News Selection and Asset Pricing Implications

Charles Martineau

University of Toronto

Jordi Mondria

University of Toronto

EEA 2022

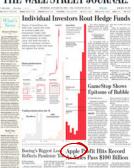
This paper

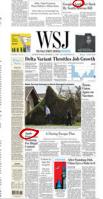
- objective: study the role of editorial decisions in financial markets
 - public information normally taken as given
- what we do: theoretical framework of editorial decisions and analyze asset pricing implications
- main takeaway: editorial decisions about one firm will have implications about non-reported firms

THE WALL STREET JOURNAL.

THE WALL STREET JOURNAL

WALL STREET JOURNAL





THE WALL STREET JOURNAL.

WALL STREET JOURNAL.

THE WALL STREET JOURNAL. THE WALL STREET JOURNAL.

THE WALL STREET JOURNAL

THE WALL STREET JOURNAL

THE WALL STREET JOURNAL

Main Results

- Man-bites-dog signals: reports about firm with the highest uncertainty
- Editorial choice state-dependent: story affects reported and unreported firms
- asymmetric response of asset prices to positive and negative news
- public information does not necessarily crowd out private information

Public information crowding out?

Reconcile the apparent disconnect between literatures

- info acquisition: public signal decreases incentives to acquire info
- 2 attention allocation: more info acquisition when firms on media

Our framework: public information leads to more info acquisition

Empirically

- large literature: implications of firm news to returns and volatility
- common view: low media coverage leads to more uncertainty
- our paper: depends on expected media coverage
 - for high priority firm, lower than expected coverage leads to less uncertainty
 - for low priority firm, lower than expected coverage leads to more uncertainty

RelatedLiterature

- Theoretical framework: Admati & Pleiderer (1986, 1987)
- Theory of media: Nimark (2014), Nimark & Pitschner (2019)
- Impact of media in financial markets: Fang & Peress (2009),
 Goldman, Martel & Schneemeier (2020)

Conceptual Framework

- Three dates, t = 0, 1, 2
- N+1 assets are traded:
 - a riskless asset has a constant value of 1 and in unlimited supply
 - N independent risky assets (N large number)
- Two types of agents:
 - continuum of investors of measure one: trade assets
 - one media outlet: publishes news story about one firm

Conceptual Framework: risky assets

Each risky asset $n \in N$

- ullet traded at date t=1 for price p_n with noisy supply $ilde{z}_n \sim N(0, au_z^{-1})$
- ullet pays an uncertain cash flow $\tilde{v}_n = \bar{\delta} + \tilde{\rho}_n \tilde{\delta}_n$ at date t=2

Cash flows \tilde{v}_n have three components:

- ullet constant benchmark cash flow $ar{\delta}$
- ullet firm-specific risk regime $\tilde{
 ho}_n$: $\left\{ egin{array}{ll}
 ho_{h,n} & {
 m with probability} \ \pi_n \
 ho_{l,n} & {
 m with probability} \ 1-\pi_n \end{array}
 ight.$
- ullet firm-specific risk factor $ilde{\delta}_n \sim \mathit{N}(0, au_\delta^{-1})$
- all random variables are independent

Conceptual Framework: media outlet

Media outlet publishes a story about one of the firms $n^* \in N$ at t = 0:

- reveals $\tilde{\rho}_{n^*}$ (e.g., free info from the headline of the front-page)
- ② provides a public signal $\tilde{y}_{n^*} = \tilde{\delta}_{n^*} + \eta_{n^*}$, where $\eta_{n^*} \sim N(0, \tau_{\eta}^{-1})$ (e.g, pay-to-read news article)

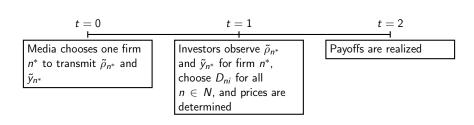
As in Admati & Pleiderer (1986, 1987), monopolistic media profits:

- ullet value of signal $ilde{y}_{n^*}$ is the certainty equivalent of the information
- assumption ensures that all investors pay for the public signal

Conceptual Framework: investors

• Each investor *i* has mean-variance preferences:

$$\label{eq:euler} \textit{EU}_{\textit{i}} = \textit{E}_{\textit{0}} \left[\textit{E}_{\textit{1}} [\tilde{\textit{W}}_{\textit{i}} \mid \textit{I}_{\textit{i}}] - \frac{\gamma}{2} \textit{V}_{\textit{1}} [\tilde{\textit{W}}_{\textit{i}} \mid \textit{I}_{\textit{i}}] \right],$$


where \tilde{W}_i final wealth, W_{0i} initial endowment, $\gamma > 0$ risk aversion

Budget constraint:

$$\widetilde{W}_i = W_{0i} - \phi(\widetilde{y}_{n^*}) + \sum_{n=1}^N D_{ni}(\widetilde{v}_n - p_n),$$

where D_{ni} asset holdings, $\phi(\tilde{y}_{n^*})$ monetary value of \tilde{y}_{n^*}

Conceptual Framework: timeline

Investor's Problem

Mean-variance + independent assets \Rightarrow each asset studied independently

Three information scenarios:

- ${\bf 0}$ investor has no information about $\tilde{\rho}_n$ and $\tilde{\delta}_n$
- ② investor knows the realization of $\tilde{
 ho}_n$, but no information about $\tilde{\delta}_n$
- $oldsymbol{\circ}$ investor knows the realization of $\tilde{\rho}_n$ and public signal \tilde{y}_n

Media Problem

Media outlet chooses a news story about one firm to maximize their profits

- **①** media outlet observes the realization of $\tilde{\rho}_n$ for all $n \in N$
- - Admati & Pleiderer (1986, 1987): monopolistic media profits
 - ullet value of a private signal \tilde{y}_n is the certainty equivalent of the information
- **3** chooses to publish a story about only one firm $n^* \in N$

Media Problem: Result 1

- ullet Media profits for all firms only differ by the realization of $ilde{
 ho}_n$
- Result 1: $Profit_n(\tilde{\rho}_n)$ is increasing in $\tilde{\rho}_n$
- ullet Implication: publish story about firm with highest realization of $ilde{
 ho}_n$
- How to optimize? rank all firms by $\rho_{h,n}$
- set firm n=1 as the firm with the highest $\rho_{h,n}$
- set n = N as the firm with the lowest $\rho_{h,n}$.

Asset Pricing Implications

When media publishes a story about a firm n^* and $\tilde{
ho}_{n^*}=
ho_{h,n^*}$, then

- Firm n^* is in a high volatility risk-regime ρ_{h,n^*} and asset prices with a signal y_{n^*} and $\tilde{\rho}_{n^*}=\rho_{h,n^*}$
- ② Any firm n such that $n < n^*$ is in a low volatility risk-regime $\rho_{I,n}$ and asset prices with no public signal and $\tilde{\rho}_n = \rho_{I,n}$
- **3** Any firm n such that $n>n^*$ is in an unknown risk-regime and asset prices with no public signal and unknown $\tilde{\rho}_n$

Corollary: A firm n' with the exact same realizations of cash flows may have different asset prices depending on the story reported in the news

Asymmetric Response of Asset Prices

Stronger price reaction to negative news:

- 1) Publication implies high risk regime and a price decrease
- 2.a) Negative news generate even stronger negative price reaction
- 2.b) Positive news generate a positive price reaction that counteracts the initial decrease

Linking Theory to Data

Main implication: editorial decisions about one firm will have implications about *non-reported* firms

- publication ranking in the model is only based on the risk regime
- model is a simplification of how editorial decisions are taken in reality
- there are many more drivers of news coverage, i.e., size of the firm
- we can rank firms by publication priority through an empirical analysis

Linking Theory to Data

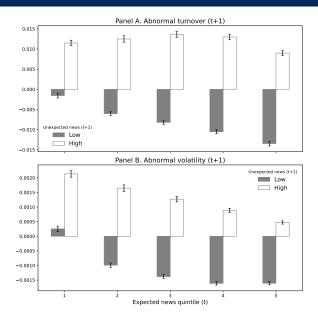
Empirical analysis:

- study the determinants of new coverage to determine the expected news coverage of a firm
- analyze the asset pricing implications of receiving more or less than the expected news coverage

Model implications:

- Firms with high expected news coverage: lower than expected news ⇒ low risk regime
- Firms with low expected news coverage: lower than expected news ⇒ unknown risk regime

Empirical Results


- editorial articles from the Wall Street Journal, Dow Jones and Market Watch through Ravenpack
- US-traded stocks from CRSP: returns, trade volume, price volatility, turnover...
- sample period is from Jan 2000 to Dec 2021
- sum the number of articles per month for each firm

Empirical Results: main drivers to news coverage

Table: Firm Characteristics and News

	(1)	(2)	(3)	(4)	(5)
Ln MCAP	0.174***	0.147***	0.147***	0.156***	0.158***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.004)
$\mathbb{1}_{EA}$	0.227***	0.226***	0.216***	0.208***	0.209***
	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)
Analyst		0.094***	0.070***	0.067***	0.070***
		(0.004)	(0.004)	(0.004)	(0.004)
Turnover			0.090***	0.072***	0.069***
			(0.003)	(0.003)	(0.003)
Ю			-0.006*	0.001	-0.008**
			(0.004)	(0.004)	(0.004)
Ret				-0.005*	-0.004
				(0.002)	(0.003)
IVOL				0.052***	0.047***
				(0.003)	(0.003)
Age				0.002***	0.002***
				(0.000)	(0.000)
R ²	0.195	0.203	0.213	0.215	0.214
N	1,023,890	1,023,890	1,023,890	1,018,168	1,018,168
Industry F.E.	N	N	N	N	Υ
Year-Quarter F.E.	Y	Y	Y	Y	Y

Empirical Results

Empirical Results

Table: Asymmetric Response to Positive and Negative News

(1)	(2)	(3)	(4)	(5)
0.065***	0.048***	0.049***	0.043***	0.043***
(0.003)	(0.005)	(0.005)	(0.005)	(0.005)
	0.001	0.001	0.002	0.002
	(0.001)	(0.001)	(0.001)	(0.001)
	0.038***	0.035***	-0.005	-0.003
	(800.0)	(800.0)	(0.009)	(0.009)
			0.042***	0.037***
			(0.011)	(0.011)
			-0.001	-0.001
			(0.002)	(0.002)
				0.017**
				(0.007)
				0.012***
			` ,	(0.001)
				1.130***
(0.029)	(0.029)	(0.026)	(0.029)	(0.027)
0.11	0.11	0.12	0.11	0.12
457,892	457,892	446,231	457,892	446,231
N	N	Υ	N	Υ
	1.156*** (0.029) 0.11 457,892	0.065*** 0.048*** (0.003) (0.005) 0.001 (0.001) 0.038*** (0.008) 1.156*** 1.155*** (0.029) (0.029) 0.11 0.11 457,892 457,892	0.065*** 0.048*** 0.040*** (0.003) (0.005) (0.005) 0.001 0.001 (0.001) (0.001) 0.038*** 0.035*** (0.008) (0.008) 1.156*** 1.155*** 1.129*** (0.029) (0.029) (0.026) 0.11 0.11 0.12 457,892 457,892 446,231	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Conclusion

Main takeaways:

- editorial decisions about one firm will have implications about non-reported firms
- failing to capture the information implications of editorial decisions may lead the econometrician to estimate a misspecified asset pricing model
- 3 news stories do not crowd out private information