticipated and unanticipated**. Not only MP shocks are important (Bernanke, Boivin and Eliasz, 2005).
- Micro-data evidence for the pass-through, **response time**.

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
00	●000	0	000	00	00	00

Model framework

The New Keynesian model with Calvo price stickiness:

- Firms pay interest on the amount they borrow to pre-fund their wage bill
- Creates a supply-side monetary transmission mechanism.

A firm sets its optimal price according to

$$p_{i,t}^* = \mu + (1 - \theta\beta) \sum_{k=0}^{\infty} (\theta\beta)^k E_{i,t}[\widetilde{mc}_{i,t+k|t}^n]$$
(1)

where \widetilde{mc}^n is the firm's nominal marginal cost in logs.

$$\widetilde{MC}_{i,t}^{n} = \frac{(1+i_{t})^{\delta_{i}}W_{t}}{A_{t}} \implies \widetilde{mc}_{i,t}^{n} = \delta_{i}R_{t} + mc_{t}^{n}$$
(2)

• In CEE2005 $\delta_i = 1$ in a quarterly model.

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
00	0000	0	000	00	00	00

Inflation

Let a group of firms have price stickiness ($\boldsymbol{\theta}$) and pre-funding ($\boldsymbol{\delta}$)

$$\pi_t \equiv p_t - p_{t-1} = (1 - \theta)(p_t^* - p_{t-1}), \tag{3}$$

$$p_{t-1} = (1-\theta) \sum_{\tau=0}^{\infty} \theta^{\tau} p_{t-1-\tau}^*.$$
 (4)

Using p_t^* , mc_t and p_{t-1} rewrite (3) as

$$\pi_{t} = (1-\theta)(1-\theta\beta) \bigg[E_{t} \sum_{k=0}^{\infty} (\theta\beta)^{k} (\delta R_{t+k} + mc_{t+k}^{n}) \\ - (1-\theta) \sum_{\tau=0}^{\infty} \theta^{\tau} E_{t-1-\tau} \sum_{k=0}^{\infty} (\theta\beta)^{k} (\delta R_{t-1-\tau+k} + mc_{t-1-\tau+k}^{n}) \bigg].$$
(5)

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
00	0000	0	000	00	00	00

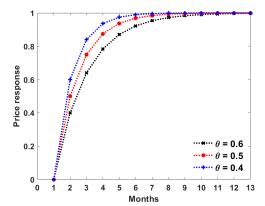
Predictions

• Assuming that repo rate changes are fully Unanticipated:

$$\frac{\Delta \pi_t}{\Delta R_t} = (1 - \theta)(1 - \theta\beta) \,\delta \left[E_t \sum_{k=0}^{\infty} (\theta\beta)^k \frac{\Delta R_{t+k}}{\Delta R_t^{\cup}} \right]. \tag{6}$$

• Maybe repo changes are partly Anticipated (Baseline Regression):

$$\frac{\Delta \pi_t}{\Delta R_t^A} = (1-\theta)(1-\theta\beta) \,\delta \left[E_t \sum_{k=0}^{\infty} (\theta\beta)^k \frac{\Delta R_{t+k}}{\Delta R_t^A} - (1-\theta) \sum_{\tau=0}^{\infty} \theta^{\tau} E_{t-1-\tau} \sum_{k=0}^{\infty} (\theta\beta)^k \frac{\Delta R_{t-1-\tau+k}}{\Delta R_t^A} \right],$$
(7)


Intro duction	Model	Regression	Data	Result I	Result 11	Conclusion
00	0000	0	000	00	00	00

Predictions of the model, varying price stickiness

Assume that ΔR_t and mc_t^n follow random walks, and $\delta=1$

$$\Delta R_t = \epsilon_t ; \quad \epsilon_t \sim N(0, \sigma_\epsilon), \ \Delta m c_t^n = v_t ; \quad v_t \sim N(0, \sigma_v),$$

so that the optimal reset price follows a random walk $p_t^* = p_{t-1}^* + \delta \Delta R_t + \Delta m c_t^n$.

Introduction	Model	Regression	Data	Result I	Result 11	Conclusion
00	0000	•	000	00	00	00

Baseline Regression

$$\begin{split} p_{i,j,t+k} - p_{i,j,t-1} &= \beta_{1,k} \left(\frac{\overline{W_i}}{S_i} \times \Delta R_t^A \right) + \beta_{2,k} \left(\frac{\overline{W_i}}{S_i} \times \Delta R_t^U \right) \\ &+ \alpha_{i,k} + \gamma_{j,k,t} + \xi_{1,k} (\overline{S_i} \times \Delta R_t) \\ &+ \sum_s^S \xi_{s,k} \left(\frac{\overline{W_i}}{S_i} \times D_s \right) + \epsilon_{k,i,t}, \end{split}$$

- Working Capital: receivables(= trade credit given) + inventories - payables - pre-payments
- $\frac{\overline{W_i}}{S_i}$: time-avg. WC/Sales ratio, variation across firms.

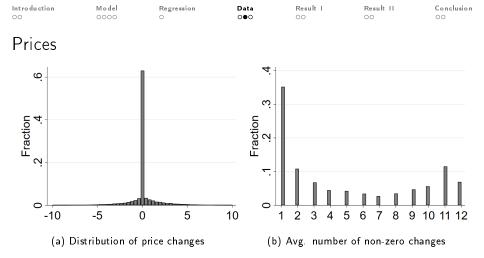
Identification challenge: changes in demand drive both π_t , W_t/S_t and ΔR_t

- Use allegedly exogenous high-frequency shocks for ΔR_t^U
- Firm and product-time FEs, control variable for size, DKraay SEs.

Introduction	Model	Regression	Data	Result I	Result 11	Conclusion
00	0000	0	•00	00	00	00

Data

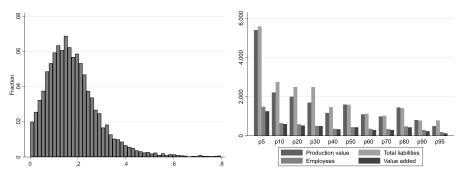
Prices:


- Firm-product group level producer home price indices.
- Representative sample.
- 2,151 firms, 1997-2016, manufacturing sector only.
- Allegedly quality adjusted series.
- **HS2 products** e.g.: "umbrellas, sun umbrellas, walking-sticks, seat-sticks, whips, riding-crops and parts thereof".

Working capital and sales:

• Firm-level balance sheets/income statements.

Repo rate:

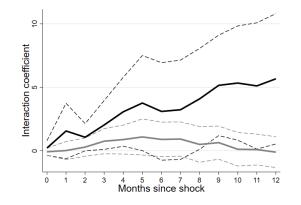

- Riksbank Swedish Central Bank.
- High-frequency Kuttner shocks, constructed using Stina 1-month rates.

- (a) centres around zero price change
- (b) most firms change prices infrequently (some very frequently)
- Avg. frequency of price change is 4.6 times a year; 2-3 months avg. price duration.
- The median frequency of price change: Bils&Klenow (2004) 4 to 5 months, Klenow&Kryvtsov (2005) 4 to 7, Nakamura&Steinsson (2007) 8 to 11 months.

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
00	0000	0	000	00	00	00

Working capital and other firm characteristics

(a) Distribution of W/S


(b) Firm characteristics along W/S percentiles

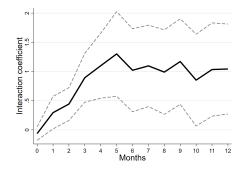
- (a) identifying variation, avg WC holdings 0.2.
- (b) relative homogeneity between p10 and p90
- controlling for size and robustness w/o p10 and p90 is a good idea

Intro duction	Model	Regression	Data	Result I	Result 11	Conclusion
00	0000	0	000	•0	00	00

Result I

$$p_{i,j,t+k} - p_{i,j,t-1} = \beta_{1,k} \left(\frac{\overline{W_i}}{S_i} \times \Delta R_t^A \right) + \beta_{2,k} \left(\frac{\overline{W_i}}{S_i} \times \Delta R_t^U \right) + \bar{X}_{i,j,k,t} + \epsilon_{k,i,t}$$

Results I table

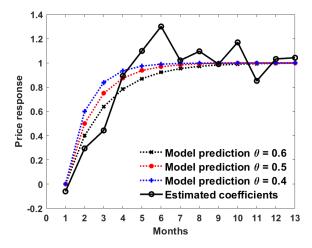

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
00	0000	0	000	0●	00	00

Results I: pass-through via the working capital channel

- The short-run effect of the **unanticipated** change is **larger**.
- **Delay**: No concurrent price changes.
- An **avg** high-frequency **shock** of **0.03 %-unit** leads to a 0.09 (0.15) % increase in the price set by a firm with a WC/S ratio of 1 after 4 (9).
- Had there been a 1 %-unit increase in the repo rate, the **0.97 %-unit anticipated** component increases prices by 0.86 (0.62) percent.
- The avg. price change is around 1 % after 4 months.
- 1:1 transmission after some time as theory predicts!

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
00	0000	0	000	00	•0	00

Result II: the WC effect of a repo change



- The price effect stabilizes around 1 % after 4 months.
- The average firm (WC/S=0.2) increases its price by 0.2 percent.
- The firm at the 10th (90th) percentile of the WC/S distribution increases its price by 0.03 (0.35) percent 3 months after the change.

Results II table

Introduction	Model	Regression	Data	Result I	Result II	Conclusion
00	0000	0	000	00	0●	00

Predicted response and estimated coefficients

Introduction	Model	Regression	Data	Result I	Result 11	Conclusion
00	0000	0	000	00	00	•0

Conclusion

- Theory predicts that
 - ${\ensuremath{\,^\circ}}$ the pass-through of interest rate changes to prices is 1.1
 - unanticipated changes have larger short-run effects
- Regressions using firm-level data confirm these predictions
- Robustness checks confirm them too: 2 other measures of shocks, multiple interaction variables for control capturing size, indebtedness etc
- Calibration and relevance for DSGE models:
 - Assuming a quarter of pre-funding is in line with annual WS/S = 0.2
 - Price-stickiness $\theta = 0.6$ or higher may capture short run price response better.
 - Takes 4-6 months for producer prices to adjust.

Introduction

Model

Regression O Data 000 Result I

Result II 00 Conclusion ○●

THANKS!

Comments & Contact:

melinda.suveg@ifn.se

Results | Anticipated and Unanticipated changes

		0	0	0 1 /	
	p(t)-p(t-1)	p(t+1)-p(t-1)	p(t+2)-p(t-1)	p(t+3)-p(t-1)	p(t+4)-p(t-1)
avg.W/S \times dR ^U	0.217	1.558	1.066+	2.0 34 *	3.071*
	(0.295)	(1.114)	(0.547)	(0.982)	(1.387)
$avg.W/S \times dR^A$	0.0783	0.0164	0.290	0.754	0.883
	(0.147)	(0.363)	(0.365)	(0.506)	(0.582)
avg. S # dR	x	x	x	x	x
Firm FE	x	x	x	x	x
Time-Product FE	x	x	x	x	x
FC dummies	x	x	x	x	x
Observations	124865	122363	119844	117348	114870
	p(t+5)-p(t-1)	p(t+6)-p(t-1)	p(t+7)-p(t-1)	p(t+8)-p(t-1)	p(t+9)-p(t-1)
$avg.W/S \times dR^U$	3,759+	3.098	3.231	4.087*	5.151*
	(1.909)	(1.960)	(1.995)	(2.027)	(2.017)
$avg.W/S \times dR^A$	1.088	0.896	0.922	0.499	0.640
	(0.725)	(0.694)	(0.689)	(0.718)	(0.664)
avg. S # dR	x	x	x	x	x
Firm FE	x	x	x	x	x
Time-Product FE	x	x	x	x	x
FC dummies	x	x	x	x	x
Observations	112382	109890	107390	104888	102387
	p(t+10)-p(t-1)	p(t+11)-p(t-1)	p(t+12)-p(t-1)	p(t+13)-p(t-1)	p(t+14)-p(t-1)
$avg.W/S \times dR^U$	3.759+	3.098	3.231	4.087*	5.151*
	(1.909)	(1.960)	(1.995)	(2.027)	(2.017)
$avg.W/S \times dR^A$	1.088	0.896	0.922	0.499	0.640
	(0.725)	(0.694)	(0.689)	(0.718)	(0.664)
avg. S # dR	x	x	x		. ,
Firm FE	x	x	x		
Time-Product FE	x	x	x		
FC dummies	x	x	x		
Observations	112382	109890	107390	104888	102387

Table: The transmission of interest rate changes using Stina1M based high-frequency shocks

Notes: Driscoll and Knapy standard errors with four lags are in parenthesis; significance levels p < 0.05; p < 0.01; p < 0.001; t are months. W is working capital, defined as receivables and inventories; and S is sales. The same control variables are used in each regression. These are the interaction of average sales and the change in the reported from t - 1 to t, firm and time-product fixed fetexs, and the financial crises dummies for the months of the financial crises between 2008 mJ0-2009 mó.

Results II Repo rate changes

	p(t)-p(t-1)	p(t+1)-p(t-1)	p(t+2)-p(t-1)	p(t+3)-p(t-1)	p(t+4)-p(t-1)
avg.W/S \times dR	-0.0631	0.295	0.443	0.894*	1.099*
	(0.111)	(0.269)	(0.270)	(0.405)	(0.537)
avg. S # dR	x	x	x	x	x
Firm FE	x	x	x	x	x
Time-Product FE	x	x	x	x	x
FC dummies	x	x	x	x	x
Observations	154072	151337	148591	145852	143131
	p(t+5)-p(t-1)	p(t+6)-p(t-1)	p(t+7)-p(t-1)	p(t+8)-p(t-1)	p(t+9)-p(t-1)
avg.W/S \times dR	1.301+	1.021	1.096	0.990	1.170+
	(0.699)	(0.686)	(0.673)	(0.698)	(0.706)
avg. S # dR	x	x	x	x	x
Firm FE	x	x	x	x	x
Time-Product FE	x	x	x	x	x
FC dummies	x	x	x	x	x
Observations	140397	137657	1 34 9 0 9	132160	129410
	p(t+10)-p(t-1)	p(t+11)-p(t-1)	p(t+12)-p(t-1)		
avg.W/S \times dR	0.852	1.033	1.043		
	(0.758)	(0.771)	(0.743)		
avg. S # dR	x	x	x		
Firm FE	x	x	x		
Time-Product FE	x	x	x		
FC dummies	x	x	x		
Observations	126281	123970	121860		

Table: The transmission of reportate changes via the working capital channel

Notes: Driscoll and Kraay standard errors with four lags are in parenthesis; significance levels + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001; t are months. W is working capital, defined as receivables and inventories net of payables and prepayments. S is sales. The same control variables are used in each regression. These control variables are the interaction of sales and the reportate change between t-1and t, firm and time-product fixed effects, and the financial crises dummies for the months of the financial crises between 2008m1.0-2009m6. The tables with all coefficients can be found in Appendix ??.

Back

References

- Barth, III Marvin J. and Valerie A. Ramey, "The Cost Channel of Monetary Transmission," *NBER Macroeconomics Annual*, 2001, *16* (1), 184–240.
- Bernanke, Ben S., Jean Boivin, and Piotr Eliasz, "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," *The Quarterly journal of economics*, 2005, *120* (1), 387–422.
- Christiano, Lawrence J, Martin Eichenbaum, and Charles L Evans, "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 2005, *113* (1), 1–45.
- Gaiotti, Eugenio and Alessandro Secchi, "Is There a Cost Channel of Monetary Policy Transmission? An Investigation into the Pricing Behavior of 2,000 Firms," *Journal of Money, Credit and Banking*, 2006, *38* (8), 2013–2037.
- Gilchrist, Simon and Egon Zakrajsek, "Credit Spreads and Business Cycle Fluctuations," The American Economic Review, 2012, 102 (4), 1692–1720.