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Causal Effect

J := E
[∫
A

Y (a)π(a)dµA(a)
]
. (1)

I Base measure of A (A ∈ A): µA
I Contrast function π : A → R (ATE: π(a) = 2a − 1)

Assumption 1.1 (Outcome model linearly separable in error)
There exists some function k0 ∈ L2(A,U) such that

Y = k0(A,U) + εY , E
[
εY |Z ,U

]
= 0. (2)
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IV

Figure: DAG of an IV model

A YZ

ŨA2-IV
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Assumption 1.2 (IV Model)

1. Consistency: Y = Y (A,Z )
2. IV exogeneity: Y ⊥⊥ Z | A.
3. IV relevance: E

[
g(A)|Z

]
= 0

only if g(A) = 0.
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ICC

Figure: DAG of an ICC model
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Assumption 1.3 (ICC Model)

1. Consistency: Y = Y (A,Z ),
W = W (A,Z )

2. Cond. IV exogeneity:
(Y ,W ) ⊥⊥ Z | (A,U).

3. IV relevance:
E
[
g(A,U)|Z

]
= 0 only if

g(A,U) = 0.
4. NC outcomes:

W ⊥⊥ (Z ,A) | U; and
E
[
h0(A,W )|A,U

]
= k0(A,U)

for some h0(A,W ) ∈ L2(A,W ).
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ICC - Linear Model
I Linear Model Setup

Y = Aβ + UγY + WυY + εY , E
[
εY |Z

]
= 0

A = Zζ + UγA + εA, E
[
εA|Z

]
= 0

W = UγW + εW , E
[
εW |U,Z

]
= 0

Z = UγZ + εZ , E
[
εZ |U,W

]
= 0

I Linear Model Moment

E
[
W |Z

]
= E

[
U|Z

]
γW =⇒ E

[
U|Z

]
= E

[
W |Z

]
γ−1

W ,

E
[
A|Z

]
= Zζ + E

[
U|Z

]
γA = Zζ + E

[
W |Z

]
γ−1

W γA

E
[
Y |Z

]
= E

[
A|Z

]
β + E

[
W |Z

]
υY + E

[
U|Z

]
γY

= Zζβ + E
[
W |Z

] (
γ−1

W γAβ + υY + γ−1
W γY

)

Instrumented Common Confounding EEA ESEM 2022 6 / 22



Setup References Linear ICC Identification Returns to Education Conclusion

ICC - Linear Model
I Linear Model Setup

Y = Aβ + UγY + WυY + εY , E
[
εY |Z

]
= 0

A = Zζ + UγA + εA, E
[
εA|Z

]
= 0

W = UγW + εW , E
[
εW |U,Z

]
= 0

Z = UγZ + εZ , E
[
εZ |U,W

]
= 0

I Linear Model Moment

E
[
W |Z

]
= E

[
U|Z

]
γW =⇒ E

[
U|Z

]
= E

[
W |Z

]
γ−1

W ,

E
[
A|Z

]
= Zζ + E

[
U|Z

]
γA = Zζ + E

[
W |Z

]
γ−1

W γA

E
[
Y |Z

]
= E

[
A|Z

]
β + E

[
W |Z

]
υY + E

[
U|Z

]
γY

= Zζβ + E
[
W |Z

] (
γ−1

W γAβ + υY + γ−1
W γY

)
Instrumented Common Confounding EEA ESEM 2022 6 / 22



Setup References Linear ICC Identification Returns to Education Conclusion

ICC - Linear Model

E
[
Y |Z

]
= Zζβ + E

[
W |Z

] (
γ−1

W γAβ + υY + γ−1
W γY

)
E
[
A|Z

]
= Zζ + E

[
W |Z

]
γ−1

W γA

β =
E
[

(Zζ) Y
∣∣∣E [W |Z ]]

E
[

(Zζ) A
∣∣∣E [W |Z ]]

When is this feasible? Relevance Requirements:
1. E

[
U|Z

]
and E

[
W |Z

]
are proportional. Keep E

[
U|Z

]
fixed

by keeping E
[
W |Z

]
fixed. Requires dZ ≥ dU , dW ≥ dU .

2. Use remaining variation in predictions Zζ to instrument for A
while E

[
U|Z

]
fixed. Requires (dZ − dU) ≥ dA.

Instrumented Common Confounding EEA ESEM 2022 7 / 22



Setup References Linear ICC Identification Returns to Education Conclusion

ICC - Linear Model

E
[
Y |Z

]
= Zζβ + E

[
W |Z

] (
γ−1

W γAβ + υY + γ−1
W γY

)
E
[
A|Z

]
= Zζ + E

[
W |Z

]
γ−1

W γA

β =
E
[

(Zζ) Y
∣∣∣E [W |Z ]]

E
[

(Zζ) A
∣∣∣E [W |Z ]]

When is this feasible? Relevance Requirements:

1. E
[
U|Z

]
and E

[
W |Z

]
are proportional. Keep E

[
U|Z

]
fixed

by keeping E
[
W |Z

]
fixed. Requires dZ ≥ dU , dW ≥ dU .

2. Use remaining variation in predictions Zζ to instrument for A
while E

[
U|Z

]
fixed. Requires (dZ − dU) ≥ dA.

Instrumented Common Confounding EEA ESEM 2022 7 / 22



Setup References Linear ICC Identification Returns to Education Conclusion

ICC - Linear Model

E
[
Y |Z

]
= Zζβ + E

[
W |Z

] (
γ−1

W γAβ + υY + γ−1
W γY

)
E
[
A|Z

]
= Zζ + E

[
W |Z

]
γ−1

W γA

β =
E
[

(Zζ) Y
∣∣∣E [W |Z ]]

E
[

(Zζ) A
∣∣∣E [W |Z ]]

When is this feasible? Relevance Requirements:
1. E

[
U|Z

]
and E

[
W |Z

]
are proportional. Keep E

[
U|Z

]
fixed

by keeping E
[
W |Z

]
fixed. Requires dZ ≥ dU , dW ≥ dU .

2. Use remaining variation in predictions Zζ to instrument for A
while E

[
U|Z

]
fixed. Requires (dZ − dU) ≥ dA.

Instrumented Common Confounding EEA ESEM 2022 7 / 22



Setup References Linear ICC Identification Returns to Education Conclusion

ICC - Linear Model

E
[
Y |Z

]
= Zζβ + E

[
W |Z

] (
γ−1

W γAβ + υY + γ−1
W γY

)
E
[
A|Z

]
= Zζ + E

[
W |Z

]
γ−1

W γA

β =
E
[

(Zζ) Y
∣∣∣E [W |Z ]]

E
[

(Zζ) A
∣∣∣E [W |Z ]]

When is this feasible? Relevance Requirements:
1. E

[
U|Z

]
and E

[
W |Z

]
are proportional. Keep E

[
U|Z

]
fixed

by keeping E
[
W |Z

]
fixed. Requires dZ ≥ dU , dW ≥ dU .

2. Use remaining variation in predictions Zζ to instrument for A
while E

[
U|Z

]
fixed. Requires (dZ − dU) ≥ dA.

Instrumented Common Confounding EEA ESEM 2022 7 / 22



Setup References Linear ICC Identification Returns to Education Conclusion

Identification of J if U observed

J := E
[∫
A

Y (a)π(a)dµA(a)
]

Y (A) = k0(A,U) + εY , E
[
εY |Z ,U

]
= 0

Lemma 4.0.1
If A1.1 (conditional outcome moment) holds, then

J =E
[
φIV (U; k0)

]
where φIV (u; k0) =

∫
A

k0(a, u)π(a)dµA(a)
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Bridge Function

Let H0 be the nonempty (A1.3.4) set of valid outcome bridge
functions defined by

H0 =
{

h ∈ L2(A,W ) : E
[
k0(A,U)− h(A,W )|A,U

]
= 0

}
6= ∅.

(3)

Lemma 4.0.2
Suppose A1.1 and A1.3.4 hold. For any h0 ∈ H0,

J =E
[
φ̃IV (w ; h0)

]
where φ̃IV (w ; h0) =

∫
A

h0(a,w)π(a)dµA(a)

Proof of Lemma 4.0.2
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Observable Bridge Function
Lemma 4.0.3
Suppose A1.1 and A1.3 hold. For any h0 ∈ H0,

E
[
Y − h0(A,W )|Z

]
= 0 (4)

Proof of Lemma 4.0.3

Identify different set of observable bridge functions:

Hobs
0 = {h ∈ L2(A,W ) : E

[
Y − h(A,W )|Z

]
= 0} 6= ∅. (5)

Lemma 4.0.4
Suppose A1.1 and A1.3 hold. Then,

H0 = Hobs
0 . (6)

Proof of Lemma 4.0.4
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Identification with Observable Bridge Function

Theorem 4.1
Suppose A1.1 and A1.3 hold. For any h0 ∈ Hobs

0 ,

J =E
[
φ̃IV (w ; h0)

]
where φ̃IV (w ; h0) =

∫
A

h0(a,w)π(a)dµA(a)

Proof of Theorem 8
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NLS97 Data

Y Household net worth at 35
A BA degree

Z Pre-college GPA measures
W Risky behaviour dummies
U Ability
Ũ Other biases (selection)
X Covariates (sex, college GPA, parental education/net worth,

siblings, region, etc)
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Assumption 5.1 (Local Linear ICC Model)

1. Model linearity:
Y = αY (X ) + Aβ(X ) + UγY (X ) + WυY (X ) + εY (7)
A = αA(X ) + Zζ(X ) + UγA(X ) + WυA(X ) + εA (8)

W = αW (X ) + UγW + εW , Z = αZ (X ) + UγZ + εZ (9)

2. Cond. IV exogeneity:
E
[
εY |Z ,U,X

]
= 0. (10)

3. IV relevance:
rank(ζ(x)) ≥ dA + dU for any x ∈ X , (11)

E
[
εZ |W ,U,X

]
= 0, and rank(γZ ) ≥ dU (12)

4. NC outcomes:
E
[
εW |Z ,U,X

]
= 0, and rank(γW ) ≥ dU . (13)
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Test relevance of Z and W for U

I p-values for H0 : r0 ≤ r : 2.1% (r = 2); 25.9% (r = 3)
[Chen and Fang, 2019]

I 3-dim. U explains Z -W covariance.

ÛZ
(n×3)

:= E
[
U|Z

]
= Z

(n×dZ )
γ̃ᵀ

(dZ×3)
, E

[
W |Z

]
(n×dW )

= Z
(n×dZ )

γ̃ᵀ

(dZ×3)
γW

(3×dW )

More on this Relevance Test Understanding U
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Test relevance of Z for A (given U)
1. Obtain residuals given covariates X : vA, vZ̃ , vÛZ

.
2. Regress vA on vZ̃ and vÛZ

in local linear regression.

vA = vZ̃ ζ̃(X ) + vÛZ
γ̃A(X ) + wA (14)

3. Test significance of ζ̃(X ): All significant here.

More on this Relevance Test Understanding U
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Conditional Exogeneity of Z

I Cond. IV exogeneity:
E
[
εY |Z ,U,X

]
= 0.

I Exogeneity of Z given U cannot be tested.

I Pre-college GPA Z does not directly affect post-college
earnings.

I ÛZ accounts for ability (U) confounding.
I Covariates:

I College GPA
I family net worth, net worth at 20
I parental education, maternal age at first/subject’s birth, #

siblings
I sex, citizenship status based on birth, residence region, urban

residence (at 13-17 and 31-35)

Instrumented Common Confounding EEA ESEM 2022 16 / 22



Setup References Linear ICC Identification Returns to Education Conclusion

Conditional Exogeneity of Z

I Cond. IV exogeneity:
E
[
εY |Z ,U,X

]
= 0.

I Exogeneity of Z given U cannot be tested.
I Pre-college GPA Z does not directly affect post-college

earnings.
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Histograms of Estimates

1. Baseline assumes exogeneity of A
2. NC estimates slightly below baseline

I indicates small positive ability bias
I omits selection bias

3. IV estimates much larger than baseline
I indicates negative selection bias
I omits ability bias

4. ICC estimates much larger than baseline but slightly below IV
I indicates that selection bias was most relevant bias
I ability bias has minor role
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ICC Estimates with 90% Confidence Interval

I ICC estimates positive at significance level α = 5% for 72% of
individuals in sample

I ICC SEs about 54% wider than standard IV.
I ICC estimates larger for individuals with

I ordinarily high college GPA,
I less affluent/educated family background.

More on Example CIs compared to IV
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Other Use Cases

I Nonlinear (dynamic) panel data models
I Mismeasured observed confounders in IV
I Other microeconomic/medical causal inference problems
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Conclusion

I Connects IV and negative control for a novel identification
approach.

I Identifies causal effects with partially endogenous instruments.
I Economically and statistically significant results in the returns

to education problem.
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Next steps

I Generalise assumptions in nonparametric model to allow for
A 6⊥⊥W | U (using index sufficiency).

I Integrate returns to education application more with existing
literature/estimates (MTE).

I Software
I Apply ICC to other causal questions.
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Thank You

arXiv:2206.12919
ct493@cam.ac.uk
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NC

Figure: DAG of a NC model

U

A YZ W

A2-NC

A3-NC

A4

Assumption 7.1 (NC Model)
1. Consistency: Y = Y (A,Z ),

W = W (A,Z ).
2. NC action:

(Y ,W ) ⊥⊥ Z | (A,U); and
E
[
q0(A,Z )|A,U

]
= 1

f (A|U) for
some q0(A,U) ∈ L2(A,U).

3. Latent unconfoundedness:
(Y (a),W ) ⊥⊥ (A,Z ) | U, ∀a

4. NC outcomes:
W ⊥⊥ (Z ,A) | U; and
E
[
h0(A,W )|A,U

]
= k0(A,U)

for some h0(A,W ) ∈ L2(A,W ).
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ICC construction algorithm
1. Separate all confounders into U and Ũ, such that

Z ⊥⊥ Ũ | U.

2. Include in U any unobserved variables necessary to justify

(A,Z ) ⊥⊥W | U.

3. Check completeness of W wrt U given A, i.e.

E
[
g(A,U)|A,W

]
= 0 only when g(A,U) = 0 for any g ∈ L2(A,U).

4. Check completeness of Z wrt (A,U), i.e.

E
[
g(A,U)|Z

]
= 0 only when g(A,U) = 0 for any g ∈ L2(A,U).
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Proof of Lemma 4.0.1.
Let TA(x) :=

∫
A x(a′)π(a′) dµA(a′).

J = E
[∫

A
Y (a′)π(a′) dµA(a′)

]
= E

[∫
A

(
k0(a′,U) + εY

)
π(a′) dµA(a′)

]
= E

[
TA

(
k0(a′,U) + E

[
εY |A = a′,U

])]
= E

[
TA

(
k0(a′,U) + E

[
εY |U

])]
= E

[
TA

(
k0(a′,U) + E

[
E
[
εY |Z ,U

]
|U
])]

= E
[
TA
(
k0(a′,U)

)]
= E

[(∫
A

k0(a′,U)π(a′) dµA(a′)
)]

= E
[
φIV (U; k0)

]
The second line follows as for any change of a in Y (a), εY is unchanged

by definition. The third line follows as E
[
εY |Z ,U

]
= 0.

Back to Lemma 4.0.1
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Proof of lemma 4.0.2.

E
[∫

A
h0(a,W )π(a) dµA(a)

]
= E

[
E
[∫

A
h0(a,W )π(a) dµA(a)|U

]]

= E

[
E
[∫

A
h0(a,W )π(a) dµA(a)|A = a,U

]]

= E
[∫

A
E
[
h0(a,W )|A = a,U

]
π(a) dµA(a)

]
= E

[∫
A

k0(a,U)π(a) dµA(a)
]

= E
[
φIV (U; k0)

]
= J

From line one to two we used W ⊥⊥ A | U (A1.3.4). From line three to
four we used the definition of H0, where h0 ∈ H0. On the last line we
used lemma 4.0.1.

Back to Lemma 4.0.2
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Proof of lemma 4.0.3.
Any h0 ∈ H0 satisfies

E
[
k0(A,U)− h0(A,W )|A,U,Z

]
= E

[
k0(A,U)− h0(A,W )|A,U

]
= 0.

The first equality holds by (W ,Y ) ⊥⊥ Z |A,U. Consequently,

E
[
Y − h0(A,W )|Z

]
= E

[
E
[
k0(A,U)− h0(A,W )|U,Z

]
|Z
]

+ E
[
E
[
ε|U,Z

]
|Z
]

= E
[
E
[
k0(A,U)− h0(A,W )|U,Z

]
|Z
]

= E
[
k0(A,U)− h0(A,W )|Z

]
= E

[
E
[
k0(A,U)− h0(A,W )|A,U,Z

]
|Z
]

= E
[
E
[
k0(A,U)− h0(A,W )|A,U

]
|Z
]

= E
[
0|Z
]

= 0

This proves that equation 4 of lemma 4.0.3 holds.
Back to Lemma 4.0.3
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Proof of lemma 4.0.4.
For any h0 ∈ Hobs

0 ,

E
[
Y − h0(A,W )|Z

]
= E

[
k0(A,U)− h0(A,W )|Z

]
= E

[
E
[
k0(A,U)− h0(A,W )|A,U

]
|Z
]

= 0.

Under completeness A1.3.3, the above can only be true if
E
[
k0(A,U)− h0(A,W )|A,U

]
= 0. Hence, any h0 ∈ Hobs

0 also satisfies
h0 ∈ H0, which implies Hobs

0 ⊆ H0. From lemma 4.0.3 it is known that
H0 ⊆ Hobs

0 . Consequently, Hobs
0 = H0.

Back to Lemma 4.0.4
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Proof of theorem 4.1.
Identification of φ̃IV . For any h0 ∈ Hobs

0 = H0,

E
[
φ̃IV (W ; h0)

]
= E

[∫
A

h0(a,W )π(a) dµA(a)
]

= E
[∫
A
E
[
h(a,W )|A = a,U

]
π(a) dµA(a)

]
= E

[∫
A

k0(a,U)π(a) dµA(a)
]

= E
[
φIV (U; k0)

]
= J

We move from the first to the second equation by assumption
W ⊥⊥ (A,Z ) | U of 1.3. The step from the second to the third line is by
lemma 4.0.4 and 1.3.4. The last line holds by lemma 4.0.1.

Back to Theorem 4.1
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Option 2: Strict Monotonicity in First Stage

Assumption 9.1 (Strict Monotonicity)

A = h(Z ,m(U, η)) (15)

1. The reduced form h(Z ,m) is strictly monotonic in m with
probability 1,

2. m(U, t) is strictly monotonic in t with probability 1,
3. and η is a continuously distributed scalar with a CDF that is

strictly increasing on the support of η (conditional on U).
4. η and Z are independent (conditional on U).
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With Option 2: Enhanced Negative Control Information

Assumption 9.2 (Enhanced Negative Control Information)
1. Reduced form NC instrument: A ⊥⊥W0|(Z ,U).

There exists a bridge function κ0 ∈ L2(Z ,W0) such that

E
[
κ0(Z ,W0)|Z ,W1,U

]
= f (U)

f (U|Z ) . (16)

2. Reduced form NC action: W1 ⊥⊥ Z |U.
There exists a bridge function τA,0 ∈ L2(Z ,W ) for all A ∈ A
such that

E
[
τA,0(Z ,W1)|Z ,W0,U

]
= F (A|Z ,U). (17)
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Control Bridge

V := FA|Z ,U(A,Z ,U) = Fη(η)

The control bridge Ṽ contains information about first stage
disturbance η.

Ṽ :=
∫
U

FA|Z ,U(A,Z , u) dF (u)

=
∫
U

Pr
(
h(Z ,m(u, η)) ≤ A

)
dF (u)

=
∫
U

Pr
(
η ≤ m−1

(
h−1(A,Z ), u

))
dF (u)

=
∫
U

Fη|U
(

m−1
(
h−1(A,Z ), u

))
dF (u)

=
∫
U

Fη|U
(
η(u)

)
dF (u)
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Information Equivalence with Control Bridge

Lemma 9.0.1
Suppose 9.1 holds. Then,

σ(Ṽ ,U) = σ(V ,U) = σ(η,U).

ū
0

1

U

Fη|U(η)

m0
m1
m2

Fη|U
(
m−1(m2, ū)

)

Fη|U
(
m−1(m1, ū)

)
Fη|U

(
m−1(m0, ū)

)
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First Stage Bridge Functions
First stage brige functions:

T0 =
{
τA ∈ L2(Z ,W1) : E

[
τA(Z ,W1)|Z ,U,W0

]
= F (A|Z ,U)

}
6= ∅,

K0 =
{
κ ∈ L2(Z ,W0) : E

[
κ(Z ,W0)|Z ,U,W1

]
= f (U)

f (U|Z )

}
6= ∅.

Lemma 9.0.2
Under A1.3 (ICC), A9.1 and A9.2, any τA,0 ∈ T0 and κ0 ∈ K0
satisfy that

E
[
τA,0(Z ,W1)|Z ,W0

]
= F (A|Z ,W0). (18)

E
[
κ0(Z ,W0)|Z ,W1

]
= f (W1)

f (W1|Z ) . (19)
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Observed 1st Stage Bridge Functions

Lemma 9.0.3
Under A1.3, A9.1 and A9.2, any τA,0 ∈ T0 and κ0 ∈ K0 satisfy that

E
[
τA,0(Z ,W1)|Z ,W0

]
= F (A|Z ,W0). (20)

E
[
κ0(Z ,W0)|Z ,W1

]
= f (W1)

f (W1|Z ) . (21)

Sets of observable bridge functions:

E
[
τA,0(Z ,W1)|Z ,W0

]
= F (A|Z ,W0). (22)

E
[
κ0(Z ,W0)|Z ,W1

]
= f (W1)

f (W1|Z ) . (23)
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1st Stage Identification with Observed Bridge Functions

Lemma 9.0.4
Suppose A1.3, A9.1 and A9.2 hold.
It follows that for any τA ∈ L2(Z ,W1) and κ0 ∈ Kobs

0 ,∫
W1
τA(Z ,W1) dF (W1)− Ṽ

= E
[
κ0(Z ,W0)E

[
τA(Z ,W1)− F (A|Z ,W0)|Z ,W0

]
|Z
]
.

Hence, for any τA ∈ Tobs
0 as long as Kobs

0 6= ∅,

Ṽ =
∫
W1

τA(Z ,W1) dF (W1).
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Main step of both proofs for IPW and REG estimators, which
requires E

[∫
A E

[
Y |A = a, Ṽ ,U

]
π(a) dµA(a)

]
=

E
[∫
A E

[
Y |A = a,V ,U

]
π(a) dµ(a)

]
.

E
[∫

A
E
[
Y |A = a, Ṽ ,U

]
π(a) dµA(a)

]
= E

[∫
A

∫
V
E
[
Y |A = a, v , Ṽ ,U

]
f (v |A = a, Ṽ ,U) dµV (v)π(a) dµA(a)

]
= E

[∫
A

∫
V
E
[
Y |A = a, v ,U

]
f (v |Ṽ ,U) dµV (v)π(a) dµA(a)

]
= E

[∫
V

∫
A
E
[
Y |A = a, v ,U

]
π(a) dµA(a)

(∫
Ṽ

f (v |ṽ ,U)f (ṽ |U) dµA(ṽ)
)

dµV (v)

]

= E
[∫

V

∫
A
E
[
Y |A = a, v ,U

]
π(a) dµA(a)f (v |U) dµV (v)

]
= E

[∫
A
E
[
Y |A = a,V ,U

]
π(a) dµA(a)

]
The third equality follows from Lemma 9.0.1.
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Proof of equation 22. For any τA,0 ∈ T0,

E
[
τA,0(Z ,W1)|Z ,U,W0

]
= F (A|Z ,U)

E
[
E
[
τA,0(Z ,W1)|Z ,U,W0

]
|Z ,W0

]
= E

[
F (A|Z ,U)|Z ,W0

]
E
[
τA,0(Z ,W1)|Z ,W0

]
= F (A|Z ,W0).

We move from the second to third equation by assumption
A ⊥⊥W0 | (Z ,U) of 9.2.
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Proof of equation 23. For any κ0 ∈ K0,

E
[
κ0(Z ,W0)|Z ,U,W1

]
=

f (U)
f (U|Z)

E
[
E
[
κ0(Z ,W0)|Z ,U,W1

]
|Z ,W1

]
= E

[
f (U)

f (U|Z)
|Z ,W1

]
E
[
E
[
κ0(Z ,W0)|Z ,U,W1

]
|Z ,W1

]
= f (Z)E

[
1

f (Z |U)
|Z ,W1

]
E
[
κ0(Z ,W0)|Z ,W1

]
= f (Z)

∫
U

f (U|W1,Z)
f (Z |U)

dµU (U)

= f (Z)
∫

U

f (W1,Z |U)f (U)
f (Z |U)f (W1,Z)

dµU (U)

= f (Z)
∫

U

f (W1|U)f (U)
f (W1,Z)

dµU (U)

=
f (Z)

f (Z |W1)
=

f (W1)
f (W1|Z)

We move from the fifth to the sixth equation by assumption
W1 ⊥⊥ Z | U of 9.2.
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Proof of Lemma 9.0.4 I

First, note that for any τA,0 ∈ T0,

F (A|Z ,U) = E
[
τA,0(Z ,W1)|Z ,U,W0

]
= E

[
τA,0(Z ,W1)|Z ,U

]
=
∫
W1

τA,0(Z ,W1) dF (W1|U)

Ṽ =
∫
U

F (A|Z ,U) dF (U) =
∫
W1

τA,0(Z ,W1) dF (W1)

We move from the second to the third line by assumption Z ⊥⊥W1 | U
of 9.2.
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Proof of Lemma 9.0.4 II

Now, note that for any τA ∈ L2(Z ,W1) and κ0 ∈ Kobs
0 ,

E
[
κ0(Z ,W0)τA(Z ,W1)|Z

]
= E

[
E
[
κ0(Z ,W0)τA(Z ,W1)|Z ,W1

]
|Z
]

= E
[
E
[
κ0(Z ,W0)|Z ,W1

]
τA(Z ,W1)|Z

]
= E

[
f (W1)

f (W1|Z )τA(Z ,W1)|Z
]

=
∫
W1

f (W1)
f (W1|Z )τA(Z ,W1) dF (W1|Z )

=
∫
W1

τA(Z ,W1) dF (W1)
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Proof of Lemma 9.0.4 III

For any τA ∈ L2(Z ,W1) and κ0 ∈ Kobs
0 , we write∫

W1

τA(Z ,W1) dF (W1) = E
[
κ0(Z ,W0)τA(Z ,W1)|Z

]
= E

[
κ0(Z ,W0)E

[
τA(Z ,W1)|Z ,W0

]
|Z
]
.

For any τA,0 ∈ T0 and κ0 ∈ Kobs
0 , we write

Ṽ =
∫
W1

τA,0(Z ,W1) dF (W1)

= E
[
κ0(Z ,W0)τA,0(Z ,W1)|Z

]
= E

[
κ0(Z ,W0)E

[
τA,0(Z ,W1)|Z ,W0

]
|Z
]

= E
[
κ0(Z ,W0)F (A|Z ,W0)|Z

]
.
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Proof of Lemma 9.0.4 IV

Now this implies that for any τA ∈ L2(Z ,W1),∫
W1

τA(Z ,W1) dF (W1)− Ṽ = E
[
κ0(Z ,W0)E

[
τA(Z ,W1)− F (A|Z ,W0)|Z ,W0

]
|Z
]
.

Hence, for any τA ∈ Tobs
0 as long as Kobs

0 6= ∅,

Ṽ =
∫
W1

τA(Z ,W1) dF (W1).
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Test relevance of Z and W for U

I Let r0 := rank
(
γ̃ᵀZ ΣUγW

)
and mZW = min {dZ , dW }.

I Then r0 = min {dU , dZ , dW } ≤ mZW .
I If r0 < mZW , then dU = r0 < min mZW .
I Test

H0 : r0 ≤ r vs H1 : r0 > r (24)

for some r < mZW .
I If H0 not rejected, this suggets r0 ≤ r .
I Bootstrap based test [Chen and Fang, 2019]

Back to Relevance Test of Z and W for U Back to ICC CIs
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Test relevance of Z and W for U
I Let cWZ := γ̃ᵀZ ΣUγW .
I Singular value decomposition:

cWZ = P0
dZ×dZ

Π0
dZ×dW

Qᵀ
0

dW×dW

(25)

I Let φr (A) := ∑mA
j=r+1 π

2
j (A)

I πj(A) is the j-th singular value of A.
I mA := min

{
dA,row , dA,col

}
I Equivalent test to 24:

H0 : φr (cWZ ) = 0 vs H1 : φr (cWZ ) > 0 (26)

I πj(A) is the j-th singular value of A.
I mA := min

{
dA,row , dA,col

}
.

Back to Relevance Test of Z and W for U Back to ICC CIs
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More Setup Proofs First Stage Monotonicity Proofs II More on Example References

Test relevance of Z and W for U

I Test statistic distribution:

nφr (ĉWZ ) d→
mZW−r0∑

j=r−r0+1
π2

j

(
Pᵀ

0,2MQ0,2
)
, (27)

I P0,2 corresponds to last mZW − r columns of P0.
I Q0,2 corresponds to last mZW − r columns of Q0.
I M is asymptotic distribution of ĉWZ : √n (ĉWZ − cWZ ) d→M.

I Bootstrap: est. M as distribution M̂∗n = √n{ĉ∗WZ ,n− ĉWZ ,n}
I ĉ∗WZ ,n is distr. of bootstrap sample OLS estimators ĉWZ ,n,b.
I b ∈ B is one bootstrap sample.

Back to Relevance Test of Z and W for U Back to ICC CIs

Instrumented Common Confounding EEA ESEM 2022 25 / 34



More Setup Proofs First Stage Monotonicity Proofs II More on Example References

Understanding U

I ÛZ explains unobserved characteristics that correlate
pre-college GPA Z and risky behaviour W .

Û0,Z Academic - general ability
I less likely to engage in risky behaviour (4-10%)

Û1,Z General ability:
I less likely to engage in risky behaviour (2-8%)

Û2,Z Math/social sciences - English ability, & general ability:
I ambiguous effect on risky behaviour ((-2)-2%)

Back to Relevance Test of Z and W for U Back to Relevance Test of Z for A (given U)

Estimates of P0,1Π0,1 Back to ICC CIs
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Construct Ê
[
U |Z

]
I Let

ÛZ := Ê
[
U|Z

]
= Z

n×dZ
P0,1
dZ×r

Π0,1
r×r

(28)

I P0,1 corresponds to first r = 3 columns of P0.
I Π0,1 corresponds to first r = 3 rows and columns of Π0.
I U is normalised in scale as in SVD

I Want to understand and interpret ÛZ to later support the
theoretical argument about IV conditional exogeneity in
assumption 5.1.2 10

Back to Relevance Test of Z and W for U Back to Relevance Test of Z for A (given U)

Back to ICC CIs
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Test relevance of Z for A (given U) II

I One SD increase in instrument Z̃ increases probability of
obtaining BA degree by roughly 6-12%.

I Lower bound of 90% CI has minimum 5%.
I Reject H0 : ζ̃(x) = 0 for any x ∈ X .
I Assumption 5.1.2 equation 11 (conditional relevance of Z for

A given U) holds.
I Common confounders make obtaining BA degree more likely.

Back to Relevance Test of Z for A (given U)
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Estimating E
[
U |Z

]

I E
[
U|Z

]
= ZP0,1Π0,1

I Normalisation
I Z̄j = 0, σ(Zj) = 1, for all j ∈ {0, 1, . . . , 7}
I ¯̂Uk,Z = 0, σ(Ûk,Z ) = 1, for all k ∈ {0, 1, 2}

I Estimated ̂P0,1Π0,1
ᵀ

GPA ASVAB
school transcript English Math SocSci LifeSci percentile

Û0,Z 0.05 1.53 -0.10 -0.14 -0.09 -0.15 -0.46
Û1,Z 0.33 1.84 -0.30 -0.56 -0.24 -0.50 0.34
Û2,Z -0.42 0.31 -0.87 0.29 0.31 -0.13 0.79

Back to Understanding U Back to ICC CIs
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Estimating Q0,1

I E
[
W |Z

]
= ZP0,1Π0,1Q0,1 = E

[
U|Z

]
Q0,1

I W ∈ {0, 1}
I Estimated Q0,1

try run attack sell destroy steal steal
drink smoke marijuana away someone drugs property < 50$ > 50$

Û0,Z -0.06 -0.10 -0.11 -0.06 -0.10 -0.07 -0.08 -0.08 -0.05
Û1,Z -0.02 -0.06 -0.07 -0.06 -0.09 -0.05 -0.06 -0.04 -0.05
Û2,Z 0.01 -0.01 -0.01 -0.03 -0.04 0.00 0.02 0.02 -0.01

Back to Understanding U Back to ICC CIs
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ICC vs IV Estimates with 90% Confidence Interval

I ICC confidence intervals on average 54% wider than IV
Back to ICC CIs
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