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1 Introduction

What is the right price to set? This is a non-trivial question if sellers do not have perfect in-
formation on market conditions before committing to a price. However, some information is
publicly available e.g., due to data releases by statistical agencies, media reports, or industry
analyses. The precision of such public information can vary, be it because of policy announce-
ments or aggregate uncertainty shocks. In this paper, we study the social value of public in-
formation about market conditions in decentralised markets with frictional trade. To this end,
we integrate two literatures: on public information, and competitive search with information
frictions. Then, we characterize the novel features of equilibria that arise.

In many markets, the exact market conditions may be unknown to market participants. For
example, an employer may not know the size of the pool of job applicants that are relevant for
its positions or the seller of a house how many people are interested in buying such a house. A
restaurateur may not know how much people are willing to pay for a dinner after a lengthy clo-
sure of the restaurant and the producer of a novelty product how highly the product is valued.
The employer and house owner can get some relevant information from governmental reports
on the state of the aggregate labour and financial markets. The restaurateur and producer can
learn about the consumers’ valuations from industry analyses and media reports.

To the best of our knowledge, our paper is the first to introduce uncertainty about aggre-
gate state into the study of competitive search markets. We show that more precise public
information can have negative, positive, or no effect on welfare in competitive search markets
with aggregate uncertainty. And, in fact, welfare can be higher in a market with more dis-
persed prices than a market with less price dispersion. The paper also demonstrates that the
effects of aggregate uncertainty in such markets are fundamentally different than the effects
of individual-level uncertainty (see, for example, Guerrieri, Shimer, and Wright, 2010, Moen
and Rosén, 2011, Delacroix and Shi, 2013, Julien and Roger, 2019, Mayr-Dorn, 2020). First, our
model can generate price dispersion even in the absence of individual-level heterogeneity. Sec-
ond, the model generates market freezes (i.e., situations where, beyond matching frictions, not
all trade opportunities are realised) even if gains from trade are positive between all agents on
the two sides of the market.

We consider an economy where an indivisible good is traded, there is a fixed population
of sellers and two possible states of demand, high or low. Before sellers post a price with
commitment, they receive a public signal about the state. The signal outcome is either good
or bad, pointing to the high or low demand state respectively. Then buyers direct their search
towards sellers if doing so is better than not searching at all. Meetings between buyers and
sellers are bilateral. Searching buyers take into account the posted prices and the likelihood of
trade. If buyers search, they end up indifferent between meeting with any seller in equilibrium.

We then evaluate the effects of a more informative signal on the expected value of trades
and find that the marginal effects of information are ambiguous. We also find that imperfect
information on aggregate risk can overturn the standard efficiency properties of equilibria
under competitive search. This is because the sellers’ incentives are shaped by competition in
not one, but two demand states. In particular, there exist prices which are not acceptable to
buyers in one of the states of the world. This leads to non-concave and potentially bi-modal
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expected profit functions. These features of the profit functions complicate the analysis of the
model considerably and open the door for mixing over prices.

To begin with, we show that there are two distinct pricing rules when information is im-
perfect. First, the sellers can try to kill two birds (demand states) with one stone (price), setting
a price low enough to be accepted by buyers in each state of demand. We refer to this as pricing
for both states. Second, they can post a higher price that caters the high-demand state, aban-
doning any prospects of selling the good when the demand is low. We call this pricing for the
high state only. Which of the two rules is chosen by the sellers in equilibrium depends on the
realisation of the signal and its precision, and the relative appeal of the two demand states for
the sellers. The sellers can also be indifferent between the two pricing rules and randomize
over prices.

In a competitive search equilibrium, the market prices both the good and the likelihood
of a trade taking place. When information is perfect, the optimal price satisfies the Hosios
condition - sellers get a fraction of the surplus which is equal to the elasticity of the purchase
probability, the Hosios share. Thus, two components determine the optimal price: the like-
lihood of selling the good and the size of the surplus created by trade. We refer to these as
tightness and surplus risk, respectively. To isolate their effects, we assume that in the high-
demand state either only the buyers’ population or their valuation of the good is larger than
in the low-demand state, while the other characteristics of the market are constant.

We find that under tightness risk, if information is imperfect, all single-price equilibria
feature pricing for both states. In particular, no equilibrium exists where all sellers price for
the high state only because buyers have the same valuation of the good in the two states.
Consider such a hypothetical equilibrium. Although sellers aim to sell only in the high state,
the optimal price is also acceptable to buyers in the low state, because the price cannot exceed
their valuation.

Under tightness risk, equilibria where sellers mix between pricing for both states and pric-
ing for the high state only also exist. This happens when the buyers’ populations are different
enough to encourage some sellers to gamble and target the high state only. However, the more
sellers follow this strategy, the more profitable it is to target both states. As a result of this
stabilising effect, such mixed equilibria exist for a non-degenerate set of signal precisions.

Information can have all three possible effects on trade under tightness risk: positive, nil,
or negative. Information is irrelevant if before and after the change in the signal precision the
market is in a single-price equilibrium. If sellers set the same price, the selling probabilities
are identical and constant across all sellers in each demand state. Information can be either
detrimental to or good for trade because equilibria exist where some sellers mix over two
prices. Price dispersion that ensues due to sellers’ mixing induces different selling probabilities
across sellers. This, in turn, is inefficient because the selling probability is concave in the buyer-
seller ratio and the good is homogeneous.

Increases in information precision have two effects on the existence of equilibria with price
dispersion. First, more precise information can trigger these inefficient equilibria if, by chang-
ing the relative profitability of the two states, it makes pricing for the high state only profitable
for sellers. We refer to this as the price competition effect. Second, better information can undo
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such equilibria because sellers better align their pricing with the true state of demand when
information becomes more precise. Hence, information also has a revealing effect.

We show that for large differences in the two states, the expected value of trades monoton-
ically increases in the signal precision. If the states are very different and information becomes
precise enough, uninformed sellers mix in equilibrium while imperfectly informed sellers post
a single price. In particular, each type of sellers becomes convinced that the true state is the
one indicated by the signal outcome and chooses a single price that serves that state better.
For intermediate differences between the two states, however, the effects of increasing the sig-
nal precision are non-monotone. If, for example, all uninformed sellers are just indifferent
between mixing and not mixing, an increase in the signal precision initially leads one type of
sellers to mix. A further increase in the signal precision, however, induces them to switch back
to pricing for both states.

Under surplus risk, all types of equilibria and effects of information that we have discov-
ered under tightness risk are also present. However, there is also a difference to tightness risk.
In particular, if the difference between the surpluses in the two demand states is large, single-
price equilibria exist where uninformed sellers price for the high state only and the posted
price is above the buyers’ low-state valuation of the good. In these equilibria, buyers do not
search in the low-demand state at all, leading to a market freeze. When sellers abandon the
prospects of selling in the low-demand state, increases in signal precision eventually increase
welfare, even though they may lead to an increase in price dispersion for intermediate preci-
sions of information. Price dispersion can be, thus, a feature of more efficient equilibria, because
there is a trade-off between price dispersion and the volume of trade in the low-demand state.

We then extend the model and study the efficiency of equilibrium entry. A benevolent so-
cial planner never chooses an equilibrium with price dispersion. Nevertheless, even equilibria
with entry and a single price are generically inefficient. This is because a seller benefits from
the effect of imperfect information on pricing decisions of the other sellers in the low state:
the equilibrium price is higher than under perfect information. But a seller is worse off under
imperfect information in the high state, since the equilibrium price is lower than under per-
fect information. Competition for buyers is fiercer in the low demand state which limits the
benefits of imperfect information in the low state. In total, the negative effect dominates the
positive effect and entry is inefficiently low.

Finally, we extend the model to allow sellers to post a menu of lotteries, pairs of prices and
probabilities of obtaining the good, instead of a single price. Under tightness risk, lotteries do
not improve upon the single price. The reason is that buyers in the two states have the same
marginal willingness to pay for an increase in the probability of obtaining the good so the
probability cannot be used to screen the two states. Under surplus risk, conversely, sellers can
in general do better by using lotteries than a single price. The sellers can lower the probability
of obtaining the good to below one in the low-state lottery and increase profits. Thus, buyers
are with some probability intentionally not served in the low state so that, as with a single
price, the equilibria under imperfect information can be inefficient.
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Related Literature. The paper is related to papers on the interactions of information and
search frictions, price setting under imperfect information, and the social value of information.

Other search models where agents face information frictions are the most related. Random
search with aggregate risk has been studied by Mauring (2017), Lauermann, Merzyn, and
Virág (2018), and Shneyerov and Wong (2020), whereas we study competitive search. Com-
petitive search models (Moen, 1997) in this vein include Guerrieri, Shimer, and Wright (2010),
Moen and Rosén (2011), Delacroix and Shi (2013), Julien and Roger (2019), and Mayr-Dorn
(2020). These papers study match- or individual-specific uncertainty whereas we study ag-
gregate uncertainty. Our paper generates several novel insights with respect to this literature:
the model generates price dispersion in the absence of individual-level heterogeneity (under
tightness risk) and rationalises a new market failure, market freezes.

The importance of imperfect information on market conditions for price setting with com-
mitment has been studied in a model of a single monopolist facing changing demand in Keller
and Rady (1999) and in monopolistic competition models featuring uncertainty about mone-
tary policy (Mankiw and Reis, 2002, Hellwig and Venkateswaran, 2009, Woodford, 2009). Un-
like in those papers, trade is frictional in our model.

Reductions in signal precision in our model can be thought of as uncertainty shocks. In
a recent paper, Den Haan, Freund, and Rendahl (2021) show that increases in perceived un-
certainty lead to higher unemployment in a labour-market model without free entry. In our
environment greater uncertainty (a decrease in the signal precision) is detrimental to the num-
ber of matches because of its adverse effect on entry. It can also cause further reduction in the
aggregate number of matches if the resulting equilibrium features mixing.

Our model is also related to studies on the role of market transparency in OTC markets
and the causes of market freezes. Regarding the former, we provide theoretical support for the
empirical results of Schultz (2012) who finds that an increase in transparency reduced price
dispersion in the US market for municipal bonds. As for the latter, we show that imperfect
information on aggregate risk can lead to collapse of trade in some states of the world, an
outcome usually due to adverse selection (Guerrieri et al., 2010, Chiu and Koeppl, 2016).

The result that more precise information can be detrimental has been shown in other set-
tings, including a Burdett-Judd-type search model (Lester, Shourideh, Venkateswaran, and
Zetlin-Jones, 2019). In that paper welfare decreases in information if buyers compete fiercely
for sellers and adverse selection is moderate; in our model welfare decreases in information
if it leads to more dispersed prices or no trading in some states. Morris and Shin (2002) have
shown that the provision of public information is detrimental in the presence of strategic com-
plementarity. Lepetyuk and Stoltenberg (2013) demonstrate that releasing public information
on aggregate risk in the presence of idiosyncratic risk is detrimental because it dulls the in-
centives to insure against the latter. In our model, information interacts with search frictions
which leads not only to negative, but also positive effects of information.

The structure of the paper is as follows. In section 2 we set up the model. In section 3 we
discuss optimal pricing in partial equilibrium. Section 4 contains the results on the equilibrium
effects of information on welfare. We consider entry in section 5 and a more general trading
mechanism in section 6. The last section concludes.
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2 Environment

We consider a one-period economy. There is a unit mass of sellers, each has one unit of an
indivisible good to sell.

Aggregate risk. Sellers do not know the aggregate state i which consists of the size of the
population of buyers Bi and their valuation of the good vi. The aggregate state i is one of
two values, pertaining to either high or low demand for the good, i ∈ {H, L} with BH ≥ BL,
vH ≥ vL, and at least one of these inequalities is strict.1 Ex ante, both realisations of the state
are equally likely. We normalize the utility of sellers from keeping the good and of buyers from
not acquiring the good to zero. To purchase the good, buyers produce the seller consumption
good on the spot at a linear cost. Sellers’ utility over this consumption good is linear as well.
Therefore, a trade between a buyer and a seller at a price p yields utility of p to the seller and
vi − p to the buyer.

Signals and timing. Firstly, sellers receive a public signal j ∈ {G, B} about i. We say that
j = G is a good signal, and j = B is a bad signal. We refer to G- and B-sellers, for short. The
good signal points to the state being high and the bad signal to the state being low with prob-
ability µ ∈ [ 1

2 , 1]. Formally, P (j = G|i = H) = P (j = B|i = L) = µ so that Bayes’ law implies
P (i = H|j = G) = P (i = L|j = B) = µ. Therefore, µ = 1/2 corresponds to no information
and µ = 1 to perfect information and we refer to µ as signal precision. Since signals are public,
all sellers receive the same signal. Secondly, given their information set, the sellers post prices
with commitment. Thirdly, buyers observe all prices and learn the state i. Finally, buyers direct
their search towards sellers and buyers who have the chance to buy do so.

Meetings and submarkets. Meetings between buyers and sellers are governed by a matching
function M(B,S). Let x = B/S be the ratio of buyers to sellers; we refer to x as buyer-seller
ratio. A set of sellers posting the same price p and buyers directing their search towards them
constitutes a submarket with buyer-seller ratio x; submarkets are identifiable up to the (x, p)
pair. The probability that a seller meets a buyer is λ(x) and the probability that a buyer meets
a seller is η(x) = λ(x)/x with λ′(x) > 0, λ′′(x) < 0, η′(x) < 0 and η′′(x) > 0. We also require
η(0) = 1 and λ(0) = 0. Furthermore, we define ϕ(x) := −xη′(x)/η(x), the elasticity of a
buyer’s purchasing probability with respect to buyer-seller ratio and call ϕ(x) the Hosios share.
This implies ϕ′(x) ≥ 0 and xλ′(x)/λ(x) = 1 − ϕ(x). Meetings between sellers and buyers are
bilateral. That is, a buyer meets one seller or is unmatched, and similarly for a seller.

Because sellers have imperfect information and in anticipation of novel features of some of
the model’s equilibria, we allow the posting of prices that are not acceptable to buyers in some
states of demand. Hence, we permit the buyers not to engage in search and get utility zero as
a result. The sellers take this into consideration which gives rise to the following definition.

Definition 1 (Active and inactive submarkets). A submarket indexed with (x, p) is active when
x > 0 and inactive when x = 0.

1 Our results generalise to a setting with N distinct states.
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Profit maximisation. We adopt the market utility approach. The sellers that receive signal j
compete against expected utility V j

i ≥ 0 that buyers get in state i. Given the signal, j-sellers
post a price to maximise expected profits π j(p):

max
p

π j(p) :=
[
P (i = H|j) λ(xj

H) + (1 − P (i = H|j)) λ(xj
L)
]

p, (1)

s. t. xj
i

[
η(xj

i) (vi − p)− V j
i

]
= 0 and xj

i ≥ 0 for i ∈ {H, L} , j ∈ {G, B} , (2)

with xG
L = xB

H = 0 when µ = 1.

Sellers choose to either deliver the market utility to the buyers (which then pins down the
buyer-seller ratio xj

i > 0), or settle for an inactive submarket. This happens when the price is
such that no buyer-seller ratio delivers the market utility for buyers. This is reflected in the
multiplication of the market utility constraint by the corresponding buyer-seller ratio in (2).

Equilibrium. We focus on symmetric Nash equilibria where each agent chooses their optimal
strategy taking as given the strategies of all other agents. As we show in section 3, the solution
to the optimisation problem of (1) subject to (2) need not be unique. Hence, we have to consider
j-sellers mixing over up to K j prices pj,k with probabilities κ j,k, for 1 ≤ k ≤ K j. These prices
then imply buyer-seller ratios xj,k

i ≥ 0 in equilibrium.
The expected utility V j,k

i of a buyer in state i who wishes to purchase the good in a submar-
ket indexed with price pj,k and buyer-seller ratio xj,k

i is:

V j,k
i = η(xj,k

i )
(

vi − pj,k
)

. (3)

As buyers can abstain from searching, only submarkets with V j,k
i ≥ 0 can be active (we assume

as a tie-breaking rule that buyers search when it brings the same expected utility as not search-
ing). A buyer’s strategy is a mapping from the sellers’ prices to the probabilities with which
to visit each type of seller, taking as given the strategies of other buyers and of sellers. Di-
rected search yields that the market utilities that the sellers take as given satisfy the following
conditions in equilibrium:

V j
i = max

k∈I j
i

V j,k
i = min

k∈I j
i

V j,k
i if I j

i ̸= ∅ and 0 otherwise, (4)

where I j
i =

{
k : xj,k

i > 0
}

is the set of indices of active submarkets in state i when the signal is
j. In case there are active submarkets, buyers are indifferent among them. If there are no active
submarkets in state i, then buyers get V j

i = 0. This happens when minj,k pj,k > vi in state i.
The resulting buyer-seller ratios must be consistent with the total measures of sellers and

buyers in each state. The adding-up constraints are:

K j

∑
k

κ j,kxj,k
i = 1

j
iBi, (5)

where 1j
i = 1 if I j

i ̸= ∅ and 1
j
i = 0 otherwise.
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As there are two possible realisations of the signal in each state as long as µ ̸= 1, condition
(5) amounts to up to four constraints. We are now in a position to define the equilibrium of
this model.

Definition 2 (Equilibrium). A tuple
({

κ j,k, xj,k
i , pj,k

}K j

k=1
, V j

i

)
is an equilibrium for exogenous

parameters Θ = (vi,Bi), i ∈ {H, L}, and signal precision µ if for each j ∈ {G, B}:

1. given market utilities V j
i , a tuple

{
xj,k

i , pj,k
}

solves (1) and (2) for each k,

2. market utilities satisfy (3) and (4) given
{

xj,k
i , pj,k

}K j

k=1
,

3. buyer-seller ratios and probability weights
{

xj,k
i , κ j,k

}K j

k=1
are consistent with (5).

We evaluate the effect of changes in the signal precision µ via its impact on the ex-ante
expected value of surplus generated by trades:

W(Θ, µ) :=
1
2

(
µ

KG

∑
k=1

κG,kλ(xG,k
H ) + (1 − µ)

KB

∑
k=1

κB,kλ(xB,k
H )

)
vH

+
1
2

(
µ

KB

∑
k=1

κB,kλ(xB,k
L ) + (1 − µ)

KG

∑
k=1

κG,kλ(xG,k
L )

)
vL =

1
2

WH(Θ, µ) +
1
2

WL(Θ, µ).

The expected surplus generated by trades is, therefore, an average of surpluses created in each
state of demand. Finally, we refer to equilibria where all j-sellers post the same price as pure-
strategy equilibria (PSE) and to equilibria where j-sellers post different prices as mixed-strategy
equilibria (MSE).

3 Pricing

As an intermediate step, in this section we investigate the properties of expected profits and
the optimal pricing decisions in partial equilibrium. We show that sellers mix over a maxi-
mum of two prices (Corollary 1) and derive the partial equilibrium prices both under perfect
information (Lemma 1) and imperfect information (Theorems 1 and 2).

In the partial equilibrium, we fix the market utilities of buyers and study the profit max-
imisation problem. In doing so, we shut down the equilibrium feedback that goes from the
composition of the pool of sellers and their pricing decisions to the market utilities of buyers.
In equilibrium, the market utilities of buyers would depend on the realisation of the signal,
which would affect the pricing decisions of sellers. The prices in turn would then differ across
signals, which would affect the market utilities of buyers etc. To isolate the effects of informa-
tion precision on optimal prices, we must compare the prices posted by the B- and G-sellers. To
make this comparison feasible, we maintain the following simplifying assumption throughout
this section.

Assumption 1 (Partial equilibrium). Let V j
i = Vi, fixed ∀µ ∈

[ 1
2 , 1
]

and 0 < Vi < vi for i ∈ {H, L}
and j ∈ {G, B}.
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Let p̄i(Vi) = vi − Vi be the upper threshold level for a price in state i to attract buyers. For
p > p̄i buyers don’t direct their search towards sellers who post p as doing so yields expected
utility strictly lower than Vi. As the first step, let’s consider a seller who posts a price p with
the full knowledge of the underlying state. The expected profits and optimal prices in state i
are, respectively:

πi(p) =

 λ (x(p)) p and x(p) solves η(x(p))(vi − p) = Vi for 0 ≤ p ≤ p̄i,

0 otherwise,

p∗i (Vi) := arg max πi(p). (6)

Furthermore, we introduce the following assumption on the profit functions.

Assumption 2 (Regularity condition). πi(p) is a twice continuously differentiable and a strictly
concave function of p on [0, p̄i].2 Therefore, p∗i (Vi) are interior on [0, p̄i].

Straightforwardly, πi(p) is continuous in p and differentiable everywhere apart from
p̄i(Vi). Observe that the objective functions of j-sellers given in (1) are convex combinations of
perfect information expected profits in each state with weights determined by the signal they
received:3

πG (p) = µπH(p) + (1 − µ)πL (p) ,

πB (p) = (1 − µ)πH(p) + µπL (p) .

These functions are continuous. They are also strictly concave on [0, mini p̄i(Vi)] and separately
on [mini p̄i(Vi), maxi p̄i(Vi)], but are not strictly concave on [0, maxi p̄i(Vi)]. Hence, there are at
most two local maxima for each π j(p). The two local maxima arise because sellers try to target
two states with one price and lead to the following result.

Corollary 1 (Mixing). If sellers mix in an equilibrium, they mix over two prices.

The rationale for this Corollary is that mixing occurs iff the expected profits have two local
maxima which yield identical expected profits. This result is independent of Assumption 1.

For what follows, it is useful to introduce the following objects:

pj(VL, VH) := arg max π j(p) and π j(VL, VH) := π j(pj),

p̃j(VL, VH) := arg max π j(p) for p ∈
[

0, min
i

p̄i

]
and π̃ j(VL, VH) := π j( p̃j).

For a given signal precision µ and market utilities VH and VL, pj(VL, VH) is the optimal price
and p̃j(VL, VH) is the optimal price that leads to active submarkets in both states. Straightfor-
wardly, pG(VL, VH) tends to pH(VH) and pB(VL, VH) to pL(VL) as µ tends to 1.

2 These functions are strictly concave in buyer-seller ratio x as long as the market utility constraint binds. With-
out our regularity condition, one would have to consider corner solutions; see Wright, Kircher, Julien, and Guerri-
eri (2019) for a discussion. The regularity condition is satisfied whenever we derive results for a specific matching
function (Assumption 5).

3 A remark on notation: we scrap superscript j whenever signals are perfectly informative. Furthermore, if
µ = 1/2, the functions π j(p) are identical and in this case we use superscript N (for no information) instead of j.
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Our ultimate objects of interest are the global profit maximisers, pj(VL, VH). However, as
we show in Theorems 1-2, a necessary step to characterize them is to characterize p̃j(VL, VH)

and p∗i (Vi) because the globally optimal price is going to be one or the other. For the rest of the
derivations in this section, we scrap the dependence of prices on market utilities. Based on the
strict concavity and continuity argument, we can provide the following bounds on the profit
maximising prices.

Corollary 2 (Bounds on pj). Let Assumptions 1 and 2 hold. The profit maximising prices for given
market utilities of buyers are bounded by the corresponding perfect information prices:

min
i

p∗i ≤ pj ≤ max
i

p∗i ∀j ∈ {G, B} . (7)

This follows from the fact that to the left of mini p∗i the expected profits are strictly increas-
ing, and to the right of maxi p∗i , strictly decreasing, regardless of the signal realisation. Next,
we solve for the perfect information prices.

Lemma 1 (Perfect information pricing). Let Assumptions 1 and 2 hold. The solution to the profit
maximisation problem with perfectly informative signals under the market utility constraint in (6) is:

p∗i = ϕ(x∗i )vi, with the buyer-seller ratio x∗i solving η(x∗i ) (1 − ϕ(x∗i )) vi = Vi. (8)

The proof is in Appendix A.1. The pricing rule prescribes that a seller gets a share of the
surplus vi. The share is equal to the elasticity of the selling probability, evaluated at the buyer-
seller ratio consistent with the market utility of buyers, ϕ(x∗i ). The tightness that solves the
market utility constraint is unique, as η(x∗i )(1 − ϕ(x∗i )) is a strictly decreasing function of x∗i ,
which takes values between zero and one, and vi > Vi.

Next, we characterize the constrained profit maximisers p̃j. These are the optimal
prices that imply active submarkets in both states of demand, unlike prices in the range
[mini p̄i, maxi p̄i]. Hence, we refer to the conditions that define them as pricing for both states.

Lemma 2 (Pricing for both states). Let Assumptions 1 and 2 hold. The constrained profit maximisa-
tion on [0, mini p̄i] has either a corner solution p̃j = mini p̄i, which happens only when pj = maxi p∗i ,
or an interior solution. For the interior solution, unique buyer-seller ratios x̃j

i > 0 exist which together
with p̃j jointly solve:

η
(

x̃j
i

) (
vi − p̃j

)
= Vi, i ∈ {H, L} , j ∈ {G, B} ,

µλ(x̃G
H)

[
ϕ(x̃G

H)vH − p̃G

ϕ(x̃G
H) (vH − p̃G)

]
+ (1 − µ)λ(x̃G

L )

[
ϕ(x̃G

L )vL − p̃G

ϕ(x̃G
L ) (vL − p̃G)

]
= 0, (9)

µλ(x̃B
L)

[
ϕ(x̃B

L)vL − p̃B

ϕ(x̃B
L) (vL − p̃B)

]
+ (1 − µ)λ(x̃B

H)

[
ϕ(x̃B

H)vH − p̃B

ϕ(x̃B
H) (vH − p̃B)

]
= 0. (10)

The proof is in Appendix A.2. Intuitively, the sellers in this case try to kill two birds (de-
mand states) with one stone (price). The pricing rules (9) and (10) can be thought of as com-
binations of pricing rules under perfect information. Indeed, equations (9) and (10) imply the
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following bounds on the price p̃j:

max
i

ϕ(x̃j
i)vi ≥ p̃j ≥ min

i
ϕ(x̃j

i)vi.

For fixed buyer-seller ratios, an increase in µ pulls the price p̃j towards the perfect-information
price in the state pointed to by the signal. When µ = 1, the pricing rules (9) and (10) nest the
perfect-information case.

Given the general matching function and the arbitrary choice of VH and VL, to make
progress towards the characterisation of the profit maximising prices, we assume that the two
demand states i and −i can be ranked strictly in terms of their favourability to the sellers.4 That
is, the profit functions can be ranked on the interval bounded by the perfect information profit
maximising prices which, by the virtue of equation (7), contains the imperfect information
profit maximising prices.

Definition 3 (More profitable state). Let Assumptions 1 and 2 hold. State i is more profitable than
state −i when the following inequalities hold: p∗i ≥ p∗−i and πi(p) ≥ π−i(p) on

[
p∗−i, p∗i

]
. State i is

strictly more profitable than state −i when both inequalities are strict.

Based on the perfect information pricing (8) and on strict concavity of the expected profit
function, we can state a sufficient condition for a state i to be more profitable. This condition
requires that in the (strictly) more profitable state, first, the buyers’ share of the trade surplus
is no greater (strictly smaller) than in the other state. Second, that the ratios of market utilities
over the buyers’ valuation of the good are ranked accordingly.

Lemma 3 (Sufficient condition for a state to be more profitable). Let Assumption 1 hold. State i
is (strictly) more profitable if vi ≥ v−i and V−i/v−i ≥ Vi/vi (V−i/v−i > Vi/vi, respectively).

Proof. We provide the proof for the case of state i being strictly more profitable. The two con-
ditions immediately imply, in the light of perfect information pricing (8), that xi > x∗−i and
also p∗i > p∗−i so that πi(p∗i ) > π−i(p∗−i). The market utility constraint in the i-state implies
that xi(p∗−i) > x∗i , hence, πi(p∗−i) > π−i(p∗−i). The last result and the strict concavity of the
profit functions imply that πi(p) > π−i(p) on

[
p∗−i, p∗i

]
as the profit function πi(p) is strictly

increasing, while π−i(p) is decreasing, on this interval.

When a state is strictly more profitable, there are two cases to consider, which we charac-
terise in Theorems 1 and 2. In the first case, neither perfect information optimal price exceeds
mini p̄i, the smaller of the two threshold prices to yield an active submarket, so the expected
profit functions are unimodal. In the second case, maxi pi exceeds mini p̄i and the profits are
bimodal.

To aid building intuition for the working of the model, we assume that the high demand
state is strictly more profitable. Because of that, Theorems 1 and 2 have symmetrical coun-
terparts when the ranking of the states is flipped. We later discuss for each Theorem what
changes if this happens.

Assumption 3 (Ranking of demand states). State H is strictly more profitable.

4 The convention that we use is: a ∈ {b, c} =⇒ −a = {b, c} \ a.
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Observe that when πH(p) > πL(p), πB(p) decreases in µ for a fixed p while the converse
is true for πG(p). Because of that, the profit function for the uninformative signal bounds the
function πG(p) below and πB(p) above at least on the interval bounded by perfect informa-
tion profit maximising prices, which also contains the imperfect information profit maximising
prices.

Theorem 1 (Optimal prices, unimodal profits). Let Assumptions 1, 2 and 3 hold and let also
mini p̄i ≥ p∗H. Then, π j(p) has a unique global maximum for all µ ∈

[ 1
2 , 1
]

and each j. Hence,
mixing over two prices is not optimal and the unique profit maximising prices can be ranked as follows:

p∗H ≥ pG = p̃G ≥ pB = p̃B ≥ p∗L. (11)

Furthermore, p∗H = pG and p∗L = pB iff µ = 1. Also, pG = pB iff µ = 1/2.

The proof is in Appendix A.3. The key take-aways are that under the assumptions of The-
orem 1 the profit functions π j(p) are strictly decreasing on [mini p̄i, maxi p̄i] and the profit
maximising prices of B- and G-sellers are not greater than the lower price threshold for an
active submarket. This means that profit maximizers pj imply positive buyer-seller ratios for
both types of sellers in both states of demand. Next, when µ = 1/2, the profit functions π j(p)
coincide and all sellers post the same price. When signals become increasingly informative,
pG tends to p∗H and pB to p∗L: each price converges to the perfect-information price of the state
indicated by the signal. We illustrate Theorem 1 on the top panel of Figure 1.5

The set of profit maximising prices becomes more complicated in the second case, where
pH > mini p̄i, which implies that mini p̄i = p̄L. The source of complications is that we must
now be concerned with two local maxima of the expected profit functions.

Theorem 2 (Optimal prices, bimodal profits). Let Assumptions 1, 2 and 3 hold and let p∗H > p̄L.
Then, π j(p) has a strict local maximum at p = p∗H, for all µ ∈ [ 1

2 , 1) and each j. Furthermore:

1. if πH(pH)
2 < πN( p̃N), then pB = p̃B for all µ ∈ [ 1

2 , 1] and there is µ̄G such that pG = p̃G for µ ∈
[ 1

2 , µ̄G); when µ = µ̄G, G-sellers mix between posting p∗H and p̃G; and pG = p∗H for µ ∈ (µ̄G, 1];

2. if πH(pH)
2 = πN( p̃N), then B-and G-sellers mix between p∗H and p̃N for µ = 1

2 . When µ > 1
2 ,

G-sellers post pG = p∗H and B-sellers post pB = p̃B;

3. if πH(pH)
2 > πN( p̃N), then pG = p∗H for all µ ∈ [ 1

2 , 1] and there is µ̄B such that pB = p∗H for µ ∈
[ 1

2 , µ̄B); when µ = µ̄B, B-sellers mix between posting p∗H and p̃B; and pB = p̃B for µ ∈ (µ̄B, 1].

The proof is in Appendix A.4. We illustrate this result on the three bottom panels of Figure
1. The key intuition is that the expected profit function of an uninformed seller is now bimodal,
but it converges to the unimodal perfect information expected profit when µ increases.

On the second panel, the profit maximising price for uninformed sellers targets both states.
When µ increases, this remains the case for B-sellers, but there exists a precision level µ̄G which
makes G-sellers indifferent between two prices. Above µ̄G, G-sellers strictly prefer to post p∗H

5 If the low state is strictly uniformly more profitable, then the ranking of prices in (11) is flipped, the no-
information profit is a lower bound for πB(p) and upper bound for πG(p), etc.
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Figure 1: Illustration of Theorems 1 and 2. Expected profits under perfect information (blue -
good signal, black - bad signal) and under no information (grey). Same horizontal scale and
different vertical scales.

which targets only the high-demand state, leading to an inactive submarket in the low-demand
state. On the next panel, the uninformed sellers are indifferent between two prices. When µ is
higher, G-sellers post p∗H and B-sellers price for both states. Finally, on the bottom panel, the
optimal price for an uninformed seller is p∗H and it remains optimal to post this price for G-
sellers when µ is higher. There exists a signal precision µ̄B which makes the B-sellers indifferent
between two prices and above which they optimally post a price that targets both states.

Summing up, there are two main differences to Theorem 1. First, mixing is possible for
some signal precisions. Second, either some or all sellers may settle for posting p∗H which leads
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to inactive submarkets in the L-state.
As we already hinted at when introducing Assumption 3, Theorem 2 can be derived also

for the case when the low-demand state, and not the high-demand state, is more profitable. If
this was the case, then, for example, the counterpart to case 1 in Theorem 2 would prescribe
that the B-sellers always post p∗L and there exists a threshold µ̄G such that for µ ∈

(
µ̄G, 1

]
the

G-sellers post p̃G etc.
Assuming that market utilities are independent of the signal realisation (i.e., V j

i = Vi) is
indispensable if one wants to rank the prices posted by B- and G-sellers and compare the
effects of the signal’s precision on prices. In equilibrium, however, the market utilities depend
on the signal outcome, which we take into account in the next section.

4 Equilibria and the welfare effects of information

In this section, we incorporate the feedback effect that the pricing decisions of sellers have
on the market utilities of buyers and investigate the equilibria that arise. We also analyse the
welfare effects of more precise information. We start by characterizing the equilibria under the
benchmark of perfect information and move on to imperfect information.

4.1 Perfect information benchmark

When the sellers know the aggregate state, this is equivalent to them observing the realisation
of a perfectly informative signal with precision µ = 1.

Corollary 3 (Perfect information equilibrium). The equilibrium under perfect information
(x∗i , p∗i , V∗

i ), i ∈ {L, H}, is:

x∗i = Bi, p∗i = ϕ(Bi)vi and V∗
i = η(Bi) (1 − ϕ(Bi)) vi.

Thus, p∗H > p∗L. The expected value of trades is W(Θ, 1) = λ(BH)vH+λ(BL)vL
2 =: W∗.

This result is a direct consequence of Lemma 1 and the buyers’ adding-up constraints (5).
Higher demand benefits sellers via up to three channels. Larger population of buyers makes
selling the good more likely. Furthermore, for matching functions that have ϕ′(x) > 0, the in-
crease in the population of buyers allows the sellers to charge higher prices even if the buyers’
valuation of the good vi is the same in the two states. Finally, the larger the vi, the higher the
prices the sellers charge in the perfect-information equilibrium.

4.2 Imperfect information

The analysis of imperfect information is impeded by the non-linear nature of the pricing rules
given by equations (9)-(10). Therefore, we introduce two alternative simplifying assumptions
on the matching function.

Assumption 4 (Constant Hosios share (CHS) matching function). Let M(B,S) be such that
ϕ(x) = ϕ.
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Assumption 5 (Particular non-CHS matching function). Let M(B,S) = BS
B+S . Then also λ(x) =

B
S+B = x

1+x , η(x) = S
S+B = 1

1+x and ϕ(x) = λ(x).

Assumption 4 is satisfied by the Cobb-Douglas matching function M(B,S) = ABϕS1−ϕ

where A is the matching efficiency parameter. The matching function put forth in Assumption
5 can be viewed as a particular case of the matching function M(B,S) = BS/(B1/γ + S1/γ)γ

with γ = 1 proposed in den Haan, Ramey, and Watson (2000) or the telephone matching
function in Stevens (2007). As an illustration of the simplifications these assumptions bring,
consider the pricing for both states condition for the G-sellers, equation (9), which under As-
sumption 4 reads:

µλ(x̃G
H)

[
ϕvH − p̃G

vH − p̃G

]
+ (1 − µ)λ(x̃G

L )

[
ϕvL − p̃G

vL − p̃G

]
= 0,

and which under Assumption 5 reads:

µ

[
ϕ(x̃G

H)vH − p̃G

vH − p̃G

]
+ (1 − µ)

[
ϕ(x̃G

L )vL − p̃G

vL − p̃G

]
= 0.

Next, we also divide the aggregate risk into two polar cases.

Assumption 6 (Tightness risk). Let BH > BL and vH = vL = v.

Assumption 7 (Surplus risk). Let BH = BL = B and vH > vL.

Even though for some applications of our theory Assumptions 6 and 7 need not be met,
they bring additional tractability.6 To see this, note that when trades generate identical surplus
in both states of demand (Assumption 6) the pricing for both state equations (9)-(10) become
linear in prices as we can remove v − p̃j from the denominators. This is not the case, however,
under Assumption 7. Hence, we start with tightness risk and build on the results derived for
this case to inform our analysis of surplus risk.

4.2.1 Tightness risk

In this section, we first demonstrate that, under tightness risk, information is irrelevant for
some matching functions (Corollary 4). Then we derive the equilibria (Theorem 3) and demon-
strate the diverse welfare effects of information for the matching function of Assumption 5.

Under tightness risk, the perfect information prices differ only up to the Hosios share ϕ(Bi)

as per Corollary 3. Because of that, for some matching functions information is irrelevant for
the pricing decisions of sellers. For example, Corollary 3 implies that when the matching
function features the CHS property, the perfect information equilibrium prices are identical,
p∗H = p∗L = ϕv. In fact, this price also solves the pricing for both states equations regard-
less of the realisation of the signal and its precision: hence, information does not affect the
equilibrium. We formalize this result below.

6 For example, in a labour-market application, tightness risk corresponds to uncertainty on the participation rate,
and surplus risk to uncertainty on aggregate productivity. If workers have information on aggregate productivity
and participation in the labour market is costly, higher productivity and greater participation can be correlated.
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Corollary 4 (Irrelevance of information for CHS matching functions, tightness risk). Let As-
sumptions 4 and 6 hold. Then, a unique equilibrium exists and is independent of information preci-
sion µ. In this equilibrium, all sellers post the same price p = ϕv and welfare is independent of µ,
W(Θ, µ) = 1

2 (λ(BH) + λ(BL)) v = W∗.

For the remainder of this section we focus on the particular non-CHS matching function
(Assumption 5) which allows us to explicitly derive the relationship between the market utili-
ties of buyers, perfect information prices, prices that target both states, and the corresponding
buyer-seller ratios.

Lemma 4 (Analytical solution, tightness risk). Let Assumptions 5 and 6 hold. Then, for given
market utilities of buyers V j

i , the price set by a seller that is perfectly informed about the underlying
state i and the implied buyer-seller ratio are:

pj∗
i = v −

√
vV j

i and xj∗
i =

√
vi

V j
i

− 1,

while the prices that target both states and the corresponding buyer-seller ratios are:

p̃G = v −
√[

µVG
H + (1 − µ)VG

L
]

v, x̃G
i =

√[
µVG

H + (1 − µ)VG
L
]

v

VG
i

− 1,

p̃B = v −
√[

(1 − µ)VB
H + µVB

L
]

v, x̃B
i =

√[
(1 − µ)VB

H + µVB
L
]

v

VB
i

− 1.

The proof is in Appendix A.5. The prices pj∗
i and tightnesses xj∗

i derived for demand- and
signal-specific market utilities are the equivalent of those in Lemma 1 (where we assumed the
market utilities to be only demand-specific).

These results reduce the problem of equilibrium characterisation to a two-step procedure.
First, there is a finite number of combinations of price rules used by G- and B-sellers in equilib-
rium, as per Theorems 1 and 2.7 For each of these combinations, solving the buyers’ adding-up
constraints for market utilities concludes the first step. The second step is to verify that the
particular pricing pattern (e.g., both types of sellers pricing for both states) is consistent with
profit maximisation given the market utilities of buyers. We use these insights in the proof of
the following result.

Theorem 3 (Equilibria, tightness risk). Let Assumptions 5 and 6 hold, then:

1. the H-state is strictly more profitable,

2. there exist thresholds B̃ j
H := B̃ j

H (BL, µ), BL < B̃ j
H < ∞ such that for BH ∈

(
BL, B̃ j

H

]
the

equilibrium profit function π j(p) is unimodal. Furthermore, ∂B̃ j
H/∂BL > 0, ∂B̃G

H/∂µ > 0,
∂B̃B

H/∂µ < 0 and B̃G
H ≥ B̃B

H with equality only if µ = 1/2,

7 Further characterisation of the combinations depends on which state is more profitable.
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Figure 2: Illustration of Theorem 3 for v = 1 and BL = 1/5. In the shaded area there is a PSE,
while in the hatched area there is an MSE, for both signal realisations. In the remaining area,
the bad-signal sellers mix and good-signal sellers post a single price.

3. there exist thresholds B̄ j
H := B̄ j

H (BL, µ); B̃ j
H < B̄ j

H ≤ ∞ such that for BH ∈
(
B̃ j

H, B̄ j
H

)
the equilibrium profit function π j(p) is bimodal, but pricing for both states maximizes profits.
Furthermore, limµ→1 B̄

j
H (BL, µ) = ∞, and B̄ j

H (BL, µ) < ∞ for BL and µ small enough,

4. the thresholds B̄ j
H have slopes of opposite signs for uninformative signals in the (µ,BH) space:

lim
µ→ 1

2

d
dµ

B̄G
H = − lim

µ→ 1
2

d
dµ

B̄B
H.

Therefore, a unique PSE exists iff BH ≤ B̄ j
H (BL, µ) and a unique MSE exists iff BH > B̄ j

H (BL, µ) for
given signal realisation j.

The proof is in Appendix A.6; we deliver the main intuitions here. The key takeaway is that
the model can feature a MSE for a non-trivial set of parameters. We illustrate the thresholds
in Theorem 3 for a particular combination of parameters on Figure 2. The two bottom lines
correspond to thresholds for unimodal profits when all sellers price for both states, B̃ j. The
two top lines are thresholds for mixing to be an equilibrium, B̄ j. Above each of those lines only
a MSE exists for the corresponding signal realisation.8 Hence, for a given BL, whenever BH ≤
minj minµ B̄ j

H(BL, µ), both types of sellers post a single price in equilibrium for all information
precisions µ. In the rest of the parameter space, at least one seller type randomizes for µ

sufficiently small.
As illustrated in Figure 2, mixing is an equilibrium outcome for a nondegenerate set of

8 Unlike the thresholds for unimodal profits, these thresholds cannot be ranked (i.e., the solid blue line can be
above the solid black line). We return to this at the end of this section.
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parameter values. For mixing to be an equilibrium, a necessary condition is for the profits
implied by targeting the high state only to be at least weakly higher than profits implied by
pricing for both states. If BH grows arbitrarily large, a seller sells almost surely in the high state
so G-sellers’ profits of pricing for the high state only approach µv, while profits from pricing
for both states approach [µ + (1 − µ)ϕ(BL)]

2 v. For sufficiently low BL, it is indeed the case
that µv > [µ + (1 − µ)ϕ(BL)]

2 v but this is not so if BL is large. The lowest value of BH which
equates profits from the two pricing strategies, if it exists, is the threshold B̄ j

H for signal j.
To complete the argument that for BH > maxj B̄

j
H, all sellers mix rather than price for the

high state only, we rule out the latter as an equilibrium outcome. Suppose that all sellers set
the price pj∗

H . This price is supposed to sell only in the high state, but, in fact, is acceptable
to buyers in both demand states as it does not exceed v. Therefore, under tightness risk the
only alternative to an equilibrium where sellers post a single price targeting both states is an
equilibrium where sellers mix.

Whether sellers post a single price or randomize over two prices is important for welfare.
If all sellers post a single price (i.e., for parameters in the shaded region in Figure 2), the ex-
pected value of trades in state i is λ(Bi)v, irrespective of the signal precision. This is also the
expected value of trades when the signal is perfectly informative. In this region, thus, welfare
is independent of information precision and equal to its highest attainable value W∗.

In the rest of the parameter space, at least one seller type randomizes for µ sufficiently
small. When sellers randomize over two prices, welfare decreases in the high state because of
price dispersion and in the low state because of an inactive submarket. Assuming that j-sellers
randomize, choosing the price that targets both states with probability κ, we have:

WH(Θ, 1) = λ(BH)v = λ[κx̃j
H + (1 − κ)xj

H ]v

> [κλ(x̃j
H) + (1 − κ)λ(xj

H)]v = WH(Θ, µ), and

WL(Θ, 1) = λ(BL)v > λ(κx̃j
L)v > κλ(x̃j

L)v = WL(Θ, µ).

In this region of the parameter space, there are two possibilities. First, for BH > B̄H(BL, 1/2),
the uninformed sellers mix and for sufficiently high information precision neither G- nor B-
sellers do. Hence, there exists a precision of information that leads to welfare increase relative
to no information. Second, if B̄H(BL, 1/2) > BH > minj minµ B̄ j

H(BL, µ), the uninformed sell-
ers do not mix, but B-sellers mix for some information precision values. When this is the case,
welfare decreases below the no-information level for signal precisions which trigger mixing,
and then increases back to the highest attainable value.

We demonstrate the three cases on Figure 3 by picking three different values of BH.9 To
make them comparable, we normalise welfare by the perfect information welfare.10 The black-
dotted line corresponds to the region where all sellers post a single price for all µ. The black-
dot-dashed line represents a combination of (BL,BH) such that if µ = 1/2 both types of sellers
mix. Then, for sufficiently high µ, first the G-sellers and then the B-sellers switch to posting
a single price. The blue-dashed line starts at the highest attainable welfare, but increases in

9 We plot the corresponding equilibrium prices in Online Appendix B.1.
10 This is necessary because larger population of buyers increases the likelihood of trade.
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Figure 3: Normalised welfare W(µ)/W∗ under tightness risk as a function of signal precision
for three different values of BH with v = 1 and BL = 1/5.

signal precision prompt the B-sellers to mix over an interval of µ. Altogether, the marginal
effects of information on welfare can vary from negative to positive and the key reason for this
is the existence of MSE.

In line with intuition, information can have a positive effect on welfare. For µ high enough,
sellers are well-informed about demand and the expected profit functions are unimodal, even
after factoring in the equilibrium feedback between pricing and market utilities of buyers. We
refer to this effect of information as the revealing effect. However, as we have shown, mod-
erate increases in information precision can trigger equilibria with mixing, causing welfare to
decrease. This happens due to the interaction of the revealing effect with the price competition
effect of information. We explain this mechanism below.

Without loss of generality, pick BH = B̄H (BL, 1/2) and an uninformative signal so that
all sellers price for both states, the profit function is bimodal and the two local maxima are
equal (on Figure 2, the point on the y-axis where the two top curves meet). For a switch
from PSE to MSE as we increase information precision, it must be the case that eventually a
seller can profitably deviate to pricing for the high state only when all other sellers price for
both states. When the signal becomes more informative, the PSE price increases (decreases) if
the signal is good (bad). This makes the buyers worse off (better off, respectively) which also
increases (decreases) perfect information profits in both states. This equilibrium effect of prices
on profits is stronger in the low-demand state because the competition for buyers is fiercer
there. Therefore, the price competition effect works as follows. When the signal is good, the
change in the single price posted in equilibrium shrinks the profitability gap between the two
demand states because the high state is uniformly more profitable than the low state. Thus, for
G-sellers the change favours pricing for both states. For B-sellers, conversely, the profitability
gap increases and favours pricing for the high state only.
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However, an increase in the signal precision also changes the weight assigned to each de-
mand state – the revealing effect – and acts in the opposite direction than the price competition
effect. Depending on which of the two effects is stronger, it can be either the B- or the G-sellers
who mix over a larger subset of the parameter space. The net effect depends on the difference
between the perfect information profits and on how sensitive the market utilities of buyers
are to prices. This in turn depends on the absolute values of BL and BH. For a low BL and
BH = B̄H (BL, 1/2), the price competition effect is stronger because competition for buyers
is fiercer in both states so the expected profits react more to µ. This corresponds to Figure 2
where B-sellers randomise for a more precise signal while G-sellers do not. A larger BL implies
a much larger B̄H (BL, 1/2). For a larger BL and BH = B̄H (BL, 1/2), the price competition ef-
fect is weaker. As a result, the revealing effect dominates so G-sellers mix for a more precise
signal, while B-sellers do not (illustrated on Figure 5 in Online Appendix B.1.)

4.2.2 Surplus risk

Recall that under surplus risk BH = BL = B and vH > vL. The key source of difficulty in
analysing this case is that the pricing equations (9) - (10) are not linear (as for tightness risk),
but quadratic. Thus, we focus on the particular matching function proposed in Assumption 5
and uninformative signals to highlight the similarities and differences to tightness risk.11

The distinct feature of equilibria under tightness risk is that in all PSE welfare under perfect
information, the highest attainable, coincides with that under no information. We show that
for surplus risk this is not necessarily the case and welfare in PSE can be strictly lower under no
information. The root of equilibria under no information being inefficient is that some, or even
all, sellers can opt for posting a price that exceeds vL, leading to a market freeze: an inactive
submarket in the low-demand state.

Based on the logic of Theorem 2, three types of equilibria are possible for uninformative
signals. First, an equilibrium where sellers price for both states. Such equilibria are qualita-
tively similar to the equilibria under tightness risk. Second, an equilibrium where sellers mix
over two prices. Third, an equilibrium where sellers post a price that exceeds vL. In the third
equilibrium sellers post the price that is posted under perfect information in the high-demand
state. As our first step, we compare welfare under no and perfect information in the first and
third cases.

Theorem 4 (Equilibria, surplus risk, uninformative signal). Let Assumptions 5 and 7 hold, and
let signals be uninformative, µ = 1/2. Then, there exist threshold values v̄(vL,B) and v (vL,B) such
that:

1. when vH < v̄(vL,B), the optimal price pN satisfies pN < vL and welfare under no information
is equal to welfare under perfect information,

2. when vH > v (vL,B), pN > vL and welfare under no information is strictly lower than welfare
under perfect information.

11 Analogously to tightness risk, we demonstrate the variety of the marginal effects of information on the ex-
pected value of trades on Figure 10 in the Online Appendix B.1.2.
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Proof. 1. When µ = 1/2 and sellers price for both states, the conditions (9) - (10) collapse to a
single equation which has a single positive solution, if any:

pN =
(vH + vL)(1 + ϕ(B))−

√
(1 + ϕ(B))2(vH + vL)2 − 16ϕ(B)vHvL

4
.

The minimal requirement for the price to be consistent with pricing for both states is that
pN < vL which pins down v̄(vL,B).
2. When all sellers post pN > vL, then pN = p∗H and the profits are πN (p∗H) =

1
2 λ (B) ϕ (B) vH.

Posting pN > vL is optimal iff deviating to posting p̂ = vL leads to lower profits. Any price
lower than vL is an inferior deviation because p∗H is the profit maximiser in the high-demand
state and any single seller deviating to a price weakly lower than vL sells with certainty.

A single deviating seller doesn’t impact the market. Buyers’ indifference in the high state
requires that there exists a buyer-seller ratio x̂ such that:

η(x̂) (vH − vL) = η (B) (1 − ϕ(B)) vH.

The profits from this deviation are πN (vL) = (1 + λ (x̂)) vL/2. Then v (vL,B) is the vH that
solves the following equal-profit condition for given vL and B:

1
2

λ (B) ϕ (B) vH =
1
2
(1 + λ (x̂)) vL.

Thus, when the no-information equilibrium yields no trade in the low-demand state, wel-
fare increases relative to no information for at least some signal precisions µ. We now show
that welfare in PSE under surplus risk behaves similarly to tightness risk for all µ if vH and
vL are close. The reason is that, if vH and vL are close, sellers do not find it optimal to forego
selling in the low state and price for both states.

Lemma 5 (Welfare, surplus risk, similar states). Let Assumptions 5 and 7 hold. If vH ≤ vL + ε̄ for
some ε̄ > 0, both types of sellers price for both states. Then welfare is independent of µ and equal to W∗.

Proof. We argue that both types of sellers price for both states if vL and vH are close. Let
vH > vL and note that pricing for the high state only is more profitable for G-sellers than for
B-sellers. Now assume that B-sellers optimally price for both states and G-sellers optimally
price for the high state only. We rule out the latter possibility for vH and vL close enough.

Pricing for the high state only means posting a price p∗H = ϕ(xG
H)vH by Lemma 1, where

xG
H = B/(B + 1). Since ϕ(x) ∈ [0, 1) for all x ∈ [0, BS ], we know that for ϕ(xG

H) there exists a vL

such that ϕ(xG
H)vH = vL, or vH = vL + ε for some ε > 0. Define ε̄ to be the infimum of such ε.

Then for all vH ≤ vL + ε̄, ϕ(xG
H)vH < vL for all ϕ(xG

H): even if G-sellers intend to price only for
the high state, some buyers contact them also in the low state.

Thus, if vH and vL are close, welfare under surplus risk is constant in signal precision in
PSE, as was the case for all PSE under tightness risk.

Now we show that welfare in PSE under surplus risk behaves quite differently from tight-
ness risk if vH and vL are different enough.
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Lemma 6 (Welfare, surplus risk, different states). Let Assumptions 5 and 7 hold. If vH > v (vL,B)
and pN > vL (i.e., case 2. in Proposition 4), then welfare is monotone increasing in the signal precision
for all µ ≥ µ1.

Proof. Recall that if vH > v (vL,B), then pN > vL or under no information sellers price for
the high state only. In a PSE, for any state and price such that buyers buy at the price in the
given state, the matching probability is constant λ(B). Thus, the welfare comparison in PSE
is straightforward. Under perfect information welfare is W∗ = 1

2 λ(B)(vH + vL) and under no
information, W(Θ, 1

2 ) =
1
2 λ(B)vH.

Now consider µ high enough such that B-sellers want to serve both states with probabil-
ity one, i.e., post pB ≤ vL with probability one. Denote the lowest µ where such behaviour
becomes optimal for B-sellers by µ1. We know that such µ1 < 1 exists because under perfect
information B-sellers post a price below vL with probability one. In such an equilibrium, the
welfare is

W(Θ, µ) =
1
2

λ(B)(vH + µvL).

Clearly, W(Θ, µ) ∈ (W(Θ, 1
2 ), W∗) and increases in µ.

If vH and vL are different enough, then in equilibrium both types of sellers post a price that
exceeds vL if the signal precision is low. This is the new type of inefficiency that can arise in
the case of surplus risk, but not tightness risk. If the signal becomes more precise, the B-sellers
lower the price until it falls below vL. When that happens, welfare is higher than when signals
are uninformative.

Intuitively, for intermediate values of vH a MSE exists. Then, improvements in signal pre-
cision can again trigger a switch from a PSE where sellers post a single price that targets both
states to a MSE where sellers mix over two prices. When this is the case, welfare can decrease
in µ.12

5 Entry

In this section, we analyse the same model as before, except that sellers can choose whether to
enter the market or not. We show that, in general, the free-entry equilibrium is inefficient.

Assume that at the beginning of the period, the signal j arrives and then sellers decide
whether to enter or not. To enter, each seller must set up a trading post at a cost c. In equilib-
rium, the expected value of a trading post net of cost c must be equal to zero due to free entry.
We formalize the equilibrium concept in this version of the model below.

Definition 4 (Equilibrium with entry). A tuple
({

κ j,k, xj,k
i , pj,k

}K j

k=1
, V j

i ,S j
)

is an equilibrium

with entry for exogenous parameters Θ = (vi,Bi, c), for i ∈ {H, L} and c > 0, and signal precision
µ if, for each j ∈ {G, B}: conditions 1. and 2. in Definition 2 hold, and

12 We illustrate the partition of the parameter space into regions which feature a particular type of equilibrium
and provide further details in the Online Appendix B.1.2.
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3. buyer-seller ratios and probability weights
{

xj,k
i , κ j,k

}K j

k=1
are consistent with buyers’ adding-up

constraints:
K j

∑
k

κ j,kxj,k
i = 1

j
i
Bi

S j ,

where 1j
i = 1 if I j

i ̸= ∅, and 1
j
i = 0 if I j

i = ∅, the signal realisation is not j and µ = 1, or
S j = 0,

4. there is free entry in setting up a trading post: c = π j(pj).

To assess the efficiency of entry, we adjust the definition of welfare which is now the ex-
pected surplus generated by trades net of trading post setup costs:

W(SG,SB, Θ, µ) =
1
2
SG

[(
µ

KG

∑
k=1

κG,kλ(xG,k
H ) + (1 − µ)

KB

∑
k=1

κB,kλ(xB,k
H )

)
vH − c

]

+
1
2
SB

[(
µ

KB

∑
k=1

κB,kλ(xB,k
L ) + (1 − µ)

KG

∑
k=1

κG,kλ(xG,k
L )

)
vL − c

]
.

As a benchmark, we characterise the allocations chosen by a planner who only observes the
realisation of the signal. The planner decides on the measure of the trading posts and dictates
the rule of allocating buyers across sellers. Hence, the planner’s choice is not constrained by
the free-entry or market-utility constraints. Because of concavity of the trading probabilities,
the planner dictates that buyers mix over visiting all sellers with the same probability. Hence,
the choice of the measure of trading posts pins down the buyer-seller ratio in each state. This
is equivalent to there being only one submarket in each state.

Definition 5 (Constrained-efficiency). A pair
(
SG

p ,SB
p

)
is a social planner entry for exogenous

parameters Θ = (vi,Bi, c), for i ∈ {H, L} and c > 0, and signal precision µ if:(
SG

p ,SB
p

)
∈ arg max

SG ,SB

1
2

SG
[
µλ(xG

H)vH + (1 − µ)λ(xG
L )vL − c

]
+

1
2

SB
[
(1 − µ)λ(xB

H)vH + µλ(xB
L)vL − c

]
=: Wp(SG,SB, µ).

with xj
i = Bi/S j, j ∈ {G, B}. Let the planner’s attained level of welfare be Wp(SG

p ,SB
p , Θ, µ). An

equilibrium with entry
({

κ j,k, xj,k
i , pj,k

}K j

k=1
, V j

i ,S j
)

is constrained-efficient for Θ and µ if S j = S j
p,

and W(SG,SB, Θ, µ) = Wp(SG
p ,SB

p , Θ, µ).

The solution to the planner’s problem satisfies the first order conditions:

µλ(xG
H)ϕ(xG

H)vH + (1 − µ)λ(xG
L )ϕ(xG

L )vL = c, (12)

(1 − µ)λ(xB
H)ϕ(xB

H)vH + µλ(xB
L)ϕ(xB

L)vL = c. (13)

These are sufficient as the expected value of trades net of setup costs is strictly concave in levels
of entry

(
SG,SB). Next, we show in Appendix A.7 that the welfare attained by the planner

monotonically increases in signal precision µ and hence is largest when information is perfect.
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The cost of imperfect information is that entry under G-signal (B-signal) is too low (too high).
Finally, when the setup cost c increases, the levels of entry decrease. We discuss constrained
efficiency of equilibria with entry next.

Theorem 5 (Constrained efficiency of equilibria with entry). Let
({

κ j,k, xj,k
i , pj,k

}K j

k=1
, V j

i ,S j
)

be an equilibrium with entry for exogenous parameters Θ = (vi,Bi, c), for i ∈ {H, L} and c > 0,
and signal precision µ. Then, this equilibrium is constrained-efficient iff either Assumptions 4 (CHS
matching function) and 6 (Tightness risk) both hold, or the signal is perfectly informative, µ = 1.

Proof. First, any equilibrium with entry that features an inactive submarket, be it due to mixing
or sellers posting a price that exceeds vL, is not constrained efficient. The planner can choose
the same level of entry for each signal, incurs the same costs, and obtains a higher value of
trades because buyers mix uniformly over sellers. Hence, we confine attention to combinations
of parameters that yield PSE.

Second, when µ = 1, conditions (12) - (13) are identical to the equilibrium free-entry con-
ditions. Indeed, expected profits in an equilibrium with entry then read λ(xi)ϕ(xi)vi by the
virtue of Corollary 3. For the case of µ < 1, when Assumptions 4 and 6 hold, the planner’s
optimality conditions (12) - (13) are equivalent to the equilibrium free-entry conditions as then
ϕ(xj

i)vi = ϕv. This completes the proof of the if- part of Theorem 5 as each of the planner
conditions has a unique solution for the level of entry.

For the only if- part, we describe the key intuition focussing, without loss of generality, on
the case of an uninformative signal. To do this, we investigate the consequences of parting
with Assumption 4. Hence, we assume that Assumptions 5 (Particular non-CHS matching
function) and 6 hold simultaneously.13 When µ = 1/2 there is just one level of equilibrium
entry, SG = SB = S , and one level chosen by the planner, Sp. The equilibrium free-entry
condition reads:

1
4
[λ(xH) + λ(xL)] [ϕ(xH) + ϕ(xL)] v = c, with xi =

Bi

S .

Now, assuming Sp = S leads to a contradiction, as:

c =
λ(xH) + λ(xL)

2
ϕ(xH) + ϕ(xL)

2
v︸ ︷︷ ︸

free entry

<
[λ(xH)ϕ(xH) + λ(xL)ϕ(xL)]

2
v = c︸ ︷︷ ︸

planner’s optimality condition

.

Therefore, for the same cost of a trading post setup, the planner chooses a level of entry that is
strictly larger than that in equilibrium.

The inefficiency of entry is due to the effect of imperfect information on pricing. The price
that the imperfectly informed sellers set exceeds the perfect information price in the low state
and is below the perfect information price in the high state. Hence, an atomistic seller benefits
from the effect of imperfect information on the pricing decisions of other sellers in the low state
and is worse off in the high state. The competition for buyers being fiercer in the low-demand

13 Alternatively, one can part with Assumption 6, keeping Assumption 4 in place etc.
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Figure 4: Illustration of Theorem 5 for v = 1, BL = 1 and BH = 3/2.

state limits the gains there and eventually the latter effect dominates the former, leading to an
inefficiently low entry. We illustrate this on Figure 4.

Put differently, the ability of the planner to ignore competition between sellers and its inter-
action with buyers’ indifference is akin to perfect-information pricing in each state for a given
signal (the ϕ(xj

i)vi terms in (12) - (13)) conditional on the level of entry. Prices set in an equilib-
rium assuming planner entry, however, are not equal to the perfect-information prices so the
free-entry and planner’s optimal entry conditions in general do not hold simultaneously.

6 Lotteries

Throughout the paper we have assumed that the sellers can post at most one price. Riley and
Zeckhauser (1983) showed that posting a single price is the best that an uninformed seller can
do under individual-level uncertainty and bilateral trade so it is instructive to learn whether
this is still the case under aggregate uncertainty.14 We show that this is not always the case.

Allowing sellers to post trading mechanisms that depend on the state of demand i is akin
to assuming away the effects of imperfect information on aggregate state. To see this, note that
under such superior technology, posting two aggregate-state-dependent prices would always
lead to full information equilibria. Hence, we consider more realistic mechanisms that depend
solely on individual-level meetings.

As a seller can meet at most one buyer, the most general trading mechanism is a menu of
lotteries

(
pj

i , θ
j
i

)
i

that prescribe the price pj
i a buyer must pay upon meeting with a seller and

the probability θ
j
i to obtain the good. Such a menu can screen buyers, as long as the following

14 Delacroix and Shi (2013) show that when the sellers are (privately) informed about the quality of the good they
offer, a two-part pricing scheme can improve efficiency upon posting a single price. In our framework signaling
considerations are absent and a two-part pricing scheme collapses to a single price.
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incentive compatibility (IC) constraints hold:

θ
j
i vi − pj

i ≥ θ
j
−ivi − pj

−i, i ∈ {H, L} , j ∈ {G, B} . (14)

This mechanism requires the sellers to be able to commit to withholding the good even though
doing so brings no additional benefits to them. The price posting assumption we have worked
with throughout the paper is a special case of this more general mechanism with θ

j
i = 1 and

pj
i = pj.

Our first result pertaining to these lotteries is that they bring no additional benefit under
tightness risk.

Lemma 7 (Irrelevance of lotteries, tightness risk). Let Assumption 6 hold. Then θ
j
i = 1 and pj

i = pj.

Proof. Under Assumption 6, the IC constraints (14) become:

θ
j
Lv − pj

L ≥ θ
j
Hv − pj

H and θ
j
Hv − pj

H ≥ θ
j
Lv − pj

L =⇒ θ
j
Lv − pj

L = θ
j
Hv − pj

H.

The buyers must be indifferent between the two lotteries. The sellers’ profits are unaffected by
θ

j
i and differentiating the probabilities between types does not bring any benefits. Hence it’s

optimal to set θ
j
i = 1 and correspondingly pj

L = pj
H = pj.

Our second result is that when the sellers can post menus of lotteries, there is always trade
under surplus risk because the sellers can increase their profits relative to the equilibrium with
no trading in the low state under single price posting. Analogously to other results in section
4.2.2, we show this for uninformative signals.

Lemma 8 (Lotteries dominate single price, surplus risk). Let Assumption 7 hold and let also vH ≥
v(vL,B) and µ = 1/2 as in Proposition 4. Then, posting a single price is not optimal.

Proof. When assumptions of Lemma 8 are met, sellers post pN = ϕ(B)vH which leads to lack
of trade in the low demand state. However, when sellers can post lotteries, they can increase
their profits. They can choose the same price pj

H = ϕ(B)vH and guarantee the purchase in the
high demand state, θ

j
H = 1, but select a different incentive-compatible offer for buyers in the

low-demand state. The conditions to do so are:

θ
j
LvL − pj

L ≥ vL − ϕ(B)vH,

vH − ϕ(B)vH ≥ θ
j
LvH − pj

L.

The first constraint can be tightened to θ
j
LvL − pj

L ≥ 0, as buyers in the low demand state do
not want to purchase the good at the price designed for the high state by assumption. Offering
exactly zero to buyers in the low demand state is compatible with their market utility being
zero (due to no search) which implies pj

L = θ
j
LvL. Then, the highest probability of acquiring

the good when demand is low that screens the states is the one that leaves the buyers in the
high-demand state indifferent:

θ
j
L =

(1 − ϕ(B)) vH

vH − vL
.
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Note, when such a lottery is posted, it is still the case that welfare under perfect information
is higher than under no information, which was the distinct feature of certain equilibria under
surplus risk. However, when sellers post lotteries instead of a single price under surplus risk
it is still the case that some buyer-seller meetings will result in no trade. Thus, while lotteries
help avoid market freezes, the frequency of trades can still be significantly lower (just simply
not equal to zero) than under full information.

7 Conclusions

We extend the standard model of competitive search with uncertainty about market conditions
and analyse the effects of increases in the precision of public information on trade. We obtain
several results which point to the importance of interactions between the properties of the
matching function and the type of underlying aggregate risk on the one hand and information
on the other.

Our results are readily applied to studying other environments with competitive search
and either exogenous or endogenous public information on aggregate risk. An example of the
former is a model in which sellers publicly learn about past trades of other sellers. As for the
latter, the signal precision can be a, potentially costly, choice variable of a policy maker. We
hope to spur future research on interactions of imperfect information, aggregate risk and com-
petitive search. One such promising avenue is to consider an endogenous private information
choice problem and another is making the model dynamic.
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A Proofs and derivations

A.1 Proof of Lemma 1

We differentiate the expected profits with respect to price and then implicitly differentiate the
market utility constraint with respect to price as well to arrive at the following first order
condition:

λ′(x∗i )p∗i = −
λ(x∗i )
η(x∗i )

η′(x∗i )(vi − p∗i ).

Multiplying both sides by x∗i and using the definition of ϕ(x), we obtain:

(1 − ϕ(x∗i )) p∗i = ϕ(x∗i ) (vi − p∗i ) =⇒ p∗i = ϕ(x∗i )vi.

A.2 Proof of Lemma 2

Following analogous steps as in the previous case, we obtain:

µλ(x̃G
H) + (1 − µ)λ(x̃G

L ) =

[
−µ

λ′(x̃G
H)η(x̃G

H)

η′(x̃G
H)(vH − p̃G)

− (1 − µ)
λ′(x̃G

L )η(x̃G
L )

η′(x̃G
L )(vL − p̃G)

]
p̃G.

Multiplying the components of the sum on the right hand side by xG
i λ(xG

i )

xG
i λ(xG

i )
and rearranging

yields the formula in the Lemma.

A.3 Proof of Theorem 1

By the definition of perfect information maximisers, p∗i < p < p̄i =⇒ dπi(p)
dp < 0 so that π j(p)

is strictly decreasing on (p∗H, p̄H ] and also strictly decreasing on [mini p̄i, maxi p̄i] for j = G, B.
Thus, there is no local maximum on this interval.

We also have that π j(p) are strictly increasing on (0, p∗L). Hence the (by strict concavity,
unique) maximisers are interior for imperfectly informative signals: pj ∈ (pL, pH) for µ < 1.
By Assumption 3, dπH

dp > dπL
dp on [p∗L, p∗H ]. Also:

dπG(p)
dp

= µ
dπH

dp
+ (1 − µ)

dπL

dp
and

dπB(p)
dp

= (1 − µ)
dπH

dp
+ µ

dπL

dp
.

This implies dπG(p)
dp ≥ dπB(p)

dp at any given p in this interval with equality only if µ = 1/2.
Therefore, p̃G ≥ p̃B with equality only if µ = 1/2.

A.4 Proof of Theorem 2

For this proof we continue with a slight abuse of notation, treating µ as the second argument
of expected profits, next to the price p. In this vein, observe that by the virtue of Assumption
3:

p ∈ [p∗L, p̄H ] =⇒ ∂πG(p)
∂µ

= −∂πB(p)
∂µ

= πH(p)− πL(p) > 0.
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Next, as p∗H > p̄L > p∗L, there trivially is a local maximum at p∗H for both π j(p). For the
remainder of the proof we rely on differences between maximisers of π j(p) on the two intervals
[0, p̄L] and [ p̄L, p̄H ] as functions of µ. We define:

∆j(µ) := π j (p∗H)− π j
(

p̃j
)

.

Whenever ∆j(µ) > 0, the global maximiser of π j(p) is p∗H, when ∆j(µ) = 0, the j-seller is
indifferent between posting p∗H and p̃j and when ∆j(µ) < 0, then the global maximiser of
π j(p) is p̃j. This implies the following:

d∆G(µ)

dµ
= πH (p∗H)−

[
πH

(
p̃G
)
− πL

(
p̃G
)]

−
dπG ( p̃G)

dp̃G
dp̃G

dµ
,

d∆B(µ)

dµ
= −πH (p∗H) +

[
πH

(
p̃B
)
− πL

(
p̃B
)]

−
dπB ( p̃B)

dp̃B
dp̃B

dµ
.

There are two cases to consider here. Either p̃j is an interior solution and then by envelope
theorem dπ j ( p̃j) /dp̃j = 0, or it is a corner solution (which can only happen for j = G) and
then dp̃j/dµ = 0. Furthermore, by Assumption 3 and p∗H being the maximiser:

πH (p∗H) > πH

(
p̃G
)
> πL

(
p̃G
)

and πH (p∗H) > πH

(
p̃B
)
> πL

(
p̃B
)

.

Hence, we conclude that d∆G(µ)
dµ > 0 and d∆B(µ)

dµ < 0 for µ ∈
( 1

2 , 1
)
. Note also that ∆G(1) =

πH(p∗H) > 0 and ∆B(1) = −πH(p∗H) < 0. We now go over the cases listed in Theorem 2.

1. In this case we have ∆G ( 1
2

)
< 0 and ∆B ( 1

2

)
< 0 and so the B-sellers always stick to

posting p̃B and by Darboux theorem there exists a unique µ̄G such that ∆G (µ̄G) = 0
which then implies the optimal price posting behaviour described in the Theorem.

3. Here we have ∆G ( 1
2

)
> 0 and ∆B ( 1

2

)
> 0. Therefore, p∗H remains the global profit

maximising price for G-sellers, but by Darboux theorem there exists a unique µ̄B such
that ∆B (µ̄B) = 0 which then implies the optimal price posting behaviour described in
the Theorem.

2. Finally, we have ∆G ( 1
2

)
= ∆B ( 1

2

)
= 0 and then both sellers are indifferent between p∗H

and p̃N for µ = 1
2 . Pricing behaviour for µ > 1

2 follows similar logic to the other two
cases.

A.5 Proof of Lemma 4

Let Assumption 5 hold. We have η(x) (1 − ϕ(x)) = 1
(1+x)2 . Hence, (8) implies:

xj∗
i =

√
vi

V j
i

− 1 =⇒ ϕ(xj∗
i ) = 1 −

√
V j

i
vi

=⇒ pj∗
i = vi −

√
vi

√
V j

i .
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If p ≤ v − V j
i , the buyers’ market utility constraint becomes:

x(p)
(

v − p
1 + x(p)

− V j
i

)
= 0 =⇒ x(p) =

v − p − V j
i

V j
i

,

and the perfect information profits are:

πi(p) = λ(x(p))p =
v − p − V j

i
v − p

p, (15)

If p > v − V j
i , and x(p) = πi(p) = 0. We proceed to derive the pricing-for-both-states prices,

focussing on the G-sellers. The derivations for B-sellers are analogous. Based on the perfect
information profits, the G-sellers’ profit function for prices that don’t exceed the lower price
threshold p̄i is:

πG(p) = µ
v − p − VG

H
v − p

p + (1 − µ)
v − p − VG

L
v − p

p for p ≤ min
i

p̄i = min
i

v − V j
i .

The FOC for profit maximisation implies:(
v − p̃G

)2
= µvVG

H + (1 − µ)vVG
L ,

which is solved by the price stated in the Lemma. The buyer-seller ratios x̃G
i then follow from

evaluating the market utility constraint at this price.

A.6 Proof of Theorem 3

The H state is strictly more profitable. First, let’s assume all sellers post the same price
pj < v. Then, V j

H = η(BH)(v − pj) < η(BL)(v − pj) = V j
L. Observe that this inequality

also allows us to rule out V j
H = V j

L as then the sellers would indeed optimally post a single
price. Finally, let’s consider V j

L < V j
H and the sellers randomising over two prices, p∗j,1 < p∗j,2,

with weights κ and 1 − κ, respectively. For this to be optimal, it must be that p∗j,2 targets
the strictly more profitable low state only. p∗j,2 implies the buyer-seller ratio according to the
perfect information condition while p∗j,1 is a price that targets both states. The buyers’ adding-
up constraints imply the following:

κxj,1
H = BH > BL = κxj,1

L + (1 − κ)xj,2
L ⇐⇒ κ(xj,1

H − xj,1
L ) > (1 − κ)xj,2

L

Without loss of generality, consider G-sellers. The optimal pricing conditions then imply:

xG,1
H =

√[
µVG

H + (1 − µ)VG
L
]

v

VG
H

− 1 <

√[
µVG

H + (1 − µ)VG
L
]

v

VG
L

− 1 = xG,1
L .

Therefore, we arrive at a contradiction: VG
H > VG

L =⇒ xG,2
L < 0 (this goes through anal-

ogously for B-sellers). Hence, the high demand state is strictly more profitable and we can
discard the possibility that a price targets the low demand state only.
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Thresholds B̃ j
H for unimodal profits. When the public signal is good and sellers set the price

that targets both states, the buyer’s adding up constraints read:√[
µVG

H + (1 − µ)VG
L
]

v

VG
H

− 1 = BH and

√[
µVG

H + (1 − µ)VG
L
]

v

VG
L

− 1 = BL.

Therefore, VG
L (BL + 1) = VG

H (BH + 1) which leads to:

VG
H =

1
BH + 1

(
µ

BH + 1
+

1 − µ

BL + 1

)
v and VG

L =
BH + 1
BL + 1

VG
H . (16)

Now we must consider two cases. The first case is that of the unimodal profit function, so that

v −
√

vVG
H = pG

H ≤ p̄G
L = v − VG

L ⇐⇒ VG
L ≤

√
vVG

H . When this condition is met, the optimal
solution is to price for both states. Now

VG
L ≤

√
vVG

H ⇐⇒ (1 − µ)BH ≤ (BL + 1)3 − µBL − 1.

Hence, we have B̃G
H(BL, µ) = [(BL + 1)3 − µBL − 1]/(1− µ). Straightforwardly, ∂B̃G

H/∂BL > 0
and ∂B̃G

H/∂µ > 0. Analogous steps for the bad signal give:

VB
H =

1
BH + 1

(
1 − µ

BH + 1
+

µ

BL + 1

)
v and VB

L =
BH + 1
BL + 1

VB
H , (17)

etc. Therefore, we find B̃B
H(BL, µ) =

[
(BL + 1)3 − (1 − µ)BL − 1

]
/µ and so ∂B̃B

H/∂BL > 0 but

∂B̃B
H/∂µ < 0. Finally, note that B̃ j

H(BL, µ) > BL and BG
H(BL, 1/2) = BB

H(BL, 1/2).

Thresholds B̄ j
H for pricing for both states; bimodal profits. Next, it can be the case that the

profit function is bimodal, and yet it’s optimal to price for both states. Hence, for parameter
values which yield (1 − µ)BH > (BL + 1)3 − µBL − 1 we must compare profits of both pricing
rules. When a G-seller targets the high state only, its profit is:

πG(pG
H) = µ

(
v − 2

√
vVG

H + VG
H

)
,

while its profit when targeting both states is:

πG( p̃G) = v − 2
√(

µVG
H + (1 − µ)VG

L
)

v + µVG
H + (1 − µ)VG

L .

Letting BH → ∞ gives:

lim
BH→∞

πG( p̃G)− πG(pG
H) = v

[
(1 − µ)

(
1 +

1 − µ

(BL + 1)2

)
− 2

1 − µ

BL + 1

]
.

Observe that limBL→0 limBH→∞ πG( p̃G) − πG(pG
H) < 0 while limBL→∞ limBH→∞ πG( p̃G) −

πG(pG
H) > 0. Hence, for BL sufficiently small, BH exists such that the profit function is bi-

modal and the two maxima are equal.
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Existence and uniqueness of PSE. The derivations for both thresholds assume that sellers
post prices that target the high state only and hence provide a constructive proof of a PSE with
the market utilities of buyers given by (16) - (17). By construction, a PSE does not exist when
BH > B̄ j.

Existence and uniqueness of MSE. Again, we focus on the G-sellers without loss of gener-
ality. For mixing to be optimal, it must be the case that the sellers are indifferent between two
prices: πG( p̃G)− πG(pG

H) = 0, or

(1 − µ)
(

v + VG
L

)
+ 2

[
µ
√

VG
H v −

√(
µVG

H + (1 − µ)VG
L
)

v
]
= 0.

The price that targets the high state only must exceed what the buyers are willing to pay in the

low state v −
√

vVG
H > v − VG

L ⇐⇒ VG
L >

√
vVG

H .

We can not rely on the derivations for V j
i from the earlier parts of the proof, as the buyers’

adding up constraints now are (this follows from the analytical solution for prices and buyer-
seller ratios):

κ

√[
µVG

H + (1 − µ)VG
L
]

v

VG
H

+ (1 − κ)

(√
v

VG
H

)
= BH + 1,

√[
µVG

H + (1 − µ)VG
L
]

v

VG
L

=
BL

κ
+ 1. (18)

These can be combined to give:

√
vVG

H =
VG

H (BH + 1)− VG
L (BL + κ)

1 − κ
. (19)

Therefore, the equal-profit condition now becomes:

µVG
H =

1 − κ

2 (BH + 1)

[
VG

L

(
2
BL

κ
+ 1 + µ + 2

µ (BL + κ)

1 − κ

)
− (1 − µ)v

]
. (20)

The existence and uniqueness of MSE follows from some algebra involving equations (18),
(19) and (20). After combining the equations, we arrive at

BH =

[
µκ(1 + BL)−

√
µ(1 − κ)BL

]
[2BL + κ(1 − µ) + 2

√
µBL]

(1 − µ)(BL − κ
√

µ)2 − 1,

which defines a relationship between BH and κ: for any given BH, the κ that solves this equa-
tion (if any) gives the MSE mixing probability. We can show that this BH decreases in κ so a
unique MSE exists, if any. Note that the limit RHSκ=1 =

µ(1+BL)[2BL+(1−µ)+2
√

µBL]

(1−µ)(BL−
√

µ)2 − 1 defines

B̄H: a unique MSE exists for all BH > B̄H. But RHSκ=0 =
−2

√
µ(1+

√
µ)

(1−µ)
− 1 < 0 so for any

BH > B̄H, the equilibrium mixing probability is some κ > κ̄. The RHS → ∞ if κ → BL√
µ =: κ̄.

Therefore, a MSE only exists for BH > B̄ j and is unique.
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Slopes of thresholds for MSE at µ = 1/2 The thresholds that delimit the region of MSE
existence can be further characterised at the limiting case of an uninformative signal. We show
below that the thresholds B̄ j

H(µ,BL) have opposite slopes at µ = 1/2 unless their slope is equal
to zero there.15

Lemma 9. Let Assumptions 5 and 6 hold. Assume that all sellers price for both states. Then, the level
curves of difference in profits from pricing for both states and pricing for the high state only have slopes
of opposite signs at µ = 1

2 for the B and G signals in the (µ,BH) space for fixed BL and v.

Proof. The G-threshold for the two pricing strategies yielding equal profits is:

0 = (1 − µ)(v + VG
L ) + 2

√
vVG

H

[
µ −

√
µ + (1 − µ)

BH + 1
BL + 1

]
,

as in the main text. For the B-sellers we obtain:

0 = µ(v + VB
L ) + 2

√
vVB

H

[
(1 − µ)−

√
(1 − µ) + µ

BH + 1
BL + 1

]

Let’s first investigate the behaviour of the profit function of G-sellers. Eventually, we are
interested in dBH

dµ when the two pricing strategies yield exactly equal profits (which is how the

curves B̄ j
H(µ,BL) are defined), but our derivations carry over for any level curve of difference

in profits (from pricing for both states and pricing for high state only when all other sellers
price for both states). Without loss of generality, let’s normalize v = 1. The impact of µ on the
maximum for the price targeting the high state only is:

d
dµ

πG(pG∗
H ) =

[
1 − 2

√
VG

H + VG
H

]
︸ ︷︷ ︸

>0, direct effect

+ µ
∂VG

H
∂µ

1 − 1√
VG

H


︸ ︷︷ ︸

>0, indirect (equilibrium) effect

When µ increases, it increases the profits attained by a deviation to pricing for high state
only (when all other sellers continue to price for both states). The value of this maximum
is µπH(pG∗

H ). Hence, the direct effect is πH(pG∗
H ) and the indirect effect captures the shift in

the profit function πH due to increase in µ (and the shift of the corresponding locally optimal
price) which operates via general equilibrium effect of higher prices which makes the buyers
worse off. Formally, the profit function can also be written as πG(µ, VG

H , VG
L ) and the effect of

µ is:
dπG

dµ
=

∂πG

∂µ
+

∂πG

∂VG
H

∂VG
H

∂µ
+

∂πG

∂VG
L

∂VG
L

∂µ

with the latter effect (via VG
L ) being zero at pG∗

H , but not at p̃G:

15 This happens for a single value of BL.
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d
dµ

πG( p̃G) =
(

VG
H − VG

L

)1 − 1√
µVG

H + (1 − µ)VG
L


︸ ︷︷ ︸

>0, direct effect

+

(
µ

∂VG
H

∂µ
+ (1 − µ)

∂VG
L

∂µ

)1 − 1√
µVG

H + (1 − µ)VG
L

 .

︸ ︷︷ ︸
>0, indirect (equilibrium) effect

The signs of responses of market utilities follow from the explicit expressions for VG
i and im-

ply that ∂VG
i

∂µ < 0 (the economic intuition for this is that increases in µ lead to weakly higher
prices in equilibrium when the signal is good). At p̃G, the direct effect is πH( p̃G)− πL( p̃G) <

πH(pG∗
H ). Summing up, the direct effect of increase in µ is to increase expected profits of G-

sellers and this effect is stronger at the pricing for high state only maximum. The indirect effect
(of µ via VG

i ) is stronger for VG
L :

∂VG
H

∂µ
=

1
BH + 1

(
1

BH + 1
− 1

BL + 1

)
,

∂VG
L

∂µ
=

1
BL + 1

(
1

BH + 1
− 1

BL + 1

)
=

BH + 1
BL + 1

∂VG
H

∂µ
.

Let’s now redo this exercise for BH:

d
dBH

πG(pG∗
H ) = µ

∂VG
H

∂BH

1 − 1√
VG

H

 ,

d
dBH

πG( p̃G) =

(
µ

∂VG
H

∂BH
+ (1 − µ)

∂VG
L

∂BH

)1 − 1√
µVG

H + (1 − µ)VG
L

 ,

with the partial derivatives of market utilities with respect to BH being:

∂VG
H

∂BH
= − 1

(BH + 1)2

(
2µ

BH + 1
+

1 − µ

BL + 1

)
< 0,

∂VG
L

∂BH
= − µ

(BH + 1)2(BL + 1)
< 0.

We now redo the same calculations for B-signals:
d

dµ
πB(pB∗

H ) = −
[

1 − 2
√

VB
H + VB

H

]
+ (1 − µ)

∂VB
H

∂µ

1 − 1√
VB

H

 ,

d
dµ

πB( p̃B) =
(

VB
L − VB

H

)1 − 1√
(1 − µ)VB

H + µVB
L


+

(
(1 − µ)

∂VB
H

∂µ
+ µ

∂VB
L

∂µ

)1 − 1√
(1 − µ)VB

H + µVB
L

 ,
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d
dBH

πB(pB∗
H ) = (1 − µ)

∂VB
H

∂BH

1 − 1√
VB

H

 ,

d
dBH

πB( p̃B) =

(
(1 − µ)

∂VB
H

∂BH
+ µ

∂VB
L

∂BH

)1 − 1√
(1 − µ)VB

H + µVB
L

 .

The responses of market utilities to µ and BH for the B signal are:

∂VB
H

∂µ
=

1
BH + 1

(
1

BL + 1
− 1

BH + 1

)
∂VB

L
∂µ

=
1

BL + 1

(
1

BL + 1
− 1

BH + 1

)
=

BH + 1
BL + 1

∂VB
H

∂µ

∂VB
H

∂BH
= − 1

(BH + 1)2

(
µ

BL + 1
+

2(1 − µ)

BH + 1

)
< 0

∂VB
L

∂BH
= − (1 − µ)

(BH + 1)2(BL + 1)
< 0

Let’s take stock. First, the effects of µ on the market utilities of buyers differ only up to a sign
with respect to signal realisation. That is, ∂V j

i /∂µ = −∂V−j
i /∂µ. Next, let’s consider the effect

of increase in µ at µ = 1
2 , so that VB

H = VG
H = VH and VB

L = VG
L = VL. This implies the

following:

lim
µ→ 1

2

d
dµ

(
πG(pG∗

H )− πG( p̃G)
)
= − lim

µ→ 1
2

d
dµ

(
πB(pB∗

H )− πB( p̃B)
)

and

lim
µ→ 1

2

d
dBH

(
πG(pG∗

H )− πG( p̃G)
)
= lim

µ→ 1
2

d
dBH

(
πB(pB∗

H )− πB( p̃B)
)

.

A.7 Properties of planner entry

The FOCs read:

µλ(xj
i)vi + (1 − µ)λ(xj

−i)v−i − c − S j

[
µλ′(xj

i)
xj

i
S j vi + (1 − µ)λ′(xj

−i)
xj
−i

S j v−i

]
= 0,

for (j = G, i = H) and (j = B, i = L), which follows from the definition of xj
i . Next, we remove

the S j, divide by the corresponding λ(xj
i), and use 1 − λ′(xj

i )xj
i

λ(xj
i )

= 1 − (1 − ϕ(xj
i)). This leads to

the conditions (12)- (13) presented in the main text (strict concavity of the planner’s objective
function follows directly from SOCs). We then differentiate these conditions with respect to µ:

dS j
p

dµ
=

λ(xj
i)ϕ(xj

i)vi − λ(xj
−i)ϕ(xj

−i)v−i

µ
[
λ′(xj

i)ϕ(xj
i) + λ(xj

i)ϕ
′(xj

i)
]

vix
j
i

S j + (1 − µ)
[
λ′(xj

−i)ϕ(xj
−i) + λ(xj

−i)ϕ
′(xj

−i)
]

v−ix
j
−i

S j

,
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for (j = G, i = H) and (j = B, i = L). We find that the entry when the signal is good (bad) is
increasing (decreasing) in the signal precision.

Next, we differentiate the social welfare function with respect to µ at the optimal levels of
entry

(
SG

p ,SG
p

)
which, by the envelop theorem, reads:

dW(SG
p ,SB

p , Θ, µ)

dµ
=

1
2

[
SG

p

(
λ(xG

H)vH − λ(xG
L )vL

)
+ SB

p

(
λ(xB

L)vL − λ(xB
H)vH

)]
.

At µ = 1/2, dW(SG
p ,SB

p , Θ, µ)/dµ = 0 because signal index disappears and everything cancels
out. The second derivative is proportional to:

[
λ(xG

H)ϕ(xG
H)vH − λ(xG

L )ϕ(xG
L )vL

] dSG
p

dµ
+

[
λ(xB

L)ϕ(xB
L)vL − λ(xB

H)ϕ(xB
H)vH

] dSB
p

dµ
≥ 0,

with equality only for µ = 1/2. By continuity of the welfare function and compactness of the
set [1/2, 1], the highest welfare is at µ = 1.
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B Online Appendix

B.1 Figures

B.1.1 Tightness risk

We illustrate the switch of the ranking of the B̄ j
H (BL, µ) thresholds on Figure 5. The difference

between this case and Figure 2 is that BL has now been increased. While we had B̄G
H (BL, µ) ≥

B̄B
H (BL, µ) on Figure 2, this ranking is flipped on Figure 5. The price competition effect now

dominates the revealing effect not for the bad, but for the good signal when µ is sufficiently
close to 1/2.

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

Figure 5: Illustration of Theorem 3 for v = 1 and BL = 1/2.

Next, we plot equilibrium prices that correspond to the three effects of information demon-
strated on Figure 3. Prices on Figure 6 correspond to the black-dotted case on Figure 3 (pure
strategy equilibrium for all signal precision values, no effect of information on the expected
value of trades). Then, Figure 7 corresponds to the blue-dashed case on Figure 3 (increase in µ

initially trigger an inefficient MSE). Finally, prices on Figure 8 correspond to the black-dashed
case on Figure 3 (a MSE for uninformative signals, positive effect of information).
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 6: Equilibrium prices in the region with PSE (Figure 3).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 7: Equilibrium prices in the region with PSE for G-sellers and MSE for B-sellers (Figure
3).
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 8: Equilibrium prices in the region with MSE for both types of sellers (Figure 3).

B.1.2 Surplus risk

We numerically implement the procedure of finding thresholds that separate various type of
equilibria regions of the (vH, µ) parameter space for a given vL value. Fully analogously to
the tightness risk case, we find ṽj

H(vL, µ) such that when all sellers price for both states, when
vH < ṽj

H(vL, µ) the equilibrium profits are unimodal. Next, we find v̄j
H(vL, µ) such that for

vH > v̄j
H(vL, µ) pricing for both states is no longer an equilibrium outcome. However, there

is an additional type of threshold under surplus risk, v̂j
H(vL, µ). When vH ≥ v̂j

H(vL, µ) then
pricing for the high state only is the unique equilibrium. Thus, under surplus risk MSE exists
when v̂j

H(vL, µ) > vH > v̄j
H(vL, µ). These thresholds are illustrated on Figure 9.

Next, we again fix vH at three distinct values and investigate the effects of increasing µ

on the (normalised by perfect information value) expected value of trades. We demonstrate
the results of this exercise on Figure 10. Firstly, there exists a region with PSE for all signal
precisions. There information is again irrelevant for welfare (the blue-dotted line). Next, we
pick vH such that increases in information precision trigger a MSE and for further increases inµ,
also the pricing-for-high-state-only equilibrium. Information in this case has a negative effect
on the expected value of trades over an interval of signal precision values (the blue-dashed
line). Finally, we pick vH such that we start in the pricing-for-high-state-only equilibrium and
information increases welfare (the black-dashed line).

40



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Figure 9: Thresholds for characterisation of equilibria under surplus risk

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Figure 10: Normalised welfare W(µ)/W∗ under surplus risk as a function of signal precision
for three different values of vH with vL = 1 and B = 1.
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