

Conflicts of rural transformation: The effects of oil palm expansion in Indonesia

Elías Cisneros^{†‡}, Tobias Hellmundt[‡], and Krisztina Kis-Katos[‡]

[†]University of Texas at Austin, [‡]University of Göttingen

EEA-ESEM Milano 2022

Data & Methods

Main results

Additional results

Local violence in Indonesia

Violent deaths in Indonesia reported by NVMS

Source: National Violence Monitoring System (NVMS)

- High ethnic, religious and linguistic diversity
- Fall of Suharto Regime in 1998 followed by separatist civil wars
- Successful decentralisation and peace by 2005
- Monitoring of low-level violence until 2015

Data & Methods

Main results

Additional results

The palm oil boom

Palm oil production in Indonesia and Malaysia

Source: USDA/Gro Intelligence, 2021

Benefits

Economic growth and development

(Sayer et al., 2012; Euler et al., 2017; Gatto et al., 2017; Kraus et al., 2022)

Problems

Deforestation

(Gaveau et al., 2016; Austin et al., 2019)

Corruption (Cisneros et al., 2021)

 Social conflict, land disputes, violence, crime (Persch-Orth and Mwangi, 2016 Abram et al., 2017; Li, 2018; Kenny et al., 2020)

Data & Methods

Main results

Additional results

Land-use change and violent conflict

Theoretical framework

- Economic development may reduce conflict by increasing opportunity costs (Collier and Hoeffler, 1998, 2004)
- Land transformation can induce conflict through environmental scarcity, inequality and identity-based grievances (Homer-Dixon, 1991, 1994; Bryant, 1998; Stewart, 2000, 2008)
- Evidence is mixed and mostly limited to case studies (see De Jong et al., 2021)

Main results

Additional results

Land-use change and violent conflict

Theoretical framework

 Economic shocks in existing production regions could both increase or decrease violence (e.g., Dal Bo and Dal Bo, 2011; Dube and Vargas, 2013)

 \rightarrow This is a problem if expansion happens in proximity to existing production and is caused by the same shocks

- Conflicts can prevent land-use change by deterring economic activity (Burgess et al, 2015; Prem et al., 2020)
- Direct effect of land-use change on conflict is ambiguous
- Therefore we focus on the impact of booms creating strong incentives for additional expansion

Data & Methods

Main results

Additional results

Related literature

- Commodity prices, economic shocks, and conflict (e.g., Dal Bo and Dal Bo, 2011; Dube and Vargas, 2013; Bazzi and Blattmann 2014; Berman and Couttenier, 2015; Dube et al., 2016; Berman et al, 2017; McGuirk and Burke, 2020)
- ▶ Deforestation and conflict (Burgess et al, 2015; Prem et al., 2020)
- Conflict in Indonesia (Barron et al., 2009; Bazzi and Gudgeon, 2021; Bazzi et al., 2022)
- Natural resource curse (e.g., Collier and Hoeffler, 2005; Van der Ploeg, 2011; Ross, 2015)
- Economic development and conflict (Ray and Esteban, 2017)
- Environment and conflict (Bernauer et al., 2012)

Data & Methods •0000 Main results

Additional results

Research approach & findings

- Detailed spatio-temporal data on conflict events
- Remotely sensed yearly plantation maps
- Exogenous variation via oil palm suitability map
- Plantations are linked to conflict
- Incentives to expand production cause resource conflicts and land-use disputes

Data & Methods ○●○○○ Main results

Additional results

Dependent variable

Yearly number of violent conflict incidents

Violent incidents reported by NVMS (2005–2014) 100001 7500 Violent incidents 5000 2500 0 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Years Conflict Crime Domestic Lawenforcement

 Based on newspaper articles

- Geo-localized to subdistricts
- Subset to rural subdistricts
- Panel of

2,859 units
 10 years

Source: National Violence Monitoring System (NVMS)

Data & Methods 00000

Main results

Additional results

Dependent variable

Yearly number of violent conflict incidents

Intensity of violence in subdistricts reported by NVMS

(2005 - 2014)

Source: National Violence Monitoring System (NVMS)

Data & Methods

Main results

Additional results

Oil palm expansion

Detailed yearly plantation maps

Example of plantation expansion

- Yearly high-resolution oil palm plantation maps
- Based on remotely sensed data
- Intersect with subdistrict boundaries

Year of plantation expansion 2019

before 2001

Source: Based on Gaveau et al. (2021)

Data & Methods 00000

Main results

Additional results

Oil palm expansion Detailed yearly plantation maps

Subdistrict-level expansion of oil palm area (2005–2014)

- Yearly high-resolution oil palm plantation
- Based on remotely sensed data
 - Intersect with subdistrict boundaries

Source: Based on Gaveau et al. (2021)

Data & Methods

Main results

Additional results

Oil palm expansion pressure

Instrument based on aggregate trends and exogenous soil suitability

Redistribution of

- National expansion, NE_t, via
- subdistrict area,
 α_i, and
- Soil suitability to plant oil palm s_i

$$EP_{it} = \frac{NE_t \times \alpha_i s_i}{\sum_i \alpha_i s_i}$$

Source: Gaveau et al. (2021)

Data & Methods

Main results

Additional results

Oil palm expansion pressure

Instrument based on aggregate trends and exogenous soil suitability

Source: Maps for Global Agro-Ecological Zones (FAO/IIASA)

Introduction
00000

Data & Methods

Main results

Additional results

Empirical strategy

(1) OLS: $C_{it} = \beta_1 \text{ In New area}_{it} + \lambda_i + \eta_t + v_{it}$

(2) Reduced form equation:

$$C_{it} = \beta_2 \ln EP_{it} + \lambda_i + \eta_t + \varepsilon_{it}$$

(3) 2SLS estimation:

 $C_{it} = \beta_3 \ln New \, area_{it} + \lambda_i + \eta_t + \varepsilon_{it}$

In New area_{it} = $\beta_1 \ln EP_{it} + \lambda_i + \eta_t + \upsilon_{it}$

- In New area_{it} New oil palm area
- C_{it} Any conflict incidents
- EP_{it} Oil palm expansion pressure

Data & Methods

Main results

Additional results

Main results

Dependent variable:		Any conflict				
	OLS	OLS lagged exp.	Reduced form	2nd stage	1st stage	
	(1)	(2)	(3)	(4)	(5)	
<i>In</i> New oil palm area	0.001 (0.003)	0.005* (0.003)		0.178*** (0.065)	k	
In Expansion pressure			0.114*** (0.039)		0.643*** (0.087)	
Subdistrict and year FE Observations Subdistricts Adj. R ²	Yes 28,590 2,859 0.317	Yes 28,590 2,859 0.317	Yes 28,590 2,859 0.317	Yes 28,590 2,859	Yes 28,590 2,859	
Kleibergen-Paap <i>F</i> -stat.					55.03	

New plantations are not associated with immediate conflict

 \rightarrow delayed effects due to initially peaceful protests? (De Juan et al., 2022)

 \rightarrow reverse causality, economic channels?

Pressure to expand is strongly associated with rising conflict

Data & Methods

Main results

Additional results

Effects of new plantations over time

Economic shocks in oil palm areas and conflict intensity

Dependent variable:	In Conflict incidents				
_	(1)	(2)	(3)		
Drought months	-0.004 (0.003)		-0.004 (0.003)		
Oil palm area cover (2000) \times Drought months	0.032** (0.014)		0.037** (0.015)		
Oil palm area cover (2000) $ imes$ Pos. price shock		-0.023 (0.023)	0.000 (0.026)		
Oil palm area cover (2000) \times Neg. price shock		0.256* (0.145)	0.312** (0.143)		
subdistrict & year FE Observations Subdistricts Adj. R ²	Yes 28,470 2,847 0.454	Yes 28,590 2,859 0.455	Yes 28,470 2,847 0.455		

Negative income shocks increase conflict intensity

Data & Methods

Main results

Additional results

Main results

Dependent variable:		Any conflict				
	OLS	OLS lagged exp.	Reduced form	2nd stage	1st stage	
	(1)	(2)	(3)	(4)	(5)	
<i>In</i> New oil palm area	0.001 (0.003)	0.005* (0.003)		0.178*** (0.065)	k	
In Expansion pressure			0.114*** (0.039)		0.643*** (0.087)	
Subdistrict and year FE Observations Subdistricts Adj. R ²	Yes 28,590 2,859 0.317	Yes 28,590 2,859 0.317	Yes 28,590 2,859 0.317	Yes 28,590 2,859	Yes 28,590 2,859	
Kleibergen-Paap <i>F</i> -stat.					55.03	

New plantations are not associated with immediate conflict

 \rightarrow delayed effects due to initially peaceful protests? (De Juan et al., 2022)

 \rightarrow reverse causality, economic channels?

Pressure to expand is strongly associated with rising conflict

Data & Methods

Main results

Additional results

Effects of oil palm expansion pressure over time

Data & Methods

Main results

Additional results

Types of conflict

Dependent variable: Any conflict - Reduced form

Measured effects are mainly caused by resource-related conflicts

2SLS

Data & Methods

Main results

Additional results

Types of resource conflict

Dependent variable: Any resource conflict - Reduced form

Data & Methods

Main results

Additional results

Land scarcity and conflict

Dependent variable:	Any conflict					
	(1)	(2)	(3)	(4)	(5)	
In Expansion pressure	0.187*** (0.051)	0.276*** (0.094)	0.750*** (0.266)	0.095** (0.040)	0.742** (0.307)	
<i>In</i> Expansion pressure × Forest share (2004)	-0.111** (0.048)				-0.048 (0.067)	
<i>In</i> Expansion pressure × Share w/o plantation (2004)		-0.174* (0.092)			-0.204** (0.091)	
<i>In</i> Expansion pressure × <i>In</i> Subdistrict area			-0.033** (0.014)		-0.022 (0.016)	
In Expansion pressure $ imes$ Building density (2004)				0.369** (0.174)	0.141 (0.216)	
Subdistrict & year FE Observations Subdistricts	Yes 28,590 2,859	Yes 28,590 2,859	Yes 28,590 2,859	Yes 28,590 2,859	Yes 28,590 2,859	

 Expansion pressure causes conflict in subdistricts with less available land (ex-ante)

Main results

Additional results

Environmental grievances and conflict

Dependent variable:	Any conflict			
	(1)	(2)	(3)	
In Expansion pressure	0.397*** (0.086)	0.450*** (0.089)	0.400*** (0.087)	
<i>In</i> Expansion pressure × Total forest cover loss (2004)	0.503*** (0.145)			
In Expansion pressure × On-forest expansion		0.121*** (0.043)		
In Expansion pressure × Illegal expansion			0.067* (0.039)	
In Expansion pressure × In Forest area (2004)	-0.036*** (0.008)	-0.040*** (0.009)	-0.033*** (0.009)	
Subdistrict & year FE Observations	Yes 28,590	Yes 28,590	Yes 28,590	
Subdistricts	2,859	2,859	2,859	

 Oil palm expansion pressure intensifies conflict in subdistricts with high deforestation

Data & Methods

Main results

Additional results

Further heterogeneities?

- Social channels do not seem to play a role (population growth, ex-ante ethnic/religious fractionalization/polarization)
- Local development does not mitigate the effects (electrification, new schools/health facilities, NTL, ...)

Data & Methods

Main results

Additional results

Robustness

- Controlling for time trends in suitability and in various dimensions of remoteness (population density, accessibility, building density, forest cover) (Table)
- Controlling for expansion in neighboring subdistricts
- Placebo tests with randomly reshuffled suitability
- Clustering

Data & Methods

Main results

Additional results

Further steps

- Investigate scale-dependence (village and district level)
- Extend sample to include Papua
- Additional social channel: Transmigration villages
- Inequality as a mechanism?

Data & Methods

Main results

Additional results

Summary

- ► Oil palm boom in Indonesia is associated with local conflicts: → negative economic shocks in plantation areas increase conflict
 - \rightarrow incentives to expand production area increase conflict
- Land scarcity as a likely mechanism
- Environmental grievances reinforce the effect
- Implications: agricultural intensification needs to be accompanied by mechanisms to resolve conflicts; property rights need to be clearly defined

Types of conflict

Dependent variable: Any conflict - 2SLS

Social factors and conflict

Dependent variable:	In Conflict incidents			
Mediator:	Stand.	Initial	Initial	
	pop.	ethnic	religious	
	growth	fragm.	fragm.	
	(1)	(2)	(3)	
<i>ln</i> Oil palm expansion pressure	0.106***	0.116***	0.097***	
	(0.035)	(0.041)	(0.037)	
ln Oil palm expansion pressure \times Mediator	0.009	-0.060	-0.013	
	(0.014)	(0.059)	(0.076)	
Sub-district and year FE	Yes	Yes	Yes	
Remoteness × year FE	Yes	Yes	Yes	
Observations	26,720	26,180	26,180	
Sub-districts	2,672	2,618	2,618	
Adj. R ²	0.456	0.462	0.462	

Development and conflict

Dependent variable:	In Conflict incidents					
Mediator:	Standardized long-term change (2005-2013) in					
	Night- light intensity	Build- up area	Electri- fication (hh. share)	Primary school density (p. hh)	Health clinic density (p. hh)	Develop- ment index
	(1)	(2)	(3)	(4)	َ (5)	(6)
<i>ln</i> Oil palm expansion pressure	0.106*** (0.035)	0.106*** (0.035)	0.140*** (0.046)	0.106*** (0.035)	0.107*** (0.035)	0.107** (0.036)
ln Oil palm expansion pressure \times Mediator	-0.002 (0.028)	-0.010 (0.019)	-0.069 (0.060)	-0.010 (0.010)	0.022 (0.012)	-0.007 (0.022)
Village and year FE Remoteness × year FE Observations Villages Adj. R ²	Yes Yes 27,400 2,740 0.456	Yes Yes 27,400 2,740 0.456	Yes Yes 27,400 2,740 0.456	Yes Yes 27,400 2,740 0.456	Yes Yes 27,400 2,740 0.456	Yes Yes 27,400 2,740 0.456

back

Controlling for trends in suitability and remoteness

Dependent variable:	In Conflict incidents				<i>ln</i> New oil palm area
	OLS (1)	OLS (2)	Reduced form (3)	2nd stage (4)	1st stage (5)
<i>ln</i> New oil palm area	-0.004 (0.003)	-0.004 (0.003)		0.170*** (0.057)	
In Oil palm expansion pressure			0.106*** (0.035)		0.624*** (0.052)
Sub-district and year FE	Yes	Yes	Yes	Yes	Yes
Remoteness \times year FE	No	Yes	Yes	Yes	Yes
Suitability year trends	No	Yes	Yes	Yes	Yes
Observations	27,400	27,400	27,400	27,400	27,400
Sub-districts	2,740	2,740	2,740	2,740	2,740
Adj. R ² Kleibergen-Paap <i>F-</i> stat.	0.454	0.456	0.456	0.387	0.819 52.4

back