Anchoring of Inflation Expectations Do Inflation Target Formulations Matter?

Christoph Grosse-Steffen¹

¹Banque de France

EEA-ESEM Conference 2022 Milan, 24 August 2022

* Disclaimer: The views and opinions expressed in the presentation are not necessarily those of the Banque de France or the Eurosystem.

Motivation

- Quantitative formulations for inflation objectives very common \rightarrow inflation targeting
- Target formulations differ cross-country, and over time.

Note: Green line=YoY CPI inflation. Vertical, dotted line=start date of a stable inflation target, following Roger (2009), with adjustments and extensions. Blue dots=mean point forecast, h = 6 to 10 years. Yellow x=mean point forecast, h = 2 years.

Motivation

- MP design: Do inflation target formulations matter for expectation anchoring?
- Economic theory: conflicting predictions:
- 1. Precise CB target problematic due to time-inconsistency pb [Stein 1989] \rightarrow non-numerical definitions of price stability anchor π^{e} better
- 2. Ranges are more credible [Demertzis Viegi 2009, Andersson Jonung 2017] \rightarrow target ranges/corridors anchor π^e better
- 3. Ranges provide more flexibility [Svensson 1997, Orphanides Wieland 2000]
 - \rightarrow point-targets anchor π^{e} better

 \Rightarrow Testable predictions are focus of this paper.

What this paper does

1. Construction of a novel anchoring measure

- based on the cross-sectional distribution of π^e from professional forecasters, h=1,2,...6-10 years (Consensus Economics)
- consistent with non-linear, asymmetric CB loss fct (Kilian Manganelli 2008)
- 2. Empirical tests in panel model (TWFE)
 - 29 countries
 - 2005q5 2020q2
 - distinguishing 4 target formulations:
 - 2.1 no precise numerical target (but quant.def, ex. EA, US*, JP*)
 - 2.2 target range (ex. AU, CH, IL)
 - 2.3 hybrid target (ex. CA, NZ*, MX, CZ*)
 - 2.4 point target (ex. UK*, US*, SE*)

 * Countries that changed the formulation at least once within the sample.

Main findings

Point targets

- Improve expectations anchoring (unconditional effect)
- Less disanchoring in periods of sustained undershooting and overshooting (conditional effect)
- Hybrid targets (tolerance bands)
 - No adverse effect on unconditional anchoring.
 - But less effective in limiting shifts in tails of the belief-distribution during periods of sustained deviations from target.

► Ranking target formulations w.r.t. anchoring properties:

- 1. point target
- 2. hybrid target
- 3. quant. def. of price stability w/o precise numerical target
- 4. target range

Related literature

Expectations anchoring

- Distribution: Reis (2021)
- Level: Mehrotra & Yetman 2018, Grishchenko, Mouabbi & Renne 2019
- Pass-through: short-term to long-term (Jochmann et al 2010, Pooter et al 2014, Lyziak & Paloviita 2017, Buono & Formai 2018), realized on long-run (Levin, Natalucci & Zakrajsek 2004), long-run break even and news (Guerkaynak, Levin & Swanson 2012, Beechey, Johannsen & Levin 2011, Bauer 2015, Hachula & Nautz 2018, Speck 2017)
- $\blacktriangleright \ \ \rightarrow$ tails of distribution as anchoring criteria.

Inflation Targeting

- IT helps to anchor expectations, but no effect on realized inflation (Fatas, Mihov & Rose 2007, Crowe 2010, Davis 2014)
- $\blacktriangleright \ \rightarrow$ significant differences across target formulations

Effect of target formulations

- Castelnuovo, Nicoletti-Altimari & Rodriguez-Palenzuela 2003: no significant difference between target formulations

 — update and extension
- Ehrmann 2021: short-run horizon, weaker pass-through in presence of a range or tolerance band

 \rightarrow longer forecast horizons (beyond MP lag); differences in country and time coverage

Related literature (cont'd)

Inflation risk measures in the literature

- 1. density forecasts from macroeconometric models (e.g. Mitchell & Wallis 2011)
- (subjective) probability forecasts from surveys (SPF) (Grishchenko, Mouabbi & Renne 2019)
- 3. central bank density forecasts for inflation (Knueppel & Schultefrankenfeld 2012)
- 4. option-implied inflation prob densities (Kitsul & Wright 2013)
- \rightarrow inflation risk measures based on cross-section of point forecasts
 - summary of beliefs across agents, information about CB credibility
 - enables to study whole distribution (skewness)
 - high country coverage & comparability

Data

Data: Anchoring measure Cross-section of point forecasts (Consensus) → summary 'best predictions'/'beliefs'

skew-extended t-distribution

- flexible, asymmetric, fat tails
- SMM estimation (ext. robustness)
 Appendix

for each country i, quarter t, forecast hor. h=2y, 3y, 4y, 5y, 6y

Anchoring

$$probT_{it}^{h} = \int_{\underline{\pi}_{i}}^{\overline{\pi}_{i}} dF_{\pi_{it}^{h}}(\pi_{it}^{h})$$

Disanchoring/(a)symmetry

$$\begin{aligned} \mathsf{DAL}_{it}^{h} &= \int_{-\infty}^{\pi_{i}} \mathsf{dF}_{\pi_{it}^{h}}(\pi_{it}^{h}) \\ \mathsf{DAH}_{it}^{h} &= \int_{\pi_{i}}^{\infty} \mathsf{dF}_{\pi_{it}^{h}}(\pi_{it}^{h}) \end{aligned}$$

⇒ theory consistent (Kilian & Manganelli 2008)

Note: Euro area, skew t-distribution $F_{JF}(\mu, \sigma, a, b)$ for 2 year and 6 year fixed-horizon.

Data: Determinants of expectation anchoring

What are determinants of expectations anchoring?

 $X_{it}^{h} = c + \beta_{1}d_{t}^{fh3} + \beta_{2}d_{t}^{fh4} + \beta_{3}d_{t}^{fh5} + \beta_{4}d_{t}^{fh6} + \delta_{1}\sigma_{it}^{\pi24m} + \delta_{2}RQ_{it} + \nu_{Y} + \nu_{i} + \varepsilon_{it}$

where X_{it}^{h} is a generic dependent variable in country *i*, quarter *t* and horizon *h*.

- dummy forecast horizon: $d_t^{\text{fh3}}, ..., d_t^{\text{fh6}}$
- regulatory quality (Worldbank WGI): RQ_{i,t}
- condition on volatility of realized inflation, rolling-window (24m): $\sigma_{it}^{\pi 24m}$
- year dummies (vy)
- country FE (ν_i)
- ref. group (const): cross-country avg., 2y horizon

Data: Determinants of expectation anchoring

	(1)	(2)	(3)	(4)	(5)	(6)
	distAbs	stdev	skewness ratio	probT	DAL	DAH
sd infl. (24m)	0.374***	0.180***	0.00103	-0.000374	-0.0497***	0.0501***
	(0.0130)	(0.00619)	(0.00710)	(0.00536)	(0.00821)	(0.00802)
Regulatory quality	-0.169***	-0.0747***	-0.0270***	0.130***	0.0888***	-0.219***
	(0.0125)	(0.00598)	(0.00688)	(0.00518)	(0.00794)	(0.00776)
d ^{fh3}	-0.127***	0.0159	0.0159	0.0469***	-0.0538***	0.00693
	(0.0224)	(0.0107)	(0.0122)	(0.00925)	(0.0142)	(0.0138)
d ^{fh4}	-0.170***	0.0276***	0.0318***	0.0685***	-0.0737***	0.00517
	(0.0224)	(0.0107)	(0.0123)	(0.00925)	(0.0142)	(0.0138)
d ^{fh5}	-0.198***	0.0182*	0.0550***	0.0964***	-0.0887***	-0.00775
	(0.0224)	(0.0107)	(0.0123)	(0.00925)	(0.0142)	(0.0138)
d ^{fh6}	-0.215***	0.00658	0.0737***	0.115***	-0.0962***	-0.0190
	(0.0224)	(0.0107)	(0.0123)	(0.00926)	(0.0142)	(0.0139)
Constant	0.427***	0.290***	0.0270	0.00915	0.302***	0.689***
	(0.0447)	(0.0214)	(0.0245)	(0.0185)	(0.0283)	(0.0277)
adj. R-squared	0.28	0.27	0.04	0.18	0.09	0.23
N.Obs	4483	4483	4435	4483	4483	4483
year dummies	Yes	Yes	Yes	Yes	Yes	Yes

Tab. 2: Determinants of inflation risk measures

Notes. Pooled OLS, standard errors in parentheses. ***/**/*/ denote statistical significance at the 1%/5%/10% level.

Empirical results

Results (1a): Are numerical targets always better?

$$prob T_{it}^{h} = c + \beta d_{it}^{num Target} + \delta_1 \sigma_{it}^{\pi 24m} + \delta_2 R Q_{it} + \nu_i + \nu_Y + \varepsilon_{it}.$$

 $d_{it}^{numTarget}$: all numerically defined inflation targets

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. All equations are estimated separately for each forecast horizon from h = 2 to h = 6 years based on a fixed-horizon approximation. The reference group of countries are US< 2012m3, euro area, and 3pan < 2012m2.

Results (1b): Are numerical targets always better?

$$prob T_{it}^{h} = c + \beta_{1} d_{it}^{numRange} + \beta_{2} d_{it}^{numPoint} + \delta_{1} \sigma_{it}^{\pi 24m} + \delta_{2} R Q_{it} + \nu_{i} + \nu_{Y} + \varepsilon_{it}$$

$$\frac{d_{it}^{numRange}}{d_{it}^{numPoint}}: \text{ pure range AND hybrid targets}$$

$$\frac{d_{it}^{numPoint}}{d_{it}}: \text{ pure point target AND focal point}$$

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. All equations are estimated separately for each forecast horizon from h = 2 to h = 6 years based on a fixed-horizon approximation. The reference group of countries are US< 2012*m*3, euro area, and Japan< 2012*m*2.

- Not all numerical definitions improve over quant. def. target.
- Sensitivity: data more in favor of num. target if Japan & Turkey dropped
- \blacktriangleright \rightarrow consistent with Bundick and Smith (2018)

Results (2): differences between numerical targets

$$X_{it}^{h} = c + \beta_{1}d_{it}^{hybrid} + \beta_{2}d_{it}^{point} + \delta_{1}\sigma_{it}^{\pi24m} + \delta_{2}RQ_{it} + \nu_{i} + \nu_{Y} + \varepsilon_{it},$$

$$hybrid: hybrid targets$$

$$f_{t}^{point}: \text{ pure point target}$$
(a) Likelihood being close to target, probT
$$0.3 \int_{0.2}^{0.3} \int_$$

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. All equations are estimated separately for each forecast horizon from h = 2 to h = 6 years based on a fixed-horizon approximation. Sample of 29 countries.

ightarrow Inflation target ranges are associated with less well-anchored π^e

Results (2) cont'd: disanchoring

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. All equations are estimated separately for each forecast horizon from h = 2 to h = 6 years based on a fixed-horizon approximation. Sample of 29 countries.

\rightarrow Point and hybrid targets dampen the risk of disanchoring, but not symmetrically.

Conditional results: persistent deviations from target

Anchoring conditional on track-record

Indicator CL_{it} based on inflation performance

$$CL_{it} = rac{1}{T-1} \sum_{s=t-T}^{t-1} (\pi_{is} - \pi_{is}^*) \mid \pi_{is} - \pi_{is}^* \mid$$

- backward-looking, 60 months (Neuenkirch and Tillmann 2014)
- CL_{it} represents multiple things (credibility loss, persistence of shocks, ...)

Net cumulative undershooting/overshooting

$$CL_{it}^{(+)} = \begin{cases} CL_{it}, & \text{if } CL_{it} \ge 0\\ 0, & \text{otherwise} \end{cases}$$

and $CL_{it}^{(-)} = \begin{cases} \mid CL_{it} \mid, & \text{if } CL_{it} \le 0\\ 0, & \text{otherwise} \end{cases}$

Shifts in the fat tails in periods of inflation stress

$$X_{it}^{h} = c + \beta_1 C L_{it}^{+} + \frac{\beta_2 C L_{it}^{-}}{1 + \gamma_1 \sigma_{it}^{\pi^{24m}}} + \gamma_2 R Q_{it} + \nu_i + \nu_Y + \varepsilon_{it}$$

 β_1 : cum. overshooting β_2 : cum. undershooting

Tab. 3: Effect of persistent target deviations on expectation anchoring

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	$\pi - \pi^*$	probT(4)	probT(6)	DAL(4)	DAL(6)	DAH(4)	DAH(6)	Mean(4)	Mean(6)
CL ⁽⁻⁾	-0.103	-0.0222**	-0.0301***	0.0632***	0.0850***	-0.0410***	-0.0549***	-0.0407*	-0.0344***
	(0.0831)	(0.0108)	(0.0104)	(0.0146)	(0.0102)	(0.0149)	(0.00858)	(0.0232)	(0.0125)
CL ⁽⁺⁾	0.722***	-0.00636	-0.00169	-0.00118	-0.0373***	0.00754	0.0389***	0.354***	0.233***
	(0.201)	(0.00848)	(0.00735)	(0.0126)	(0.00891)	(0.0145)	(0.0110)	(0.0561)	(0.0275)
sd infl. (24m)	-0.151	-0.0106	-0.0311	-0.0303	0.0182	0.0409	0.0129	0.0933	0.0236
	(0.260)	(0.0226)	(0.0204)	(0.0258)	(0.0209)	(0.0247)	(0.0179)	(0.0681)	(0.0344)
Regulatory quality	0.307	0.00819	-0.117	0.0930	0.276***	-0.101	-0.160*	-0.919***	-0.761***
	(0.505)	(0.0698)	(0.0842)	(0.0586)	(0.0930)	(0.0749)	(0.0847)	(0.165)	(0.100)
Constant	-0.0425	0.174**	0.353***	0.235***	0.0694	0.592***	0.578***	3.582***	3.359***
	(0.542)	(0.0680)	(0.0780)	(0.0692)	(0.0988)	(0.0758)	(0.0941)	(0.153)	(0.100)
country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N.Obs	3978	827	825	827	825	827	825	833	831
N.Countries	28	28	28	28	28	28	28	28	28
adj. R-squared	0.31	0.06	0.06	0.16	0.21	0.19	0.19	0.55	0.51

Notes. Standard errors based on Driscoll and Kraay (1998) in parentheses. ***/**/*/ denote statistical significance at the 1%/5%/10% level.

\rightarrow Stronger disanchoring from low inflation?

Shifts in the fat tails and target formulations

Are movements in the fat tails equal across target formulations?

$$\begin{aligned} X_{it}^{h} = & c + \beta_1 \left[CL_{it}^- \times d_{it}^{hybrid} \right] + \beta_2 \left[CL_{it}^+ \times d_{it}^{hybrid} \right] + \delta_1 d_{it}^{hybrid} \\ & + \beta_3 \left[CL_{it}^- \times d_{it}^{point} \right] + \beta_4 \left[CL_{it}^+ \times d_{it}^{point} \right] + \delta_2 d_{it}^{point} \\ & + \gamma_1 CL_{it}^+ + \gamma_2 CL_{it}^- + \gamma_3 \sigma_{it}^{\pi 24m} + \gamma_4 RQ_{it} + \nu_i + \nu_Y + \varepsilon_{it} \end{aligned}$$

Shifts in the fat tails and target formulations (results)

Notes: Point estimates and 90% confidence intervals based on Driscoll and Kraay (1998) standard errors. All equations are estimated separately for each forecast horizon from h = 2 to h = 6 years based on a fixed-horizon approximation. Sample of 29 countries.

\rightarrow Point targets are slightly more effective in limiting shifts in the tails of the distribution.

Robustness

- absolute distance, mean to target
- subsample of AEs conly
- subsample w/o Japan, Turkey (*)
- No controls (RQ, sdinfl(24m))
- No year dummies

Conclusion

- Debate about pros and cons of inflation target formulations unsettled, reflected in numerous CB strategy reviews [Apel Clausen 2017, Chung et al 2020]
- Challenges of disanchoring remain present
- ... due to persistently low or high inflation, not necessarily symmetric
- ... expectation bias in the presence of ZLB [Bianchi Melosi Rottner 2019]

This paper

- (1) proposes a novel anchoring measure based on cross-sectional distribution
- (2) finds point targets have favorable (conditional & unconditional) anchoring characteristics

Limitations:

- 1. Professional forecasters attentive to CB announcements
 - affect other agents [Carroll 2003]
 - still, not sure if results would hold for HH, firms. [Coibion Gorodnichenko Weber 2019, Lewis Makridis Mertens 2020]
- 2. Cannot fully control for selection bias (endogeneity) \rightarrow SCM for causal interpretation (work in progress)

Thank you.

christoph.grossesteffen@banque-france.fr