Robust and efficient inference for non-regular semiparametric models

EEA 2022, Università Bocconi

Adam Lee

22 August 2022

Motivation

Motivation

- Estimation theory in (semi-)parametric models is developed under regularity conditions
- A ubiquitous condition is non-singularity of the (efficient) information matrix, $\tilde{\mathcal{I}}$
 - $\,\triangleright\,$ In the parametric case, this non-singularity pprox (local) identification
 - ▷ In the semiparametric case, the connection is less direct: singularity may imply failure of (local) identification or irregular (local) identification (Escanciano, 2022)
- Singularity of $ilde{\mathcal{I}} pprox$ non-existence of regular estimators (Chamberlain, 1986)
 - ▷ Regularity requires estimators to converge (weakly) in a locally uniform manner
 - $\triangleright~$ If we are "too close" to a point where $\tilde{\mathcal{I}}$ is singular, this breaks down
 - $\triangleright\,$ Hypothesis tests based on these estimators perform poorly
 - E.g. weak identification
- Today: we can still construct tests with desirable properties

• Observe i.i.d. samples of $(Y, X_1, X_2) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{K}$:

$$Y = f(X_1 + \theta' X_2) + \epsilon, \qquad \mathbb{E}[\epsilon | X] = 0.$$

- $\bullet\ +\ moment$ and smoothness conditions
- Goal: test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$
 - \triangleright If f' = 0, then efficient information is singular (identically 0)
 - In this case, θ is not identified (Ichimura, 1993; Horowitz, 2009)
 - \triangleright If f' is close to 0, θ is weakly identified
 - Standard asymptotic approximations are poor
 - As is typical in cases of weak identification, size distortions occur

t-statistics in the single index model

Based on 5000 Monte Carlo replications. *t*-statistic computed from Ichimura (1993)-style estimate of θ . $\theta = 1, \epsilon \sim \mathcal{N}(0, 1), X \sim U[-1, 1], b = 10.$

t-statistics in the single index model

Based on 5000 Monte Carlo replications. *t*-statistic computed from Ichimura (1993)-style estimate of θ . $\theta = 1, \epsilon \sim \mathcal{N}(0, 1), X \sim U[-1, 1], b = 10.$

This paper

- A class of generalised C(α) statistics converge (weakly) locally uniformly \triangleright Including when $\tilde{\mathcal{I}}$ is singular
 - \triangleright C(α) tests based on these statistics control size (locally uniformly)
 - $\triangleright~$ Class includes the efficient score function
- **2** $C(\alpha)$ based on the efficient score function is minimax optimal whenever rank $(\tilde{\mathcal{I}}) > 0$. \triangleright Includes both the classical case of full rank $\tilde{\mathcal{I}}$ and when it is rank deficient
 - ▷ Latter case applies in e.g. models underidentified for certain nuisance parameter values
- **3** Two examples covered in detail:
 - ▷ Single index model
 - Independent components analysis

[▶] Related literature

Testing approach

Setup & score functions

- Semiparametric likelihood model for (i.i.d.) observations of $\mathcal{W} \in \mathcal{W}$
- Model: $\mathcal{P} = \{ P_{\gamma} : \gamma \in \Gamma \}$, with corresponding densities $p_{\gamma} \ll \nu$
- Parameters: $\gamma = (\theta, \eta) \in \Gamma = \Theta \times \mathcal{H}, \ \Theta \subset \mathbb{R}^{d_{\theta}}$ open, \mathcal{H} a metric space

 \triangleright θ : parameter of interest; η : nuisance parameter

• Analogously to the parametric case, we can define score functions for all parameters

 \triangleright Each $B_{\gamma}h$ is a pathwise directional derivative of $\eta \mapsto \log p_{\gamma}$ in direction $h \in H_{\eta}$

Some more technical details

Generalised $C(\alpha)$ -statistics

• There exist functions $g_\gamma:\mathcal{W} o\mathbb{R}^{d_ heta}$ such that $\mathbb{E}_\gamma g_\gamma(\mathcal{W})=0$ and

$$\mathbb{E}_{\gamma}\left[g_{\gamma}(W)\left[B_{\gamma}h\right](W)\right] = 0 \qquad \text{for all} \quad h \in H_{\eta}. \tag{1}$$

- ▷ If $f_{\gamma} : \mathcal{W} \to \mathbb{R}^{d_{\theta}}$ is square-integrable & mean-zero, its orthogonal projection onto the orthogonal complement of $\overline{\text{lin}} \{B_{\gamma}h : h \in H_{\eta}\} \subset L_2(P_{\gamma})$ satisfies (1).
- Under local asymptotic normality,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}g_{\gamma}(W_{i})\overset{P_{n,\tau_{n},h_{n}}}{\leadsto}\mathcal{N}\left(\mathbb{E}_{\gamma}\left[g_{\gamma}\dot{\ell}_{\gamma}^{\prime}\right]\tau,\ V_{\gamma}\right),\quad V_{\gamma}:=\mathsf{Var}_{\gamma}(g_{\gamma}(W_{i})),$$

where P_{n,τ_n,h_n} is a contiguous perturbation of P_{γ} in direction $(\tau_n, h_n) \rightarrow (\tau, h)$. \triangleright This holds regardless of the rank of V_{γ}

- \triangleright *h* does not appear in the limit because of (1)
 - Consequence of Le Cam's third lemma

Generalised $C(\alpha)$ -statistic

• g_{γ} and V_{γ} will generally be unknown, so replace with estimates $\hat{g}_{n,\theta}$, $\hat{V}_{n,\theta}$,

$$\hat{S}_{n, oldsymbol{ heta}} := \left(rac{1}{\sqrt{n}}\sum_{i=1}^n \hat{g}_{n, oldsymbol{ heta}}(W_i)
ight)' \hat{V}_{n, oldsymbol{ heta}}^\dagger \left(rac{1}{\sqrt{n}}\sum_{i=1}^n \hat{g}_{n, oldsymbol{ heta}}(W_i)
ight).$$

• Provided $\hat{g}_{n,\theta}$, $\hat{V}^{\dagger}_{n,\theta}$ are sufficiently good estimators, by the previous convergence result,

$$\hat{S}_{n, heta} \stackrel{P_{n, 0, h_n}}{\leadsto} \chi^2_r, \qquad ext{for } r = ext{rank}(V_\gamma).$$

- \triangleright This requires $\hat{V}_{n,\theta}^{\dagger} \xrightarrow{P} V_{\gamma}^{\dagger}$, the Moore Penrose inverse of V_{γ}
- \triangleright Can be achieved by truncating the eigenvalues of an initial estimate of V_{γ} at a certain rate (Dufour and Valéry, 2016)

Eigenvalue truncation

Generalised $C(\alpha)$ test

- We can use this result to form a C(α) style test
 - $\triangleright~$ Score type test $\implies~$ everything evaluated / estimated under the null hypothesis
 - \triangleright Circumvents the issue that θ may not be consistently estimable (e.g. weak identification)
- Reject if \hat{S}_{n,θ_0} exceeds 1α quantile of $\chi^2_{\hat{r}_n}$ where $\hat{r}_n \xrightarrow{P} r$.
 - \triangleright Same eigenvalue truncation idea yields a \hat{r}_n with this property
- This test is correctly sized (locally uniformly)
 Follows from the previous convergence result
- If $g_{\gamma} = \tilde{\ell}_{\gamma}$ the resulting test is minimax optimal whenever $r > 0 \& H_{\eta}$ is a linear space. $\downarrow \tilde{\ell}_{\gamma} := \dot{\ell}_{\gamma} - \Pi \left(\dot{\ell}_{\gamma} | \overline{\lim} \{ B_{\gamma} h : h \in H_{\eta} \} \right)$
 - $\,\triangleright\,$ However, $\widetilde{\ell}_{\gamma}$ can be difficult to derive / estimate in some models
 - \triangleright Alternative (inefficient) choices may be much simpler than $ilde{\ell}_\gamma$ in practice

Single index model

• Consider the single index model:

$$Y = f(X_1 + X'_2 \theta) + \epsilon, \quad \mathbb{E}[\epsilon | X] = 0, \quad f \in \mathscr{F}$$

- F: functions bounded and continuously differentiable with bounded derivative a.e. on
 D := {x₁ + x₂'θ : θ ∈ Θ, x ∈ supp(X)}.
- + Regularity conditions: smoothness, finite moments etc.
- Notation:

$$V_{\theta} := X_1 + X'_2 \theta, \qquad \sigma^2 := \mathbb{E}[\epsilon^2].$$

• We will base our statistic on the function

$$g_{\gamma}(W) := \sigma^{-2}(Y - f(V_{\theta}))f'(V_{\theta})[X_2 - \mathbb{E}[X_2|V_{\theta}]]$$

▷ The efficient score function in this model was derived by Newey and Stoker (1993):

$$ilde{\ell}_{\gamma} = \omega(X)(Y - f(V_{m{ heta}}))f'(V_{m{ heta}}) \left[X_2 - rac{\mathbb{E}\left[\omega(X)X_2|V_{m{ heta}}
ight]}{\mathbb{E}\left[\omega(X)|V_{m{ heta}}
ight]}
ight], \quad \omega(X) := \mathbb{E}[\epsilon^2|X]^{-1}.$$

 \triangleright g_{γ} is a special case of $\tilde{\ell}_{\gamma}$ corresponding to $\omega(X) = \sigma^{-2}$, i.e. conditional homoskedasticity

- g_{γ} satisfies our key uncorrelatedness condition (1)
- We need to estimate g_{γ} and V_{γ}

• Our moment condition

$$g_{\gamma}(W) := \sigma^{-2}(Y - f(V_{\theta}))f'(V_{\theta})[X_2 - \mathbb{E}[X_2|V_{\theta}]]$$

- Unknowns: σ^2 , f, f' and Z where $Z(V) := \mathbb{E}[X_2|V]$.
- Given an estimate \hat{f}_n of f, put

$$\hat{\sigma}_n^2 := \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{f}_n(V_{\theta,i}))^2.$$

For the nonparametric parts, a wide range of non-parametric estimators are possible

 Theory given for generic split – sample estimators in paper

Single index model: Monte Carlo

• Draw 5000 Monte Carlo replications from

$$Y = f(X_1 + X_2\theta) + \epsilon, \quad \mathbb{E}[\epsilon|X] = 0,$$

where $f \in \{f_1, f_2, f_3\}$, $f_1(v) \propto a + \frac{1-a}{1+\exp(-v)}, \quad f_2(v) \propto \exp\left(\frac{-v^2}{2a^2}\right), \quad f_3(v) = av^2,$

for various choices of a.

- Test the null $H_0: \theta = 1$
- Compare size of $C(\alpha)$ style test and Wald test based on estimator of Ichimura (1993)
- When $a \approx a_{\star}$, $f'(v) \approx 0 \implies \tilde{\mathcal{I}}$ is close to singularity

Single index model: Monte Carlo

Table 1: Empirical rejection frequencies (%), $\epsilon \sim \mathcal{N}(0,1)$, $X_i \sim U[-1,1]$, $\theta = 1$

	$f_1(v) \propto a + (1-a)/(1+\exp(-v))$			$f_2(v) \propto \exp(-v^2/(2a^2))$			$f_3(v) = av^2$		
п	<i>a</i> = 0.4	<i>a</i> = 0.6	<i>a</i> = 0.8	a = 3	a = 4	<i>a</i> = 5	<i>a</i> = 0.45	<i>a</i> = 0.35	<i>a</i> = 0.25
Ŝ									
400	5.18	4.84	5.48	5.92	5.42	5.26	5.78	5.60	5.50
600	4.82	5.68	5.32	5.68	5.28	5.88	5.56	5.64	5.76
800	5.34	4.96	5.44	5.44	4.84	5.68	5.44	4.66	4.76
1000	5.08	5.84	5.16	5.36	5.62	4.98	5.56	4.94	4.98
W									
400	14.08	18.68	12.22	21.54	19.96	17.86	21.38	18.36	17.54
600	11.32	14.40	13.76	18.30	21.40	16.44	23.30	19.90	18.12
800	10.82	12.90	15.88	15.14	21.34	19.28	21.32	21.34	19.42
1000	9.86	12.36	17.60	14.72	20.34	20.26	21.70	22.28	18.18

Based on 5000 Monte Carlo replications. \hat{S} is the C(α) – style test.

Single index model: Monte Carlo

Summary

- Many models are non-regular for certain values of nuisance parameters
- $\bullet\,$ These nuisance parameters can be either finite or $\infty\text{-dimensional}$
 - ▷ E.g.: Single index model with (close to) flat link function
 - \triangleright Many other ∞ -dimensional examples, e.g.:
 - Independent components analysis model with (weakly) non-Gaussian errors
 Mixed proportional hazard model with (close to) Weibull baseline hazard
- In many such models, a class of generalised $C(\alpha)$ tests have good properties
 - Correctly sized (locally uniformly)
 - $\triangleright~$ If based on efficient score function, minimax optimal provided variance has positive rank
 - Simulation evidence suggests these asymptotics are a good guide to finite sample performance

Thank you!

References

- Amari, S.-I. and Cardoso, J.-F. (1997), "Blind source separation-semiparametric statistical approach," IEEE Transactions on Signal Processing, 45, 2692–2700.
- Andrews, D. W. K. and Cheng, X. (2012), "Estimation and Inference With Weak, Semi-Strong, and Strong Identification," *Econometrica*, 80, 2153–2211.
- Andrews, I. and Mikusheva, A. (2015), "Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models," Quantitative Economics, 6, 123–152.
- Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1998), *Efficient and Adaptive Estimation for Semiparametric Models*, New York, NY, USA: Springer.
- Bravo, F., Escanciano, J. C., and Van Keilegom, I. (2020), "Two-step semiparametric empirical likelihood inference," Ann. Statist., 48, 1-26.
- Cattaneo, M. D., Farrell, M. H., and Feng, Y. (2020a), "Large sample properties of partitioning-based series estimators," The Annals of Statistics, 48, 1718 1741.
- (2020b), "Supplement to "Large sample properties of partitioning-based series estimators"," Https://doi.org/10.1214/19-AOS1865SUPP.
- Chamberlain, G. (1986), "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, 32, 189-218.
- Chen, A. and Bickel, P. J. (2006), "Efficient independent component analysis," The Annals of Statistics, 34, 2825 2855.
- Chen, X. (2007), "Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models," Elsevier, vol. 6 of Handbook of Econometrics, pp. 5549–5632.

References ii

- Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., and Robins, J. M. (2022), "Locally Robust Semiparametric Estimation," *Econometrica*, 90, 1501–1535.
- Chernozhukov, V., Hansen, C., and Spindler, M. (2015), "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, 7, 649–688.
- Comon, P. (1994), "Independent component analysis, A new concept?" Signal Processing, 36, 287-314.

Dufour, J.-M. and Valéry, P. (2016), "Rank-robust Regularized Wald-type tests," Working paper.

Escanciano, J. C. (2022), "SEMIPARAMETRIC IDENTIFICATION AND FISHER INFORMATION," Econometric Theory, 38, 301-338.

- Fernandez, C. and Steel, M. F. J. (1998), "On Bayesian Modeling of Fat Tails and Skewness," Journal of the American Statistical Association, 93, 359–371.
- Fiorentini, G. and Sentana, E. (2022), "Discrete Mixtures of Normals Pseudo Maximum Likelihood Estimators of Structural Vector Autoregressions," Working paper.
- Gouriéroux, C., Monfort, A., and Renne, J.-P. (2017), "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, 196.
- Hoesch, L., Lee, A., and Mesters, G. (2022), "Robust Inference in Structural VAR models Identified by Non-Gaussianity," Working Paper.
- Horowitz, J. L. (2009), Semiparametric and Nonparametric Methods in Econometrics, Springer-Verlag New York.

Ichimura, H. (1993), "Semiparametric least squares (SLS) and weighted SLS estimation of single-index models," Journal of Econometrics, 58, 71–120.

- Lanne, M. and Luoto, J. (2021), "GMM Estimation of Non-Gaussian Structural Vector Autoregression," Journal of Business & Economic Statistics, 39, 69–81.
- McCloskey, A. (2017), "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, 200, 17-35.
- Newey, W. K. (1990), "Semiparametric efficiency bounds," Journal of Applied Econometrics, 5, 99-135.

Newey, W. K. and Stoker, T. M. (1993), "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, 61, 1199-1223.

van der Vaart, A. W. (2002), "Semiparametric Statistics," in Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXIX - 1999, ed. Bernard, P., Springer.

Independent components analysis

• Observe i.i.d. samples of K-dimensional data:

$$Y = A(\theta, \sigma)^{-1} \epsilon, \quad \mathbb{E}[\epsilon] = 0, \quad \mathsf{Var}[\epsilon] = I_{\mathcal{K}}, \quad \epsilon_j \perp \!\!\!\perp \epsilon_k \ (k \neq j), \quad \epsilon_k \sim \eta_k$$
(2)

• (First and) Second moments of Y are insufficient to identify $A^{-1} = A(\theta, \sigma)^{-1}$:

$${\sf Var}(Y)=A^{-1}[A^{-1}]'=A^{-1}Q'Q[A^{-1}]'=(QA)^{-1}[(QA)^{-1}]'\;$$
 for any $Q\in O({\cal K})$

- Higher moment information can be used to shrink the identified set for A⁻¹ and so θ
 ▷ ICA result: If at least K 1 components of ε follow non-Gaussian distributions, then A⁻¹ is identified up to sign and permutation of columns (Comon, 1994)
 - $\triangleright~$ If ϵ is Gaussian or has multiple Gaussian components, $\tilde{\mathcal{I}}$ for θ is singular

Example: Single index model

Independent components analysis

- A number of recent works in econometrics use the ICA approach to conduct inference in the SVAR model:¹
 - ▷ e.g. Gouriéroux, Monfort, and Renne (2017); Lanne and Luoto (2021); Fiorentini and Sentana (2022)
- $\bullet\,$ When ϵ is close to Gaussian, such methods break down
- In this model we can base robust inference on the efficient score function: g_γ = l_γ
 ▷ Under regularity conditions (smoothness & moment conditions), form of l_γ derived by Amari and Cardoso (1997); Chen and Bickel (2006)
- The components of $g_{\gamma}(W)$ are known up to $\phi_k(e) := \frac{d \log \eta_k(e)}{de}$ and some moments \triangleright Moments: estimate via sample analogue

 $\triangleright \phi_k$: use B-spline based estimator of Chen and Bickel (2006)

¹Hoesch, Lee, and Mesters (2022) discuss robust inference in the SVAR model using this approach. \blacktriangleright Regularity conditions \blacktriangleright Form of $\tilde{\ell}_{\gamma}$

• Draw 5000 Monte Carlo samples from

$$Y = A^{-1}(\theta, \sigma)\epsilon, \quad A(\theta, \sigma) = \begin{bmatrix} \sigma_1^{-1} & 0 \\ 0 & \sigma_2^{-1} \end{bmatrix} \begin{bmatrix} 1 & -a \\ 1 & -b \end{bmatrix}, \quad \theta = (a, b)$$

• Suppose that $c:=(\sigma_2/\sigma_1)^2=1.$ The efficient information matrix is

$$ilde{\mathcal{I}}_{\gamma} = rac{1}{(\textit{a}-\textit{b})^2} egin{bmatrix} \mathbb{E}[\phi_1(\epsilon_1)^2] & -1 \ -1 & \mathbb{E}[\phi_2(\epsilon_2)^2] \end{bmatrix}$$

• Depending on the η_k , θ may be fully- or under- identified:

η_k	$\mathbb{E}[\phi_k(\epsilon_k)^2]$	$rank(\tilde{\mathcal{I}}_\gamma)$	$N(ilde{\mathcal{I}}_\gamma)$
$\mathcal{N}(0,1)$	1	1	$\{\tau \in \mathbb{R}^2 : \tau_1 = \tau_2\}$
t'(5)	1.25	2	{0}
st'(5, 2)	2.54	2	{0}

 $\theta = (a, b) = (1/2, 1/4)$ and $\sigma_1 = \sigma_2 = 1$. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications.

Figure 5: Power surfaces for ICA (ii), $\eta_1 \sim t'(5)$, $\eta_2 \sim t'(5)$

 $\theta = (a, b) = (1/2, 1/4)$ and $\sigma_1 = \sigma_2 = 1$. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications. $\eta_k \sim t'(5)$ indicates that each ϵ_k is drawn from a (standardised) t distribution with 5 df.

Densities
 Simulation study 2

Figure 6: Power surfaces for ICA (ii), $\eta_1 \sim st'(5,2)$, $\eta_2 \sim st'(5,2)$

 $\theta = (a, b) = (1/2, 1/4)$ and $\sigma_1 = \sigma_2 = 1$. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications. $\eta_k \sim st'(5, 2)$ indicates that each ϵ_k is drawn from a (standardised) skew t distribution Fernandez and Steel (1998) with 5 df and skewness 2.

Densities
 Simulation study 2

Additional slides

The t / Wald test based on Ichimura (1993) uses the estimate $\hat{ heta}$ which minimises

$$\theta \mapsto \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{f}_n(V_{\theta,i}))^2, \quad V_{\theta} = X_1 + X_2 \theta$$

Under regularity conditions and the null, such an estimate satisfies

$$\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)\rightsquigarrow\mathcal{N}\left(0,\Omega
ight),$$

for a known Ω .

f'(v)

f'(v)

- 1 Semiparametric estimation theory
 - ▷ Newey (1990); Bickel, Klaassen, Ritov, and Wellner (1998); van der Vaart (2002)
 - Requires nonsingular efficient information matrix
- **2** $C(\alpha)$ -style tests to handle e.g. machine learning first steps
 - Chernozhukov, Hansen, and Spindler (2015); Bravo, Escanciano, and Van Keilegom (2020); Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2022)
- 3 Weak identification robust inference
 - ▷ Andrews and Cheng (2012); Andrews and Mikusheva (2015); McCloskey (2017)
 - ▷ Focus on identification failure caused by a *finite* dimensional nuisance parameter
 - ▷ This paper: identification failure caused by *infinite* dimensional nuisance parameter

◀ This paper

Score functions

- Parameters: $\gamma = (\theta, \eta) \in \Gamma = \Theta \times \mathcal{H}$, $\Theta \subset \mathbb{R}^{d_{\theta}}$ open, \mathcal{H} a metric space
- Model: $\mathcal{P} = \{ P_{\gamma} : \gamma \in \Gamma \}$, with corresponding densities $p_{\gamma} \ll \nu$
- Score function for θ is $\dot{\ell}_{\gamma}$
 - $\triangleright \ \ \text{Typically} \ \ \dot{\ell}_{\gamma} = \nabla_{\theta} \log p_{\gamma}$
- Score operator for η is $B_\gamma: H_\eta o L_2(P_\gamma)$, $H_\eta \subset H$ a Banach space
 - $\triangleright \ B_\gamma$ maps directions $\pmb{h} \in \pmb{H_\eta}$ into scores $B_\gamma \pmb{h}$
 - \triangleright Typically each $B_{\gamma}h$ is a pathwise directional derivative of $\eta\mapsto\log p_{\gamma}$ in direction h
- Can be formalised by e.g. requiring γ → √p_γ to be pathwise directionally differentiable in L₂(ν) tangentially to ℝ^{d_θ} × H_η with derivative

$$\frac{1}{2} \left[\boldsymbol{\tau}' \dot{\ell}_{\gamma} + B_{\gamma} \boldsymbol{h} \right] \sqrt{p_{\gamma}} \quad \text{in direction} \quad (\boldsymbol{\tau}, \boldsymbol{h}).$$

Truncation

Proposition

Suppose that $0 \leq M_n \rightarrow M$ are deterministic $L \times L$ matrices with rank $(M_n) = \operatorname{rank}(M)$ for $n \geq N$ and for $\check{M}_n \succeq 0$ and $0 \leq \nu_n \rightarrow 0$,

$$\lim_{n\to\infty}P_n\left(\|\check{M}_n-M_n\|_2<\nu_n\right)=1.$$

Let $\check{M}_n = \check{U}_n \check{\Lambda}_n \check{U}'_n$ be the corresponding eigendecompositions and define

$$\hat{M}_n := \check{U}_n \Lambda_n(
u_n) \check{U}'_n, \quad \Lambda_n(
u_n) := \operatorname{diag} \left(\check{\Lambda}_{n,ii} 1(\check{\Lambda}_{n,ii} \ge
u_n)\right)_{i=1}^L,$$

where the eigenvalues are ordered non-increasingly.

Then, $\hat{M}_n \xrightarrow{P_n} M$ and $\lim_{n \to \infty} P_n\left(\operatorname{rank}(\hat{M}_n) = \operatorname{rank}(M)\right) = 1.$

Theoretical results - size

Assumptions

- 1 Local asymptotic normality
 - $\,\triangleright\,$ The model is asymptotically locally approximable by a Gaussian shift experiment
- **2** In P_{γ} probability

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left[\hat{g}_{n,\theta_{0}}(W_{i})-g_{\gamma}(W_{i})\right]\rightarrow0,\qquad\hat{V}_{n,\theta_{0}}^{\dagger}\rightarrow\hat{V}_{\gamma}^{\dagger},\qquad\text{and}\qquad\hat{r}_{n}\rightarrow r.$$

Proposition

If assumptions 1 & 2 are satisfied and $h_n \rightarrow h$,

$$\hat{S}_{n, heta_0} \stackrel{P_{n,0,h_n}}{\leadsto} \chi_r^2, \qquad r := \operatorname{rank}(V_{\gamma}),$$

and the test is asymptotically (locally uniformly) correctly sized.

• C(α) test • Assumption details • Result details

Theoretical results - power

Assumptions

- 1 Local asymptotic normality
 - $\triangleright~$ The model is asymptotically locally approximable by a Gaussian shift experiment
- **2** In P_{γ} probability

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left[\hat{g}_{n,\theta_{0}}(W_{i})-\tilde{\ell}_{\gamma}(W_{i})\right]\rightarrow0,\quad\hat{V}_{n,\theta_{0}}^{\dagger}\rightarrow\tilde{\mathcal{I}}_{\gamma}^{\dagger}=\left[\mathbb{E}_{\gamma}\,\tilde{\ell}(W_{i})\tilde{\ell}(W_{i})'\right]^{\dagger},\text{ and }\hat{r}_{n}\rightarrow r.$$

- **3** The permitted directions H_η for h form a linear space
- 4 $\operatorname{rank}(\tilde{\mathcal{I}}_{\gamma}) > 0$

Proposition

If assumptions 1 - 4 are satisfied, the efficient score test has locally asymptotically minimax optimal power

Local Asymptotic Normality (LAN)

Suppose that $\eta_n : H_\eta \to \mathcal{H}$ is a sequence continuously convergent to η and define for $(\tau, h) \in \mathbb{R}^{d_\theta} \times H_\eta$,

$$\gamma_n(\tau,h) := (\theta + \tau/\sqrt{n}, \eta_n(h)).$$

For any $\tau_n \to \tau \in \mathbb{R}^{d_\theta}$ and any $h_n \to h \in H_\eta$,

1 $P_{\gamma_n(\tau_n,h_n)} \in \mathcal{P}$ for all sufficiently large n2 for a function $\dot{\ell}_{\gamma} \in L_2^0(P_{\gamma})$ and a linear map $B_{\gamma} : H_{\eta} \to L_2^0(P_{\gamma})$,

$$\Lambda_n(\gamma_n(\tau_n,h_n),\gamma) = rac{1}{\sqrt{n}}\sum_{i=1}^n q(W_i) - rac{1}{2}\mathbb{E}[g(W_i)^2] + o_{P_\gamma}(1),$$

with $q := \tau' \dot{\ell}_{\gamma} + B_{\gamma} h.$

Differentiability in quadratic mean (DQM)

Suppose that $\eta_n : H_\eta \to \mathcal{H}$ is a sequence continuously convergent to η and define for $(\tau, h) \in \mathbb{R}^{d_\theta} \times H_\eta$,

$$\gamma_n(\tau,h) := (\theta + \tau/\sqrt{n}, \eta_n(h)).$$

For any $\tau_n \to \tau \in \mathbb{R}^{d_\theta}$ and any $h_n \to h \in H_\eta$,

1 $P_{\gamma_n(\tau_n,h_n)} \in \mathcal{P}$ for all sufficiently large n2 for a function $\dot{\ell}_{\gamma} \in L_2^0(P_{\gamma})$ and a linear map $B_{\gamma} : H_{\eta} \to L_2^0(P_{\gamma})$,

$$\int \left[\sqrt{n}(\sqrt{p_{\gamma_n(\tau_n,h_n)}}-\sqrt{p_{\gamma}})-\frac{1}{2}q\sqrt{p_{\gamma}}\right]^2\,\mathrm{d}\nu\to 0,$$

with $q := \tau' \dot{\ell}_{\gamma} + B_{\gamma} h$.

Proposition - equivariance in law

If assumption 1 holds then

(Pⁿ_γ) and (Pⁿ_{γn(τn,hn)}) are mutually contiguous
 Under P_{γn(τn,hn)}

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}g_{\gamma}(W_{i}) \rightsquigarrow \mathcal{N}\left(\mathbb{E}_{\gamma}\left[g_{\gamma}(W_{i})\dot{\ell}_{\gamma}(W_{i})'\right]\tau, V_{\gamma}\right)$$

If assumption 2 also holds, then

3 Under $P_{\gamma_n(\tau_n,h_n)}$

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\hat{g}_{n,\theta}(W_i) \rightsquigarrow \mathcal{N}\left(\mathbb{E}_{\gamma}\left[g_{\gamma}(W_i)\dot{\ell}_{\gamma}(W_i)'\right]\tau, V_{\gamma}\right)$$

Proposition - Test is correctly sized

Let ϕ_{n,θ_0} be the generalised C(α) test. If assumptions 1 & 2 hold with $\theta = \theta_0$, then for any $h_n \to h$ in H_{η} ,

$$\limsup_{n\to\infty} \mathbb{E}_{\gamma_n(0,h_n)} \phi_{n,\theta_0} \leq \alpha.$$

- test is asymptotically locally uniformly correctly sized
- size is α unless $V_{\gamma} = 0$, in which case it is 0

Proposition

Suppose assumptions 1, 3 & 4 hold, $\alpha \in (0,1)$, $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$.

1 For any sequence (ψ_n) of asymptotically level-lpha tests of H_0 against H_1 and all a>0,

$$\limsup_{n \to \infty} \inf_{(\tau,h) \in \mathcal{M}_{a}} \mathbb{E}_{\gamma_{n}(\tau,h)} \psi_{n} \leq 1 - \mathbb{P}\left(\chi_{r}^{2}(a) \leq c_{r,\alpha}\right),$$

where $M_a := \{(\tau, h) \in N(\tilde{\mathcal{I}}_{\gamma})^{\perp} \times H_{\eta} : \tau' \tilde{\mathcal{I}}_{\gamma} \tau \ge a\}$, $c_{r,\alpha}$ is the $1 - \alpha$ quantile of the χ^2_r distribution and $\chi^2_r(a)$ denotes a non-central χ^2 random variable with $r := \operatorname{rank}(\tilde{\mathcal{I}}_{\gamma})$ degrees of freedom and non-centrality a.

2 If assumption 2 also holds, for all compacts $K_{\alpha} \subset M_{a}$, the efficient score test satisfies

$$\lim_{n\to\infty}\inf_{(\tau,h)\in K_{a}}\mathbb{E}_{\gamma_{n}(\tau,h)}\phi_{n,\theta_{0}}=1-\mathbb{P}\left(\chi_{r}^{2}(a)\leq c_{r,\alpha}\right).$$

SIM - Assumptions

Assumption SIM W = (Y, X) obeys the SIM with $\Theta \subset \mathbb{R}^{K}$ open and \mathcal{H} such that **1** For $\phi(\epsilon, X) := \frac{\partial \log \zeta(e, x)}{\partial e}(\epsilon, X)$ where $(\epsilon, X) \sim \zeta$ and some $\rho > 0$, $\mathbb{E}\left[\left(|\phi(\epsilon, X)|^{2+\rho} + 1\right) \|X\|_{2}^{2+\rho}\right] < \infty, \quad \mathbb{E}[XX'] \succ 0,$

 $\mathbb{E}\left[\epsilon\phi(\epsilon,X)|X\right] = -1, \ \mathbb{E}[\phi(\epsilon,X)^2|X] < C < \infty, \ \mathbb{E}[\epsilon^2|X] \in (c,C).$

2 $e \mapsto \sqrt{\zeta(e,X)}$ is continuously differentiable a.e.

- **3** f is bounded and continuously differentiable with bounded derivative a.e. on $\mathscr{D} := \{x_1 + x_2\theta : \theta \in \Theta, x \in \mathscr{X}\}, \text{ where supp}(X) \subset \mathscr{X}.$
- 4 There exists a m̃ : ℝ → ℝ bounded, continuously differentiable with bounded derivative such that E[εm̃(ε)|X] ≥ c > 0.

Return to SIM

Split sample estimators

- Using **split sample estimators** removes dependence between (function) estimation error and evaluation data point
- Suppose we have a function estimator which depends on a parameter vector $\hat{\xi}_n \in \mathbb{R}^{K_n}$:

$$\hat{f}_n(v) = \check{f}_n(v, \hat{\xi}_n).$$

• Split the data in half (assume *n* even)

• Our estimates of the $f(V_i)$ are:

$$\check{f}_n(V_1, \hat{\xi}_n^{(2)}), \dots, \check{f}_n(V_{n/2}, \hat{\xi}_n^{(2)}) \qquad \& \qquad \check{f}_n(V_{n/2+1}, \hat{\xi}_n^{(1)}), \dots, \check{f}_n(V_n, \hat{\xi}_n^{(1)})$$

SIM estimation

Series estimators

• In the single index model, $f(V_{\theta}) = \mathbb{E}[Y|V_{\theta}]$. We can estimate f and f' as

$$\hat{f}_n(V_{\theta,i}) = \check{f}_n(v, \hat{\xi}_{1,n,i}) = q_n(V_{\theta,i})'\hat{\xi}_{1,n,i}$$
$$\hat{f'}_n(V_{\theta,i}) = \check{f'}_n(V_{\theta,i}, \hat{\xi}_{2,n,i}) = \left[q'_n(V_{\theta,i})\right]'\hat{\xi}_{2,n,i},$$

where q_n is a K_n -vector of basis functions $(\mathbb{R} \to \mathbb{R})$, q'_n their derivatives,

$$\hat{\xi}_{1,n,i} = \hat{\xi}_{2,n,i} = \left(\sum_{j \in \mathcal{N}_{-i}} q_n(\mathcal{V}_{\theta,j}) q_n(\mathcal{V}_{\theta,j})'\right)^{-1} \left(\sum_{j \in \mathcal{N}_{-i}} q_n(\mathcal{V}_{\theta,j}) Y_j\right).$$

- Examples of basis functions q_n include B-splines and (local) polynomials \triangleright see e.g. Chen (2007) for many examples
- Analogous estimators can be constructed for $Z(V_{\theta}) = \mathbb{E}[X_2|V_{\theta}]$.

SIM estimation

Assumption SIM-NP

Suppose that \mathscr{X} is a compact set, $\sigma^2 := \mathbb{E}[\epsilon^2|X] = \mathbb{E}[\epsilon^2]$, $\mathbb{E}[\epsilon^4] < \infty$ and with P_{γ} -probability approaching one for $l \in [3]$, each $i \in [n]$, some $r_n = o(n^{-1/4})$ and \mathcal{V} the distribution of V_{θ} :

$$\begin{aligned} \mathcal{R}_{1,n,i} &:= \left(\int \left[\check{f}_n(v, \hat{\xi}_{1,n,i}) - f(v) \right]^2 \mathrm{d}\mathcal{V}(v) \right)^{1/2} \leq r_n, \\ \mathcal{R}_{2,n,i} &:= \left(\int \left[\check{f}'_n(v, \hat{\xi}_{2,n,i}) - f'(v) \right]^2 \mathrm{d}\mathcal{V}(v) \right)^{1/2} \leq r_n, \\ \mathcal{R}_{3,n,i} &:= \left(\int \left\| \check{Z}_n(v, \hat{\xi}_{3,n,i}) - Z(v) \right) \right\|_2^2 \mathrm{d}\mathcal{V}(v) \right)^{1/2} \leq r_n. \end{aligned}$$

• These rate conditions are attainable under mild regularity conditions, using e.g. series estimators e.g. Cattaneo, Farrell, and Feng (2020a).

Regularity conditions for rates

Regularity conditions for NP estimation rates

If f, f' and Z are estimated using equally spaced third order (i.e. quadratic) B-spline series estimators with the number of splines $K \simeq n^{1/7}$ and

- 1 \mathscr{D} is compact and connected and the density of V_{θ} is continuous and bounded away from zero,
- 2 $v \mapsto f(v)$ and $v \mapsto Z(v) = \mathbb{E}[X_2|v]$ are three-times continuously differentiable with Hölder continuous derivatives

then with P_{γ} -probability approaching one for $l \in [3]$ and each $i \in [n]$, $\mathcal{R}_{l,n,i} \leq r_n = o(n^{-1/4}).$

• Follows from Cattaneo et al. (2020a) & Cattaneo, Farrell, and Feng (2020b).

High level conditions

Figure 13: $f(v) \propto \exp(-v^2/(2a^2))$

Figure 14: $f(v) \propto \exp(-v^2/(2a^2))$

Figure 15: $f(v) = av^2$

Figure 16: $f(v) = av^2$

Figure 19: $f(v) \propto \exp(-v^2/(2a^2))$

Figure 21: $f(v) = av^2$

Figure 22: $f(v) = av^2$

Single index model: Monte carlo

Table 2: Empirical rejection frequencies (%), $\epsilon \sim \mathcal{N}(0, 1)$, $X_i \sim U[-1, 1]$, $\theta = 1$

	$f_1(v) \propto a +$	+ (1 - a)/(1 - a))	$f_2(v)$	$\propto \exp(-v^2)$	/(2 <i>a</i> ²))	$f_3(v) = av^2$			
п	a = -0.8	a = -0.6	<i>a</i> = -0.4	a = 1	a = 1.25	a = 1.5	a = 1.7	a = 1.5	a = 1.3
Ŝ									
400	4.86	5.56	5.88	5.54	5.80	5.74	5.30	5.96	5.60
600	5.40	5.46	4.80	5.32	5.38	5.40	5.34	5.50	5.64
800	4.98	4.88	5.40	5.38	5.36	5.10	5.70	5.54	5.12
1000	5.48	5.14	5.82	5.06	5.20	5.26	5.54	5.18	5.44
W									
400	8.32	9.30	8.90	8.94	9.30	10.52	14.74	15.98	17.18
600	7.08	7.70	7.70	8.54	8.36	9.30	12.74	13.50	14.76
800	7.10	6.78	7.74	6.94	7.68	8.88	11.76	12.30	13.08
1000	5.88	6.88	6.18	6.32	7.80	7.70	10.56	11.76	11.46

Based on 5000 Monte Carlo replications. \hat{S} is the C(α) – style test.

Single index model: Monte Carlo

Table 3:	Empirical	rejection	frequencies	(%), $\epsilon \sim$	$\mathcal{N}(0, \log(2 +$	$V_{\theta}^2)),$	$X_i \sim 0$	U[-1,	,1], 0 =	- 1
----------	-----------	-----------	-------------	----------------------	---------------------------	-------------------	--------------	-------	---------------------	-----

	$f_1(v) \propto a + (1-a)/(1 + \exp(-v))$			$f_2(v) \propto \exp(-v^2/(2a^2))$			$f_3(v) = av^2$			
п	<i>a</i> = 0.4	<i>a</i> = 0.6	<i>a</i> = 0.8	a = 3	a = 4	<i>a</i> = 5	<i>a</i> = 0.45	<i>a</i> = 0.35	<i>a</i> = 0.25	
Ŝ										
400	5.12	4.92	5.56	5.90	5.90	5.50	5.58	5.38	5.82	
600	4.76	5.46	5.62	5.36	5.28	5.62	5.40	5.76	6.12	
800	5.34	5.28	5.22	5.26	4.86	5.16	5.68	4.76	4.66	
1000	5.12	5.84	5.14	5.22	5.78	5.04	5.38	5.26	5.24	
W										
400	20.38	25.36	15.00	31.58	27.86	22.04	29.04	24.90	20.90	
600	15.92	20.46	18.78	26.80	30.64	23.32	32.50	27.12	24.04	
800	13.44	18.46	23.92	24.30	30.76	25.78	31.58	30.40	25.92	
1000	12.48	16.10	26.76	22.80	29.46	28.50	31.42	31.38	26.40	

Based on 5000 Monte Carlo replications. \hat{S} is the C(α) – style test.

Single index model: Monte Carlo

Table 4:	Empirical	rejection	frequencies	(%), $\epsilon \sim$	$\mathcal{N}(0, \log(2 +$	$V_{\theta}^2))$, $X_i \sim$	U[-1,	1], 0 =	1
----------	-----------	-----------	-------------	----------------------	---------------------------	------------------	--------------	-------	--------------------	---

	$f_1(v) \propto a +$	+ (1 - a)/(1 - a))	$f_2(v)$	$\propto \exp(-v^2)$	/(2 <i>a</i> ²))	$f_3(v) = av^2$			
п	a = -0.8	a = -0.6	<i>a</i> = -0.4	a = 1	a = 1.25	a = 1.5	a = 1.7	a = 1.5	a = 1.3
Ŝ									
400	5.00	5.66	5.86	5.42	6.16	5.74	5.42	5.92	5.96
600	5.52	5.48	4.94	5.52	5.58	5.40	5.32	5.58	5.68
800	5.00	4.84	5.08	5.42	5.40	4.82	5.80	5.34	5.26
1000	5.62	5.14	5.76	5.24	5.04	5.16	5.70	5.36	5.42
W									
400	9.40	10.18	10.26	12.08	13.46	15.74	22.00	22.90	24.54
600	7.76	8.02	8.42	10.16	12.42	13.88	18.40	20.04	21.40
800	6.78	6.90	7.62	8.70	10.88	13.08	16.94	17.96	19.20
1000	5.84	6.84	5.58	7.78	10.12	10.66	15.58	16.78	17.40

Based on 5000 Monte Carlo replications. \hat{S} is the C(α) – style test.

Single index model: Monte carlo

 $f_1(v)$ = generalised logistic, $f_2(v)$ = Gaussian function, $f_3(v)$ = quadratic

Simulation design

′plots)(►Weak

identification 🔪 🚺 🕨

▶ Heteroskedastic

Single index model: Monte Carlo

Single index model: Monte Carlo

 $f_1(v)$ = generalised logistic, $f_2(v)$ = Gaussian function, $f_3(v)$ = quadratic

Simulation design

plots) (► Weak

on 🔪 📢 Homoske

ICA Assumption

Equation (2) holds, where each ϵ_k (k = 1, ..., K) has a (Lebesgue) density η_k , and for each k = 1, ..., K,

 $e \mapsto \sqrt{\eta_k(e)}$ and $(\theta, \sigma) \mapsto A(\theta, \sigma)$ are continuously differentiable, $\mathbb{E}[|\epsilon_k|^{4+\delta}] < \infty$, $\mathbb{E}[\epsilon_k^4] - 1 > \mathbb{E}[\epsilon_k^3]^2$, $\mathbb{E}[|\phi_k|^{4+\delta}] < \infty$, $\mathbb{E}[\phi_k(\epsilon_k)] = 0$, $\mathbb{E}[\phi_k(\epsilon_k)\epsilon_k] = -1$, $\mathbb{E}[\phi_k(\epsilon_k)\epsilon_k^2] = 0$, $\mathbb{E}[\phi_k(\epsilon_k)\epsilon_k^3] = -3$, for some $\delta > 0$ and $\phi_k := \frac{d \log \eta_k(e)}{de}$.

Efficient score

Form of efficient score function in ICA

• Under regularity conditions, in the ICA model:

$$\tilde{\ell}_{\gamma}(W) = \sum_{k=1}^{K} \sum_{j=1, j \neq k}^{K} \zeta_{I,k,j} \phi_k(A_{k \bullet} y) A_{j \bullet} y + \sum_{k=1}^{K} \zeta_{I,k,k} \left[\tau_{k,1} A_{k \bullet} y + \tau_{k,2} \kappa(A_{k \bullet} y) \right],$$

where $\phi_k(e) := \frac{d \log \eta_k(e)}{de}$, $\zeta_{l,k,j} := [D_l(\beta)]_{k \bullet} A_{\bullet j}^{-1}$ with $D_l(\beta) = \partial A(\beta) / \partial \beta_l$, $A_{\bullet j}^{-1}$ is the *j*-th column of $A(\theta, \sigma)^{-1}$, $\kappa(e) := e^2 - 1$ and

$$au_k := egin{pmatrix} 1 & \mathbb{E}(\epsilon_k)^3 \ \mathbb{E}(\epsilon_k)^3 & \mathbb{E}(\epsilon_k)^4 - 1 \end{pmatrix}^{-1} egin{pmatrix} 0 \ -2 \end{pmatrix}.$$

Independent components analysis - Monte Carlo

Figure 26: True densities used in ICA simulation study 2
• Draw 5000 Monte Carlo replications from

$$Y = A^{-1}(\theta, \sigma)\epsilon, \quad A(\theta, \sigma) = R(\theta)'\Sigma^{1/2}, \quad R(\theta) = egin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos heta \end{bmatrix}, \ \sigma = ext{vech}(\Sigma^{1/2}),$$

for a range of different η_1 , η_2 .

- \triangleright As both become close to $\mathcal{N}(0,1)$, we should expect weak identification.
- Compare finite sample performance with GMM Lanne and Luoto (2021) and PML Gouriéroux et al. (2017) approaches
 - ▷ Wald tests: unlikely to perform well (weak identification)
 - $\,\triangleright\,$ LM tests: fix θ under the null so likely to perform better

$\epsilon_2 \sim$	$\mathcal{N}(0,1)$	t'(u)			S	$\mathcal{SN}'(0,1, u)$			ABM(u)		
n		15	10	5	2	3	4	19/20	17/20	15/20	
Ŝ											
400	6.40	7.04	6.44	6.04	6.50	6.28	6.76	6.26	6.18	6.56	
800	6.92	6.06	6.16	6.14	6.26	7.14	7.36	6.50	5.88	6.78	
PML -	LM										
400	5.26	5.82	4.92	6.40	5.08	5.18	5.04	5.68	5.76	5.42	
800	5.24	4.94	5.58	7.86	5.52	6.08	5.90	5.48	4.80	5.20	
GMM -	LM										
400	3.88	4.04	4.60	6.40	3.94	3.98	4.56	6.10	5.08	3.82	
800	3.46	3.36	3.86	6.04	3.00	3.36	3.30	7.10	5.62	2.98	
PML - '	Wald										
400	25.88	14.04	10.68	2.84	20.40	16.80	15.70	56.80	49.66	33.62	
800	25.84	9.92	6.26	2.22	16.98	13.34	12.26	70.66	59.78	37.74	
GMM -	Wald										
400	76.42	68.58	60.82	25.48	70.26	66.78	63.70	73.74	75.64	76.68	
800	86.92	82.18	75.66	29.64	84.34	80.46	79.66	83.92	85.58	87.52	

Table 5: Empirical rejection frequencies (%) for ICA, $\epsilon_1 \sim \mathcal{N}(0, 1)$

Based on 5000 Monte Carlo replications. \hat{S} is the efficient score test.

Densities - t Densities - SN Densities - ABM

$\epsilon_2 \sim$	$\mathcal{N}(0,1)$	t'(u)			$\mathcal{SN}'(0,1, u)$			ABM(u)		
n		15	10	5	2	3	4	19/20	17/20	15/20
Ŝ										
400	6.38	5.76	5.24	5.44	6.16	6.80	6.46	5.24	5.72	5.86
800	5.90	6.20	5.56	5.28	5.76	5.64	5.44	5.94	5.40	5.78
PML -	LM									
400	5.58	5.14	5.10	5.14	5.40	6.28	5.36	5.76	5.98	5.34
800	6.46	6.28	5.56	5.00	6.10	5.56	5.28	6.90	6.46	6.04
GMM -	LM									
400	25.68	24.14	26.46	25.34	24.94	25.52	25.20	27.60	26.80	25.72
800	25.72	23.62	23.56	23.00	25.04	25.00	25.14	27.22	28.18	26.08
PML - '	Wald									
400	1.80	1.84	2.10	2.20	1.62	1.64	1.78	1.44	1.74	1.32
800	2.94	3.38	3.16	3.28	3.06	2.68	2.84	2.06	2.30	2.80
GMM -	Wald									
400	4.18	3.70	3.32	2.18	3.94	3.74	3.70	3.86	3.52	3.80
800	1.48	1.52	1.50	1.40	1.10	1.72	1.22	1.12	1.18	1.06

Table 6: Empirical rejection frequencies (%) for ICA, $\epsilon_1 \sim t'(5)$

Based on 5000 Monte Carlo replications. \hat{S} is the efficient score test.

Densities - t Densities - SN Densities - ABM

$\epsilon_2 \sim$	$\mathcal{N}(0,1)$	t'(u)			S	$\mathcal{SN}'(0,1, u)$			$ABM(\nu)$		
n		15	10	5	2	3	4	19/20	17/20	15/20	
Ŝ											
400	6.04	6.32	6.02	5.68	6.82	6.26	6.46	5.72	5.52	6.80	
800	6.20	5.76	5.94	6.04	5.64	6.38	6.50	5.40	6.00	6.48	
PML - I	LM										
400	4.78	5.28	5.26	6.60	5.64	5.60	5.72	5.54	5.32	4.76	
800	5.32	5.62	5.68	7.64	4.84	5.32	4.92	5.20	5.84	5.16	
GMM -	LM										
400	9.28	9.68	10.02	10.06	9.24	8.78	9.24	11.62	10.70	10.42	
800	8.22	7.96	7.74	9.18	7.62	7.72	7.92	12.26	10.92	9.08	
PML - V	Wald										
400	13.12	6.66	5.12	2.14	9.84	8.38	8.20	31.82	26.12	16.92	
800	9.26	3.60	2.12	2.40	5.96	4.78	3.66	34.18	27.48	13.64	
GMM -	Wald										
400	40.76	35.60	31.48	15.06	38.24	34.82	32.04	35.26	37.18	38.82	
800	38.50	39.14	32.96	15.16	37.64	37.86	37.68	30.00	31.82	36.52	

Table 7: Empirical rejection frequencies (%) for ICA, $\epsilon_1 \sim SN'(0, 1, 4)$

Based on 5000 Monte Carlo replications. \hat{S} is the efficient score test.

Densities - t Densities - SN Densities - ABM

lation study 1

Simulation study 1

Figure 29: Empirical rejection frequency, $\epsilon_2 \sim \mathcal{SN}'(0, 1, 4)$

Simulation study 1

- Based on Gouriéroux et al. (2017) who proposed a similar approach in the SVAR setting
- Estimate (θ, σ) using pseudo-maximum likelihood
- Pseudo-densities: t'(7) for ϵ_1 , t'(12) for ϵ_2

 \triangleright $t'(\nu)$ denotes a normalised t distribution:

$$\epsilon_k \sim t'(
u)$$
 if $\epsilon_k \sim ilde{\epsilon}_k \Big/ \sqrt{rac{
u}{
u-2}}$ and $ilde{\epsilon}_k \sim t(
u).$

• Form standard pseudo-maximum likelihood Wald and LM tests

GMM approach

- Based on Lanne and Luoto (2021) who proposed a similar approach in the SVAR setting
- Estimate (θ, σ) using GMM
- Moment conditions:

$$\mathbb{E}[\epsilon_k^2] = 1 \ (k = 1, 2), \quad \mathbb{E}[\epsilon_k^3 \epsilon_j] = 0, \quad \mathbb{E}[\epsilon_k^2 \epsilon_j^2] = 1 \quad \text{for} \quad k \neq j$$

- ▷ OLS and variance normalisation
- Asymmetric and symmetric co-kurtosis conditions
 - These co-kurtosis conditions provide no further information under Gaussianity
- Form standard GMM Wald and LM tests

Simulation study 2

Independent components analysis - density shapes

Independent components analysis - density shapes

Independent components analysis - density shapes

