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Motivation

Research Question:
▶ What is the finite sample performance of machine learning based meta-learners

using cross-fitting for estimation of heterogeneous causal effects?



Motivation

Meta-Learners:
▶ flexibility in estimation of heterogeneous causal effects
▶ generality in the choice of the learning method (Künzel et al. 2019)
▶ lack of unifying simulation evidence for assessment of meta-learners

Cross-Fitting:
▶ overfitting bias due to estimation of nuisance functions (Chernozhukov et al. 2018)
▶ sample-splitting and cross-fitting to reduce bias and regain efficiency
▶ lack of simulation evidence for assessment of estimation procedures
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Literature

▶ effect of job training on employment (Knaus 2020)

▶ effect of special education programs on academic performance (Sallin 2021)

▶ effect of waste pricing programs on pollution (Valente 2022)

▶ effect of quarantines on covid spread (Kristjanpoller et al. 2021)

▶ effect of blood pressure therapy on disease risk (Duan et al. 2019)

▶ effect of marketing campaigns on sales revenue (Gubela and Lessmann 2021)



Literature

▶ few simulation studies on machine learning estimation of heterogeneous causal
effects (Knaus et al. 2020; Naghi and Wirths 2021)

▶ little evidence on the impact of sample-splitting and cross-fitting in finite samples
(Jacob 2020; Zivich and Breskin 2021)

▶ limited results on the finite sample performance of meta-learners for estimation of
causal effects (Curth and Schaar 2021)

▶ convergence performance of meta-learners based on cross-fitting unexplored so far
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Notation

Data Inputs:
▶ treatment indicator Wi ∈ {0, 1}
▶ outcome variable Yi
▶ covariates Xi

Nuisance Functions:
▶ propensity score function e(x) = P[Wi = 1 | Xi = x ]
▶ response function µ(x) = E[Yi | Xi = x ]

Meta-Learning:
▶ treatment effect function τ(x) = ζ

(
Wi , Xi , Yi , e(x), µ(x)

)
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Identification
▶ Potential Outcomes Framework (Rubin 1974)

▶ potential outcome under treatment Yi(1) and under control Yi(0)

Assumption (Conditional Independence)(
Yi(0), Yi(1)

)
⊥⊥ Wi | Xi = x , ∀x ∈ supp(Xi).

Assumption (Common Support)
0 < P

[
Wi = 1 | Xi = x

]
< 1, ∀x ∈ supp(Xi).

Assumption (SUTVA)
Yi = Wi · Yi(1) + (1 − Wi) · Yi(0).

Assumption (Exogeneity)
Xi(0) = Xi(1).



Identification
Individual Treatment Effect (ITE):

ξi = Yi(1) − Yi(0).

Conditional Average Treatment Effect (CATE):

τ(x) = E
[
ξi | Xi = x

]
= E

[
Yi(1) − Yi(0) | Xi = x

]
= E

[
Yi(1) | Xi = x

]
− E

[
Yi(0) | Xi = x

]
= E

[
Yi(1) | Xi = x , Wi = 1

]
− E

[
Yi(0) | Xi = x , Wi = 0

]
= E

[
Yi | Xi = x , Wi = 1

]
− E

[
Yi | Xi = x , Wi = 0

]
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Meta-Learners

▶ decompose the causal problem into prediction problems (Künzel et al. 2019)

▶ generality in the choice of the learning method (Curth and Schaar 2021)

▶ do not modify the objective function, i.e. MSE minimization

▶ can be tuned and adapted to particular types of data, i.e. binary, sparse, etc.

▶ no restrictions in the choice of software libraries



Meta-Learners

▶ S-learner (Lo 2002): single response function

▶ T-learner (Hansotia and Rukstales 2002): two response functions

▶ X-learner (Künzel et al. 2019): two response functions and propensity score

▶ DR-learner (Kennedy 2020): two response functions and propensity score

▶ R-learner (Nie and Wager 2021): single response function and propensity score



Meta-Learners
Example

Algorithm 1: R-learner
Input: Training Data: {(Xi ,Yi ,Wi )}T , Validation Data: {(Xi )}V

Output: CATE: τ̂R(x) = Ê [Yi (1) − Yi (0) | Xi = x ]
begin

Response Function;
estimate: µ(x) = E [Yi | Xi = x ] in {(Xi ,Yi )}T ;

Propensity Score;
estimate: e(x) = P[Wi = 1 | Xi = x ] in {(Xi ,Wi )}T ;

Modified Outcome;

predict: ϕ̂i =
(

Yi −µ̂(Xi )
)(

Wi −ê(Xi )
) in {(Xi ,Yi ,Wi )}T ;

CATE Function;
estimate: τR(x) = E [ϕ̂i | Xi = x ] weighted by

(
Wi − ê(Xi )

)2 in {(Xi ,Yi ,Wi )}T ;
predict: τ̂R(Xi ) = Ê [ϕ̂i | Xi = x ] in {(Xi )}V

end
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Cross-Fitting

▶ using the same data for estimation of the nuisance functions and the CATE
function results in overfitting bias

▶ mitigate overfitting by estimating nuisance functions on one part of the data and
the CATE function on the other one

▶ sample-splitting reduces the bias but increases variance

▶ cross-fitting regains the efficiency by swapping the samples and averaging the
estimates (Chernozhukov et al. 2018)

▶ Newey and Robins (2018) propose double sample-splitting and double cross-fitting,
where each nuisance function is estimated on separate part of the data



Cross-Fitting

Figure 1: Illustration of the full-sample, sample-splitting and cross-fitting procedure.



Cross-Fitting
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Figure 2: CATE distributions under full-sample, sample-splitting and cross-fitting estimation.
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Analysis

Framework:
▶ identification based on the selection-on-observables strategy
▶ implementations based on the full-sample, sample-splitting and cross-fitting
▶ meta-learners based on the random forest algorithm

Simulation Study:
▶ synthetic and semi-synthetic simulations
▶ DGPs with unequal treatment shares, non-linearities and large-dimensions
▶ varying sample sizes up to 32’000 observations
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Results
Figure 3: Results for Main Simulation: unbalanced treatment and nonlinear CATE
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Results

Estimation Procedures:
▶ sample-splitting effectively reduces the bias in large samples
▶ cross-fitting additionally regains the full sample size efficiency
▶ full-sample estimation preferable in small samples when using machine learning

Meta-Learners:
▶ varying impacts of the estimation procedures on the performance of meta-learners
▶ X-learner suitable for imbalanced treatment shares in any version and sample size
▶ DR-learner suitable for balanced treatment shares using cross-fitting in large samples



Conclusion



Conclusion

Takeaway:
▶ The performance of meta-learners varies greatly but the choice of the meta-learner

and the estimation procedure can be guided by observable data characteristics.
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Meta-Learners

Algorithm 2: S-learner
Input: Training Data: {(Xi , Yi , Wi)}T , Validation Data: {(Xi)}V

Output: CATE: τ̂S(x) = Ê [Yi(1) − Yi(0) | Xi = x ]
begin

Response Function;
estimate: µ(x , w) = E [Yi | Xi = x , Wi = w ] in {(Xi , Yi , Wi)}T ;

CATE Function;
define: τ̂S(x) = µ̂(x , 1) − µ̂(x , 0);
predict: τ̂S(Xi) = µ̂(Xi , 1) − µ̂(Xi , 0) in {(Xi)}V

end



Meta-Learners

Algorithm 3: T-learner
Input: Training Data: {(Xi , Yi , Wi)}T , Validation Data: {(Xi)}V

Output: CATE: τ̂T (Xi) = Ê [Yi(1) − Yi(0) | Xi = x ]
begin

Response Functions;
estimate: µ(x , 1) = E [Yi | Xi = x , Wi = 1] in {(Xi , Yi)}T

Wi =1;
estimate: µ(x , 0) = E [Yi | Xi = x , Wi = 0] in {(Xi , Yi)}T

Wi =0;

CATE Function;
define: τ̂T (x) = µ̂(x , 1) − µ̂(x , 0);
predict: τ̂T (Xi) = µ̂(Xi , 1) − µ̂(Xi , 0) in {(Xi)}V

end



Meta-Learners
Algorithm 4: X-learner
Input: Training Data: {(Xi , Yi , Wi )}T , Validation Data: {(Xi )}V

Output: CATE: τ̂X (Xi ) = Ê [Yi (1) − Yi (0) | Xi = x ]
begin

Response Functions;
estimate: µ(x, 1) = E [Yi | Xi = x, Wi = 1] in {(Xi , Yi )}T

Wi =1;

estimate: µ(x, 0) = E [Yi | Xi = x, Wi = 0] in {(Xi , Yi )}T
Wi =0;

Imputed Effects;
predict: ξ̃1

i = Yi − µ̂(Xi , 0) in {(Xi , Yi )}T
Wi =1;

predict: ξ̃0
i = Yi − µ̂(Xi , 1) in {(Xi , Yi )}T

Wi =0;

Treatment Effects;
estimate: τ(x, 1) = E [ξ̃1

i | Xi = x, Wi = 1] in {(Xi , Yi )}T
Wi =1;

estimate: τ(x, 0) = E [ξ̃0
i | Xi = x, Wi = 0] in {(Xi , Yi )}T

Wi =0;

Propensity Score;
estimate: e(x) = P[Wi = 1 | Xi = x ] in {(Xi , Wi )}T ;

CATE Function;

define: τ̂X (x) = ê(x) · τ̂(x, 0) +
(

1 − ê(x)
)

· τ̂(x, 1);

predict: τ̂X (Xi ) = ê(Xi ) · τ̂(Xi , 0) +
(

1 − ê(Xi )
)

· τ̂(Xi , 1) in {(Xi )}V

end



Meta-Learners
X-learner

Figure 4: CATE Estimation via T-Learner vs. X-Learner (Künzel et al. 2019)



Meta-Learners
Algorithm 5: DR-learner
Input: Training Data: {(Xi ,Yi ,Wi )}T , Validation Data: {(Xi )}V

Output: CATE: τ̂DR(x) = Ê [Yi (1) − Yi (0) | Xi = x ]
begin

Response Functions;
estimate: µ(x , 1) = E [Yi | Xi = x ,Wi = 1] in {(Xi ,Yi )}T

Wi =1;
estimate: µ(x , 0) = E [Yi | Xi = x ,Wi = 0] in {(Xi ,Yi )}T

Wi =0;

Propensity Score;
estimate: e(x) = P[Wi = 1 | Xi = x ] in {(Xi ,Wi )}T ;

Pseudo Outcome;

predict: ψ̂i =
Wi

(
Yi −µ̂(Xi ,1)

)
ê(Xi )

−
(1−Wi )

(
Yi −µ̂(Xi ,0)

)
1−ê(Xi )

+ µ̂(Xi , 1) − µ̂(Xi , 0) in {(Xi ,Yi ,Wi )}T ;

CATE Function;
estimate: τDR(x) = E [ψ̂i | Xi = x ] in {(Xi ,Yi ,Wi )}T ;
predict: τ̂DR(Xi ) = Ê [ψ̂i | Xi = x ] in {(Xi )}V

end



Meta-Learners
DR-learner

Figure 5: Smoothing Spline Estimation of the Response Functions (Kennedy 2020)



Meta-Learners
DR-learner

Figure 6: CATE Estimation via T-Learner vs. DR-Learner (Kennedy 2020)



Results
Figure 7: Results for Simulation 1: balanced treatment and constant zero CATE
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Results
Figure 8: Results for Simulation 2: balanced treatment and complex nonlinear CATE
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Results
Figure 9: Results for Simulation 3: highly unbalanced treatment and constant non-zero CATE
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Results
Figure 10: Results for Simulation 4: unbalanced treatment and simple CATE
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Results
Figure 11: Results for Simulation 5: unbalanced treatment and linear CATE
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Results
Figure 12: Results for Semi-synthetic Simulation
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