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Measuring and Bounding Experimenter Demand†

By Jonathan de Quidt, Johannes Haushofer, and Christopher Roth*

We propose a technique for assessing robustness to demand effects of 
findings from experiments and surveys. The core idea is that by delib-
erately inducing demand in a structured way we can bound its influ-
ence. We present a model in which participants respond to their beliefs 
about the researcher’s objectives. Bounds are obtained by manipulat-
ing those beliefs with “demand treatments.” We apply the method to 
11 classic tasks, and estimate bounds averaging 0.13 standard devia-
tions, suggesting that typical demand effects are probably modest. We 
also show how to compute  demand-robust treatment effects and how to 
structurally estimate the model. (JEL C83, C90, D83, D91)

A basic concern in experimental work with human participants is that, knowing 
that they are being experimented on, the participants may change their behavior. 
Specifically, participants may try to infer the experimenter’s objective from their 
treatment, and then act accordingly (Orne 1962; Rosenthal 1966; Zizzo 2010). For 
instance, participants who believe the researcher wants to show that people  free-ride 
in public good games might play more selfishly than they otherwise would. Thus, 
instead of measuring the participant’s “natural” choice, the data are biased by an 
unobservable experimenter demand effect. Demand effects pose a threat to external 
validity, because participants would make different choices if the experimenter were 
absent. They can affect estimates of average behavior and treatment effects, and 
have been raised as a concern in the context of lab experiments (List et al. 2004; List 
2006; Levitt and List 2007), field experiments (Allcott and Taubinsky 2015; Dupas 

The essence of their problem:
Estimating upper and lower bounds (θL, θU) on some effect θ.
The bounds come from separate subsamples.
As a result, occasionally θ̂L > θ̂U .
Established CI [θ̂L − 1.96SEL, θ̂U + 1.96SEU ] can be short or empty.
Isn’t such inference spuriously precise?
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That is a very good question!

It has been discussed in econometrics:
In the refereeing process of my own 2009 paper.
Ponomareva and Tamer (2011) first to point out spurious precision.
Molinari (2020) discusses in detail.
Andrews and Kwon (2019):
General but delicate (several tuning parameters) treatment.
This paper is the opposite extreme:
Only the motivating example.
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The Setting

We are interested in θ ∈ [θL, θU ].

We have estimators(
θ̂L
θ̂U

)
∼ N

((
θL
θU

)
,
(

σ2
L ρσLσU

ρσLσU σ2
U

))
with (σL,σU , ρ) known.

Of course, this can be the asymptotic experiment. Still restrictive.
Counterexample: Intersection bounds.
Of special interest: ρ = 0 (independent samples).
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Following Imbens and Manski (2004), we want a confidence interval for θ:

inf
θ∈[θL,θU ]

Pr(θ ∈ CI) = .95.

The easiest way to do this depends on ∆ ≡ θU − θL.

If ∆ is large, inference is one-sided and we can use

CI∞ ≡ [θ̂L − 1.64σL, θ̂U + 1.64σU ].

But if ∆ ≈ 0, we need to use

CI0 ≡ [θ̂L − 1.96σL, θ̂U + 1.96σU ].

(Can be minimally refined using ρ).

Naively basing the case distinction on ∆̂ = θ̂U − θ̂L will fail if ∆ ≈ 0.

This is well understood and is related to post-model selection inference as well as
inference near boundary of parameter space.
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The fix:
Conservative pre-test or shrinkage estimation
(Stoye, 2009; see also Andrews and Soares, 2010; Bugni, 2010; Canay, 2010).

We shrink ∆̂ to 0 to ensure ∆ ≈ 0⇒ ∆̂ = 0 (in some stochastic sense).

A separate problem:
The interval can be empty.
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What if we don’t want that?

Idea (Andrews/Kwon 2019):
Force coverage of pseudotrue parameter value

θ∗ =
σLθU + σUθL
σL + σU

.

Henceforth, a CI is valid if

inf
θ∈{θ∗}∪[θL,θU ]

Pr(θ ∈ CI) ≥ 1− α.
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An obvious CI for θ∗:

CIθ∗ ≡
[
θ̂∗ − 1.96σ∗, θ̂∗ − 1.96σ∗

]
θ̂∗ ≡ σLθ̂U + σU θ̂L

σL + σU

σ∗ ≡
√
2+ 2ρσLσU
σL + σU

.

A very heavy-handed fix:

Depending on pre-test, report CI0 ∪ CIθ∗ or CI∞ ∪ CIθ∗ .
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Horizontal axis is ∆ ≡ θU − θL, the length of ΘI .
∆ = 0 is point identification. ∆ < 0 is misspecification.

We see coverage for traditional CI and heavy-handed fix with ρ = 0.
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Horizontal axis is ∆ ≡ θU − θL, the length of ΘI .
∆ = 0 is point identification. ∆ < 0 is misspecification.

We see length for traditional CI and heavy-handed fix with ρ = 0.
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New proposal:

Take CIθ∗ into account when calibrating critical value.
Problem: Effect of ∆ on coverage is not any more monotonic.
In higher dimension, this makes for a very hard problem.
We will concentrate out globally least favorable value of ∆ ≥ 0.
No shrinkage, pre-testing, or tuning parameter.

This is pretty straightforward. But now things get interesting.
For a wide range of cases, ∆ =∞ is globally least favorable.
In those cases, can just report CI∞ ∪ CIθ∗ .
This is provably the case if ρ = 0.
In that case:
Just use a critical value of 1.64 (plus union with CIθ∗) to get .95 coverage.
Not obvious! (Discovered by simulation. I initially assumed a bug.)
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Formal Statement

Report
CIMA ≡ CIθ∗ ∪ [θ̂L − cσL, θ̂U + cσU ],

where c is calibrated such that

inf
θ∈{θ∗}∪[θL,θU ]

Pr(θ ∈ CIMA) ≥ .95

irrespective of the value taken by ∆.

Formally, after some simplification justified in the paper:

inf
∆≥0

Pr
(

Z1 − ∆− c ≤ 0 ≤ Z2 + c or |Z1 + Z2 − ∆| ≤
√
2+ 2ρ · 1.96

)
= .95,

where
(

Z1
Z2

)
∼ N

((
0
0

)
,
(

1 ρ
ρ 1

))
.
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Formal Statement

Report
CIMA ≡ CIθ∗ ∪ [θ̂L − cσL, θ̂U + cσU ],

where c is calibrated such that

inf
θ∈{θ∗}∪[θL,θU ]

Pr(θ ∈ CIMA) ≥ .95

irrespective of the value taken by ∆.

Why concentrate out ∆ rather than using an estimator ∆̂?
As before, one would then have to adjust for pre-estimation.
Among other things, this would introduce a tuning parameter.
The coverage probability is not monotonic in ∆, so shrinking ∆ in a specific
direction will not work.
Can prove that it suffices to consider coverage only at θU , so computation is
an easy grid search on the real line.
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Formal Statement

Report
CIMA ≡ CIθ∗ ∪ [θ̂L − cσL, θ̂U + cσU ],

where c is calibrated such that

inf
θ∈{θ∗}∪[θL,θU ]

Pr(θ ∈ CIMA) ≥ .95

irrespective of the value taken by ∆.

Can easily compute c as a function of ρ.
ρ ≤ 0.8 0.85 0.9 0.95 0.98 1
α = .1 1.28 1.29 1.31 1.36 1.44 1.64
α = .05 1.64 1.65 1.65 1.70 1.76 1.96
α = .01 2.33 2.33 2.33 2.34 2.40 2.58
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Formal Statement

Report
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Except for large ρ, it’s just the one-sided critical value!
Again, for ρ = 0 this is provable.
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This plots coverage at c = 1.64 as function of ∆ ≥ 0 for ρ = 0.
Coverage is not monotonic in ∆.
Coverage is minimized as ∆→∞.
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Bet Proofness

The new interval is bet proof.

What does that mean?
Consider an “inspector" who can place a bet against coverage at nominally
fair odds...
...after seeing the data (but before seeing the true parameter value).
Bet-proofness obtains if there exists a parameter value for which the
inspector cannot win on average.
In nontrivial settings, this is hard to attain or prove
(Mueller-Norets 2016, statistics literature before that).
No interval that can be empty fulfils it:
The inspector can bet against coverage for empty intervals.
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Bet Proofness

The new interval is bet proof.

Why is it true?
The lucky parameter configuration is θL = θU ⇔ ΘI = {θL}.
In this case, we also have ΘI = {θ∗}.
By a theorem in Wallace (1959), CIθ∗ is bet-proof for θ∗.
Bet-proofness extends to supersets.
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So how does the interval perform?
This is the previous graph.
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So how does the interval perform?
The green curve is the new interval’s size control.
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Here is the same comparison for length.
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Here is coverage again, but now ρ = .7 (≈ best case).
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Here is length again, but now ρ = .7.
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So how does the interval perform?
Here is coverage again, but now using c = 1.64 at ρ = .95.
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So how does the interval perform?
For very high ρ, worst-case ∆ is interior and one-sided critical value does not do.
(And is not suggested; the figure is strictly illustrative.)
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Empirical Application

Let’s go back to the paper that started it all. For some experiments:

Game [θ̂L, θ̂U ] CIMA CITI rel. length

Ambiguity Aversion [0.499,0.557] [0.459,0.597] [0.458,0.598] 0.97
Effort: 1 cent bonus [0.469,0.484] [0.448,0.503] [0.448,0.504] 0.97
Effort: 0 cent bonus [0.343,0.331] [0.318,0.356] [0.315,0.358] 0.91
Lying [0.530,0.537] [0.512,0.556] [0.508,0.560] 0.83
Time [0.766,0.770] [0.722,0.814] [0.712,0.824] 0.82
Trust Game 1 [0.430,0.455] [0.388,0.493] [0.387,0.495] 0.96
Trust Game 2 [0.348,0.398] [0.328,0.426] [0.327,0.427] 0.97
Ultimatum Game 1 [0.443,0.470] [0.422,0.493] [0.422,0.494] 0.97
Ultimatum Game 2 [0.362,0.413] [0.342,0.436] [0.341,0.436] 0.97

The new interval makes a difference.

In one row, θ̂L > θ̂U . The new interval is in fact CIθ∗ and is still shorter.
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Summary

For the simple but empirically salient case of interval identification with
(asymptotically) jointly normal estimators, the new CI:

Is never empty or very short.
Is bet-proof in the asymptotic experiment.
Covers a well-defined pseudotrue parameter even if the model is misspecified.
Is trivial to compute and has no tuning parameters.
Has commanding size control and length.
Improves inference in the motivating empirical example.
Has already seen another empirical application (Lee and Weidner, 2021).

Thank You!
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