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Abstract

In non-experimental longitudinal studies, researchers often estimate causal effects assuming
time-constant unobserved heterogeneity or linear-in-parameters conditional expectations. Vi-
olation of these assumptions may lead to poor counterfactuals. I study the identification and
estimation of a class of nonlinear grouped fixed effects models where the relationship between ob-
served covariates and cross-sectional unobserved heterogeneity is left unrestricted but the latter
only takes a restricted number of paths over time. To identify the corresponding “clusters” and
common parameters of the model, I consider a two-step method. First, I transform the NP-hard
clustering problem into an individuals-pairing problem and recover the latent clustering under
an injectivity condition. Second, I rely on within- and across cluster variation in the observed
covariates and a monotonicity property to infer the remaining infinite-dimensional parameters.
I propose a practically useful semiparametric maximum likelihood estimator whose implemen-
tation is feasible and establish its large sample properties in popular binary and count outcome
models (including Probit, Logit, Poisson). Distinctive features of the estimator are that it is
higher-order unbiased and it allows the number of periods to grow slowly with the number of
cross-sectional units. Monte Carlo simulations suggest good finite sample performance. I apply
this new method to revisit Aghion, Bloom, Blundell, Griffith, and Howitt (2005)’s inverted-U
relationship between product market competition and innovation.
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1 Introduction

Unobserved heterogeneity is a prevalent feature of most reduced-form and structural work in eco-

nomics and other social sciences. As “individuals are not inert and interchangeable particles of

matter, but discernible and discerning agents”,1 observational outcomes (e.g., consumption choices,

mental health, number of patents) and explanatory variables of interest (e.g., income, abortion,

product market competition) typically correlate over time with factors unobserved to the researcher

(e.g., Bourdieu’s habitus, risky behaviors, technological change). This so-called confounding prob-

lem renders identification of average partial effects and counterfactuals difficult.2

By sampling N individuals at T different points in time, panel data offer opportunities to

account for latent structures embedded in low-dimensional manifolds (see, e.g., Bai, 2009; Bon-

homme, Lamadon, and Manresa, 2022; Hsiao, 2015; Moon and Weidner, 2019; Wooldridge, 2010).3

While random effects approaches specify a parametric family for the conditional distribution of the

unobserved heterogeneity given the covariates, fixed effects leave this distribution unrestricted at

the cost of introducing many additional parameters. A celebrated example is pooled linear regres-

sion with additively separable individual and time effects, which has been widely used to model

workers, firms, or countries’ permanent unobserved heterogeneity and common trend in labor and

international trade (Abowd, Kramarz, and Margolis, 1999; Helpman, Melitz, and Rubinstein, 2008).

In many cases, however, not only a nonlinear model arises naturally (e.g., discrete choice, point

mass in outcome), it is likely that unobserved heterogeneity is time-varying and takes a cluster-

ing/grouping structure.4 Individuals in the population partition into a moderate number of clusters

such that members of each cluster share the same path of unobserved heterogeneity over time but

the partition is unknown to the researcher (e.g., a few trajectories of social group transitions, risky

behaviors, technological change). Missing external information about the clustering, the researcher

is faced with the problems of classifying a large number of individuals into clusters and estimating

a large number of cluster-specific time effects in large-N , T nonlinear panel models, where N and

T diverge jointly to infinity.5 First, little is known about the nonparametric identification of many
1Pierre Bourdieu, La noblesse d’État. Grandes écoles et esprit de corps, Paris, Les Éditions de Minuit, 1989.
2See, e.g., Abowd, Kramarz, and Margolis (1999); Angrist and Pischke (2009); Imbens and Rubin (2015).
3This echoes Occam’s razor principle and the “manifold hypothesis” (Goodfellow, Bengio, and Courville, 2016).
4Altonji and Matzkin (2005) asserts: “The linear probability model is biased in almost all circumstances.”; Athey

and Imbens (2006) argues “If an individual gains experience or just age over time, her unobserved skill (...) is likely
to change.”. Discreteness assumptions are pervasive in economic modeling: see, among many others, Bonhomme,
Lamadon, and Manresa (2019); Bonhomme and Manresa (2015); Deb and Trivedi (1997); Hahn and Moon (2010);
Heckman and Singer (1984); Keane and Wolpin (1997); Vogt and Linton (2017).

5Such rectangular-array asymptotics have recently become increasingly popular given the growing availability of
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popular nonlinear models widely used in empirical research (e.g., random utility binary/ordered

choice models) under such clustered patterns of unobserved heterogeneity.6 Second, available semi-

parametric nonlinear fixed effects estimators tend to perform quite poorly, as shown in Monte Carlo

experiments (see Section 6). Most are based on partialling-out or joint maximum likelihood estima-

tion and generally fail to provide, as T grows much slower than N , asymptotically normal centered

estimates of the typical common slope parameter (resp. time-varying paths of unobserved hetero-

geneity) at the parametric root-NT (resp. root-N) rate and uniformly (across all pair of individuals)

consistent estimates for the cluster memberships (see, e.g., Arellano and Hahn, 2007; Bonhomme,

Lamadon, and Manresa, 2022; Chamberlain, 1980; Charbonneau, 2017; Chen, Fernández-Val, and

Weidner, 2021; Fernández-Val and Weidner, 2016; Hahn and Moon, 2010; Hahn and Newey, 2004;

Rasch, 1960). These limitations are important because common and fixed effects parameters, as

well as the distribution of idyosyncratic error terms (e.g., random shocks in taste), are building

blocks for estimating counterfactual events and policy relevant parameters (e.g., average causal

effects), and T is often moderately large compared to N in practice.

In this paper, I address both issues by introducing a new class of nonlinear grouped fixed

effects (NGFE hereafter) static models for discrete outcomes. Three defining features are: (i)

individuals with the same unobserved time-invariant cluster membership share the same path of

unobserved heterogeneity across time; (ii) the conditional distribution of cluster memberships and

cluster-specific time-varying effects given observed covariates is left unrestricted (thus allowing for

flexible selection patterns); (iii) and observed covariates and cluster effects enter each individual’s

conditional choice probability as a single index mapped to the outcome by an unknown link function.

First, I propose a novel identification strategy and prove, under low-level conditions, point iden-

tification of all parameters, contrasting with most identification results in the fixed-T setting. The

proof is constructive and relies on two steps. I start by transforming the NP-hard clustering prob-

lem into countably many individuals-pairing testing problems and rely on an injectivity condition

à la Bonhomme, Lamadon, and Manresa (2022) (see their Assumption 2) to build test functions

which identify the latent clustering by comparing conditional probability functions identified from

the time series dimension of the data. In particular, I show that the injectivity condition holds if,

high-frequency data (e.g., scanner, financial data). See, among others, Arellano and Hahn (2007); Chen, Fernández-
Val, and Weidner (2021); Dhaene and Jochmans (2015); Fernández-Val and Weidner (2016); Hahn and Newey (2004).

6Obviously, the increasing time dimension should allow to identify many parameters of interest compared to
standard fixed-T panels, in whichs few parameters are generally point identified outside specific cases (see, e.g.,
Chamberlain, 2010; Davezies, D’Haultfoeuille, and Mugnier, 2021).
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for instance, there is continuous local variation in a “special” regressor (not necessarily with large

support) and the link function is real-analytic (see, e.g., Krantz and Parks, 2002).7 Given identifi-

cation of the latent clustering, I alleviate within-cluster variation and apply a well-known result by

Ichimura (1993) to obtain identification of the common slope coefficient up to scale. Then, I rely on

compensating variations of single-indices within and across clusters together with a monotonicity

property to infer the remaining infinite-dimensional parameters. All in all, the identification results

pave the way for estimation of the link function (e.g., distribution of random shocks).

Second, I develop simple NGFE semiparametric estimators and establish their asymptotic prop-

erties. I first introduce a general M-estimation framework to estimating nonlinear models with

clusters of time-varying unobserved heterogeneity. Semiparametric NGFE estimators are obtained

by specializing the framework to models with a known link function and a finite number of clus-

ters: they maximize the likelihood of the data conditional on the clustering and time-effects.8

Importantly, the method does not require any tuning parameter (because the number of clusters is

known) but can still be computationally cumbersome in large samples. I propose a heuristic Lloyd

(1982)’s algorithm described in Section 4.3, and show that it performs well in various Monte Carlo

experiments with moderate sample sizes and number of clusters (see Section 6). From a practi-

cal viewpoint, and in contradistinction with popular fixed effects estimators such as Chamberlain

(1980) or Charbonneau (2017)’s conditional Logit, NGFE estimators are not confined to the specific

and restrictive case of time-variant regressors, nor do they drop individuals without any variation in

outcome, thus exploiting the full sample variation. Moreover, compared to Bonhomme, Lamadon,

and Manresa (2022)’s 2-step GFE estimator, they have only one optimization step and maintain

the discreteness assumption. From a theoretical viewpoint, I show that the latter suffices to restore

a rich asymptotic theory alike that of linear GFE estimators developed in Bonhomme and Manresa

(2015). As these authors, to study the theoretical properties of NGFE estimators, I focus on the

statistical properties of the exact NGFE estimates and abstract from optimization errors stemming

from the non-convex and non-smooth objective function and the underlying NP-hard combinatorial

problem they require to solve.9 In a companion paper, I adress the latter problem and develop
7Special regressors are widely used in econometrics (e.g., Candelaria, 2020; Honoré and Lewbel, 2002). There is

a trade-off between imposing (i) analyticity of the link function which allows to interpolate from bounded variation
in the regressors at the cost of a strong functional form assumption and (ii) the existence of a special regressor with
unbounded support. Relaxing both conditions at once seems challenging (see, e.g., Gaillac and Gautier, 2021).

8In Mugnier (2022), I relax the asumption that the number of groups is known. Results there apply to linear
models only but I have been able to extend them for a class of nonparametric directed network nonlinear models.

9Investigating the impact of optimization errors on subsequent inference based on NP-hard infeasible exact solu-
tions seems an interesting but difficult avenue for future research.
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computationally trivial estimators based on an agglomerative clustering rule (see Mugnier, 2022).

I derive the statistical properties of semiparametric NGFE estimators when the number of

clusters, in addition to being known to the researcher, does not grow with the size of the panel

(similarly to Bonhomme and Manresa, 2015) and by taking semiparametric binary choice models

as a leading example. Under well-separation of clusters and a noncollinearity condition, NGFE

estimators of the slope coefficient and cluster-specific effects are consistent as N and T diverge

jointly to infinity. The results heavily draw on proof arguments used in Bonhomme and Manresa

(2015), and the observation that strong concavity of the log-likelihood function is sufficient to

extend some of their results by mean of Taylor expansions. Estimated cluster membership enjoy

the “perfect recovery” property: provided T grows at least as some power of N , the misclassification

probability tends to zero uniformly across individuals.10 As in the linear case, this implies that,

under additional regularity conditions, NGFE estimators of the slope and cluster-specific effects

are asymptotically equivalent to the infeasible oracle MLE based on knowledge of the clustering.

When T = o(N), this oracle is asymptotically unbiased so that standard MLE inference yields tests

and confidence intervals with correct asymptotic level. When N/T → κ ∈ (0,+∞), existing results

can be applied to the oracle to derive analytical or jackknife bias correction methods for the slope

and average marginal effects estimates.11

Third, I investigate the finite sample performance of NGFE estimators, as well as large-N , T

estimators of their variance, by mean of Monte Carlo simulations. I compare the results with state-

of-the-art competing methods (e.g., nonlinear two-way fixed effects, 2step-GFE). I find that NGFE

estimators perform remarkably well in settings they are meant for. In particular, in a static logit

model with clustered time-varying correlated unobserved heterogeneity, NGFE estimators have

the smallest bias and RMSE compared to linear methods and nonlinear ones such as Bonhomme,

Lamadon, and Manresa (2022)’s 2-step GFE, nonlinear two-way fixed effects, or Rasch (1960)’s

CMLE. In a DGP without unobserved heterogeneity, the RMSE is of the same order as that of the

CMLE, but NGFE estimators have a finite sample bias. The CPU time is similar to that of com-

peting clustering methods. For a 90×7 data set (order of magnitude of the empirical application),

it takes 10 seconds to compute on a generic professional laptop. However, NGFE estimators are

much less noisy than 2-step GFE as they explicitely rely on the discreteness assumption. I obtain

similar results in a dynamic setting including a lagged outcome as explanatory variable. Estimates
10A concentration inequality for martingale differences due to Lesigne and Volný (2001) is used to show this result.
11See, e.g., Hahn and Newey (2004), Arellano and Hahn (2007), and Chen, Fernández-Val, and Weidner (2021).
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become less precise in settings with continuous (even time-invariant) unobserved heterogeneity.

Finally, I illustrate the practical usefulness of NGFE estimators by using this new approach

to study whether and how product market competition (measured as one minus the Lerner in-

dex) affect innovation (measured as citation-weighted patents) in a panel of UK industries that

spans the last part of the twentieth century (1973-1994), revisiting an influential paper by Aghion,

Bloom, Blundell, Griffith, and Howitt (2005) published in the top 5 economic journal The Quarterly

Journal of Economics. Challenging their nonlinear additively separable two-way fixed effects main

specification, I find evidence of clustered time-varying unobserved heterogeneity, which results in

a mildly inverted-U shape relationship and sheds new light on the unobserved mechanisms driving

both market structure and technological change across time. Specifically, the data-driven cluster-

ing procedure reveals steady “high/low-innovation” clusters of industries as well as “caching-up”

industries.

Overall, the theoretical results broaden the scope of application of GFE estimators and cluster-

ing techniques in econometrics, complementing the available toolbox for applied economists inter-

ested in assessing robustness of their results to specification choices (in particular when unobserved

heterogeneity is plausibly clustered and time-varying). Results from the empirical applications

confirm the usefulness of considering flexible specifications such as NGFE for modeling unobserved

heterogeneity.

Related Literature This paper contributes to the literature on nonparametric identification of

nonseparable panel data models, by providing new identification results in long nonlinear panel

models while most previous papers from this literature have either assumed time-homogeneity

conditions and fixed-T ,12 continuous outcomes,13 relied on additive separability of the unobserved

heterogeneity,14 or specified parametrically the link function.15 In contrast, by alleviating the large-

T dimension and the single-index structure, I show that all parameters of NGFE models can be

(nonparametrically) point-identified.
12See, in particular, Chernozhukov, Fernández-Val, Hahn, and Newey (2013), Evdokimov (2010), Evdokimov

(2011), Hoderlein and White (2012), Botosaru and Muris (2017), Manski (1987) and Altonji and Matzkin (2005).
13See, e.g., Athey and Imbens (2006) and Freyberger (2018).
14See, e.g., Botosaru and Muris (2017) and Mugnier and Wang (2022). Differently from the additively separable case

considered in Mugnier and Wang (2022), interactions between individual-specific (i.e., vector of group membership
dummies) and time-specific (i.e., vector of cluster effects) effects complicates analysis, which requires new arguments
on top of the compensating variation technique already used in that paper and D’Haultfoeuille, Hoderlein, and Sasaki
(2021).

15Zeleneev (2020).
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The second contribution of this paper is to propose a novel and convenient estimation method for

semiparametric nonlinear panel data models with time-varying unobserved heterogeneity and de-

rive its asymptotic properties. Most previous research in the large-N , large-T panel data literature

has focused on factor-analytic type linear models while nonlinear models with multiple fixed-effects

have only recently drawn considerable attention.16 Fernández-Val and Weidner (2016), Graham

(2017), and Charbonneau (2017) provide consistent and asymptotically normal semiparametric es-

timators of the homogeneous slope coefficient (as well as average partial effects in Fernández-Val

and Weidner, 2016) in nonlinear two-way fixed effects models, assuming that unobserved het-

erogeneity is additively separable into individual-specific and time-specific components. Neither

two-way fixed effects nonlinear models nor NGFE models are nested one into another and the two

approaches should therefore seen as complementary. However, differently from NGFE estimators,

Graham (2017) and Charbonneau (2017)’s conditioning estimators, by partialling out the unob-

servables, do not provide consistent estimates for them, and Fernández-Val and Weidner (2016)

require N/T → κ ∈ (0,+∞) to obtain statistical guarantees.

The closest papers to ours are Chen, Fernández-Val, and Weidner (2021), Bonhomme, Lamadon,

and Manresa (2022), and a recent working paper by Ando and Bai (2022). Chen, Fernández-Val,

and Weidner (2021) extend Fernández-Val and Weidner (2016)’s results to semiparametric nonlin-

ear factor-analytic models under concavity conditions. When the link function is parametrically

specified, NGFE models fall into their framework. Yet, Chen, Fernández-Val, and Weidner (2021)

do not derive any formal nonparametric identification result and, because of their generality, also

require N/T → κ ∈ (0,+∞) and need bias correction methods to obtain correctly centered limiting

distributions allowing for valid inference on slope coefficient and average marginal effects (but not

on the latent factors). The two-step discretization approach of developed in Bonhomme, Lamadon,

and Manresa (2022), albeit its remarkable generality, comes at a similar price. When heterogeneity

is discrete, it ressembles a Lloyd’s algorithm where the first clustering step would not take advan-

tage of improvement on the other parameters (as noted by the author, the choice of moments is

important in practice) but, different from the NGFE approach, it does not have yet any inference

method. Moreover, Monte Carlo simulations suggest that relying directly on maximum likelihood

(NGFE) is better in terms of bias and RMSE when unobserved heterogeneity is time-varying and

discrete. Alternatively, NGFE estimators are asymptotically equivalent to the oracle MLE with
16For linear factor-type models, see, among many others, Bai (2003), Pesaran (2006), Bai (2009), Bonhomme and

Manresa (2015), Moon and Weidner (2015), Moon and Weidner (2017), and Ando and Bai (2017). For nonlinear
ones, see, e.g., Chen, Fernández-Val, and Weidner (2021) and Ando and Bai (2022).
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known clusters which, itself, is shown asymptotically centered and normal at parametric rates (or

for which bias-correction techniques might be available in the same flavour of Chen, Fernández-Val,

and Weidner (2021)), and provide a parsimonious approximation if one is willing to assume discrete

unobserved heterogeneity. Independently from this paper, Ando and Bai (2022) generalizes Bon-

homme and Manresa (2015)’s semiparametric GFE estimator to an exponential family of nonlinear

grouped factor models with heterogeneous coefficients (including Probit, Logit, Poisson). As in

this paper, they consider the MLE and their results extend our NGFE estimator for semipara-

metric NGFE models with heterogeneous coefficients. Differently, their general framework imposes

stronger restrictions (requires larger T in the asymptotics), delivers slower
√
T -rate for the slope

coefficient estimates (v.s.
√
NT for the NGFE estimate of the common slope), and they do not

provide nonparametric identification results.

Some papers assume that clusters are known to the econometrician (see, e.g. Arkhangelsky

and Imbens, 2018; Bester and Hansen, 2016). Many papers allow for clustered structure on the

unobserved heterogeneity but otherwise impose time-invariant unobserved heterogeneity.17 For

instance, Hahn and Moon (2010) and Bonhomme and Manresa (2015), which focus respectively

on discrete but time-invariant unobserved heterogeneity in general models and linear versions of

NGFE models with time-varying unobserved heterogeneity, have been extended to some nonlinear

models with time-invariant unobserved heterogeneity in Saggio (2012) and Cheng, Schorfheide, and

Shao (2021). Yet, accounting for clustered patterns of time-varying unobserved heterogeneity in

nonlinear models seems to be a difficult and less investigated problem that I address in this paper.

In particular, NGFE estimators are a natural semiparametric extension of Bonhomme and Manresa

(2015); Bryant and Williamson (1978); Hahn and Moon (2010); Saggio (2012)’s classification maxi-

mum likelihood estimators to cover the class considered in this paper and allow for nonlinearity and

time-varying unobserved heterogeneity simultaneously. As the latter, they are based on optimal

clustering of individuals given a M-estimation likelihood criterion. However, while the least-squares

formulation of Bonhomme and Manresa (2015)’s GFE estimator and linearity allow many useful

connections with clustering theory and, in particular, that of the kmeans algorithm (the GFE clus-

tering estimate is based on k-means clustering of individuals’ profiles of outcome net of the effects of

the covariates), the binary outcome Yit = 1{Y ∗
it ≥ 0} in, e.g., a Logit or Probit NGFE latent utility

model, is not linear in parameters and the latent variable Y ∗
it = X ′

itθ
0 +α0

g0
i t

− εit, although linear

17See, e.g., Hahn and Moon (2010), Su, Shi, and Phillips (2016), Gu and Volgushev (2019); Yu, Gu, and Volgushev
(2022), Saggio (2012), Vogt and Linton (2017), and Cheng, Schorfheide, and Shao (2021).
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in parameters, is not observed by the econometrician. Hence, the kmeans agorithm is not directly

applicable to the within profiles of outcomes {Y ∗
it : t} net of the effect of covariates. Differently from

us, a line of research put the grouping assumption on the unknown slope coefficient (heterogeneous

models), letting again the unobserved heterogeneity individual-specific.18

The third strand of literature this paper contributes to is that of dimension reduction methods

applied to nonlinear panel data models. A surge of papers have leveraged state-of-the-art statis-

tical learning tools such as matrix completion devices and extensions of Tibshirani (1996)’s Least

Absolute Shrinkage Estimator (LASSO) estimator to tackle the problem of estimating a large num-

ber of unobserved effects in parsimonious panel data models.19 A common idea underlying these

methods (as well as grouping/clustering techniques) is to exploit restrictions on the support of the

unobserved heterogeneity, which echoes the concept of sparsity in high-dimensional statistics.20

Finally, this paper is related to a strand of the statistical literature concerned with the classical

NP-hard problem of clustering (see, e.g., Forgy, 1965; Lloyd, 1982; MacQueen, 1967) and the closely

related statistical concept of (nonparametric) finite mixtures models (see, e.g., McLachlan and Peel,

2000). In NGFE models, and conversely to classical EM approaches (see, e.g. Dempster, Laird,

and Rubin, 1977; Sun, 2005), the probabilities to belong to each cluster are not restricted. In

sharp contrast with nonparametric finite mixture approaches, where the underlying heterogeneity

is usually continuous, NGFE models have an underlying discrete structure which is the object

of interest. For each individual, a unique cluster-membership is estimated instead of a vector of

probabilities (e.g., the Bayes predictor) to belong to each cluster (see, e.g. Bryant and Williamson,

1978, for a discussion). Yet, as in EM algorithms, it is important to acknowledge that the popular

iterative Lloyd (1982)’s algorithm used to compute the NGFE estimator is subject to the problem

of being attracted to local minima.

Organization The remainder of the paper is organized as follows. In Section 2, I introduce the

class of NGFE models. The main identification result is presented in Section 3. In Section 4, I

propose a general M-estimation framework, develop semiparametric NGFE estimators, and discuss
18See, Boneva, Linton, and Vogt (2015), Su, Shi, and Phillips (2016), Su, Wang, and Jin (2019), Gao, Xia, and

Zhu (2020), Zhang, Wang, and Zhu (2019), Liu, Shang, Zhang, and Zhou (2020), and Wang and Su (2021).
19See, among others, Kock (2016), Moon and Weidner (2019), Zeleneev (2020), and Athey, Bayati, Doudchenko,

Imbens, and Khosravi (2021).
20See, e.g., the monograph by Giraud (2014) for a thorough introduction to the topic. Note that “sparsity” of the

unobserved heterogeneity is different from “sparsity” of common parameters, which distinguishes this literature from
that focused on the use of the LASSO in panel data models with high-dimensional covariates or instruments (see,
e.g., Belloni, Chen, Chernozhukov, and Hansen, 2012; Belloni, Chernozhukov, Hansen, and Kozbur, 2016).
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their computation. Section 5 provides theoretical properties of NGFE estimators in semiparametric

binary choice models. Section 6 presents Monte Carlo results. Section 7 contains the empirical

application. Section 8 concludes. All proofs are collected in the appendix.

Notation For any set A, I let A∗ :=A\{0} and |A| denote the cardinal of A. For any (a,b) ∈ R2,

I let a∨ b := max{a,b} and a∧ b := min{a,b}. λ denotes the Lebesgue measure on (R,B(R)),

where B(R) collects the Borel sets on R. The abbreviation “a.e.” stands for “almost everywhere”

(with respect to an appropriate measure). Let d−→ and p−→ denote convergence in distribution and

convergence in probability respectively. For any sequence of random variables {Un : n ∈ N} such

that Un
p−→ U , let plimn→∞Un := U . Un =Op(1) (resp. op(1)) means Un is bounded in probability

(resp. converges in probability to zero). Un = Op(Rn) means that Un = Rn×Vn with Vn = Op(1);

Un = op(Rn) means that Un = Rn × Vn with Vn = op(1). Henceforth, I denote by Supp(U) the

support of any random variable U .

2 Nonlinear Discrete Outcome Models With Unobserved Clusters

of Time-Varying Heterogeneity

Suppose to observe a balanced random sample of panel data {(Yit,X ′
it)′ : (i, t) ∈ N ×T } with di-

mensions N := |N | and T := |T |.21 In many applications, N is an index for individuals or “units”,

and T indexes time periods or “unit members”. I consider the problem of modeling, for individual

i ∈ N , the T -vector of discrete outcomes Yi = (Yit)′
t∈T in relation with its T ×p matrix of weakly

exogeneous covariates Xi = (X ′
it)′
t∈T . The dependent variable Yit represent agents’ (choice) de-

cisions and Xit represent agents’ attributes over time and it is often plausible that time-varying

unobservables (to the econometrician) confound the “effect” of Xit on Yit.22. For instance, in the

empirical application, Yit ∈ N denotes the number of patents produced by industry i at time t and

Xit collects industry i’s characteristics at time t such as the level of product market competition.

With this purpose, I introduce below a class of nonlinear clustered or “grouped” fixed effects
21Unbalanced panels can be accomodated easily under exogeneous attrition (i.e., missing-at-random). Endogeneous

attrition is beyond the scope of this paper. Throughout the paper, I rule out undirected graph (or network or “pseudo-
panel”) data for which there is no proper T and observations are indexed by pairs of indices (i, t) ∈ N 2 such that
(Yit,X

′
it)

′ = (Yti,X
′
ti)

′ for all (i, t) ∈ N 2. There is a vast literature on models of link formations and networks (see,
e.g., de Paula, 2020, for a recent review).

22E.g., agents choose Xit depending on time-varying unobservables that also affect Yit before idiosyncratic shocks
are realized. One might also want to distinguish between state dependence and unobserved (time-varying) hetero-
geneity (see, e.g. Heckman, 1981).
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(NGFE) models to flexibly incorporate time-varying patterns of unobserved heterogeneity. I let

Supp(Yit,Xit) = Y × Xi and assume that Y ⊂ R is at most countable and Xi ⊂ Rp for some fixed

p∈N∗. In its simplest version, individual i∈ N := {1, ...,N} at time t∈ T := {1, ...,T} chooses Yit ∈

Y given her weakly exogeneous covariates Xt
i := (X ′

i1, ...X
′
it)′, her unobserved cluster membership

variable g0
i ∈ G0 :=

{
1, ...,G0}, and unobserved time-varying cluster-specific effect α0

gt ∈ A ⊂ R such

that, for all y ∈ Y,

Pr
(
Yit = y |Xi1, ...,Xit,g

0
i ,α

0
g0

i t

)
= h0

(
y,X ′

itβ
0 +α0

g0
i t

)
, (1)

where β0 ∈ B ⊂ Rp in an unknown fixed parameter of interest, G0 ∈ N∗ is unknown but “small”

relative to N , and h0 ∈ H is an unknown link function from the set

H ⊂

h : Y ×R → (0,1) measurable,
∑
y∈Y

h(y, ·) = 1, and
∑
y∈Y

|y|h(y, ·)<∞ a.e.

 .
The common parameter β0 is often of key interest in applications (e.g., marginal utilities). Un-

observed effects (α0
g0

i t
)t≥1 account for time-varying unobserved heterogeneity shared by all members

of cluster g0
i , i.e., all individuals

{
j : g0

j = g0
i

}
, that might confound β0 (i.e., arbitrarily correlated

with Xit). The link function h0 captures the conditional distribution of random idiosyncratic

shocks in exogeneous latent variable utility choice models. The contemporaneous covariates Xit

and the unobserved effect α0
g0

i t
enter the response function as the combination of a linear single-

index X ′
itβ

0 +α0
g0

i t
and an unknown link function h0.23 Single index assumptions are common in

the nonseparable panel data models literature and serve mainly computational and interpretation

purposes (relying on another smooth index would not significantly change our subsequent results,

but likely some identification assumptions). Note that (i) neither the clustering nor the number

of clusters is observed by the econometrician and (ii) the number of possible assignments of N

individuals into G0 clusters grows exponentially fast with N .

Model (1), although static, complement models that have been routinely employed in the em-

pirical microeconometric, industrial organisation, macroeconometric, innovation, and international

trade literature, which, in contrast, assume additively separable (and time-invariant) fixed effects.

I provide below some leading examples complementing Mugnier and Wang (2022).

23If h0 were known to the econometrician, model (1) would become a special case of the semiparametric nonlinear
factor models considered in Chen, Fernández-Val, and Weidner (2021).
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Example 1 (Binary outcome)

Yit = 1
{
X ′
itβ

0 +α0
g0

i t
−εit ≥ 0

}
,

where εit is independent from
(
X ′
i1, ...,X

′
it,g

0
i ,α

0
g0

i t

)′
and distributed with (unknown) cumulative

distribution function (cdf) Ψ0. Then,

h0
(
y,X ′

itβ
0 +α0

g0
i t

)
= 1{y = 1}×Ψ0

(
X ′
itβ

0 +α0
g0

i t

)
+1{y = 0}×

[
1−Ψ0

(
X ′
itβ

0 +α0
g0

i t

)]
.

Example 2 (Ordered outcome)

Yit =


0 if X ′

itβ
0 +α0

g0
i t

−εit < d0
1.

1 if d0
1 ≤X ′

itβ
0 +α0

g0
i t

−εit < d0
2.

2 if X ′
itβ

0 +α0
g0

i t
−εit ≥ d0

2,

(2)

where d0
2 > d0

1, and εit is independent from
(
X ′
i1, ...,X

′
it,g

0
i ,α

0
g0

i t

)′
and distributed with (unknown)

cdf Ψ0. Then,

h0
(
y,X ′

itβ
0 +α0

g0
i t

)
=


1−Ψ0

(
X ′
itβ

0 +α0
g0

i t
−d0

1

)
if y = 0.

Ψ0
(
X ′
itβ

0 +α0
g0

i t
−d0

1

)
−Ψ0

(
X ′
itβ

0 +α0
g0

i t
−d0

2

)
if y = 1.

Ψ0
(
X ′
itβ

0 +α0
g0

i t
−d0

2

)
if y = 2.

Example 3 (Count outcome) Y = {0,1,2, ...}. A Poisson parametrization specifies

h0
(
y,X ′

itβ
0 +α0

g0
i t

)
=
(
λ0
it

)y exp
(
−λ0

it

)
y! , (3)

where λ0
it = exp

(
X ′
itβ

0 +α0
g0

i t

)
. Alternatively, h0 could encapsulate, e.g., the negative binomial

distribution.

I adopt the so-called “fixed effects” approach, treating the realizations of unobserved time effects

and group membership variables as unrestricted parameters to be estimated. I asume that G0

fixed and exogeneous. Policy parameters of interest such as average marginal effects often write as

functionals of β0, h0, α0 :=
(
α0
g1, ...,α

0
gT , ...,α

0
G01, ...,α

0
G0T

)′
∈ AG0T , and latent clustering structure

γ0 :=
(
g0

1, ...,g
0
N

)′ ∈ G0N . Hereafter, I focus on identification and estimation of the sequence of

11



parameters θ0
NT :=

(
G0,h0,β0′

,γ0′
,α0′

)′
∈ ΘNT , where I let

ΘNT =
+∞⋃
G=1

{G}×H ×B ×{1, ...,G}N ×AGT .

While B is a finite-dimensional space, H is clearly not and the dimensions of both the discrete

set {1, ...,G}N and AGT grow with the sample size. This makes model (1) a high-dimensional

combinatorial semi-parametric nonseparable model.

Remark 1 It is straightforward to adapt the analysis to allow for cluster-specific slope coefficient

β0 :=
(
β0′

1 , ...,β
0′

G0

)′
such that

Pr
(
Yit = y |Xi1, ...,Xit,g

0
i ,α

0
g0

i t
,β0
g0

i

)
= h0

(
y,X ′

itβ
0
g0

i
+α0

g0
i t

)
, ∀y ∈ Y. (4)

We discuss this extension, as well as heterogeneous link functions, additional individual- and time-

specific effects, and grouped time-periods in Appendices B.1-B.3. Model (1) can also be extended

to allow for multimodal outcomes. The notation are more lengthy and would essentially follow the

same lines as in Mugnier and Wang (2022).

Remark 2 Model (1) extends Bonhomme and Manresa (2015) to nonparametric discrete choice

modeling. In contrast to Bonhomme, Lamadon, and Manresa (2022), the link function h0 is un-

known, the true underlying unobserved heterogeneity is discrete, and all parameters of the models

are considered as target parameters.

3 Nonparametric Identification and Estimation

In this section, I investigate the identification of θ0
NT in model (1) and provide guideline for fully

nonparametric estimation. Note that model (1) is related to nonseparable panel data models with

latent factors as it implies the following semiparametric regression equations:

1{Yit = y} = h0
(
y,X ′

itβ
0 +α0

g0
i t

)
+εit(y), ∀(i, t,y) ∈ ×N ×T ×Y, (5)

where E
[
εit(y) |Xi,g

0
i ,α

0
g0

i t

]
= 0, and

Yit =
∑
y∈Y

yh0
(
y,X ′

itβ
0 +α0

g0
i t

)
+vit, ∀(i, t) ∈ ×N ×T , (6)
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where vit =∑
y∈Y yεit(y) and, by linearity, E

[
vit |Xi,g

0
i ,α

0
g0

i t

]
= 0. The representation given by (5)

is useful to identify the clustering structure, while the representation given by (6) allows to apply

results in Ichimura (1993) under appropriate dependence conditions that I now introduce.

3.1 Large-N , Large-T Nonparametric Identification

In this section, I prove the nonparametric identification of θ0
NT in model (1) as N and T diverge

jointly to infinity. Since both g0
i and α0

g0
i t

are unobserved, identification holds up to clusters re-

labeling only.24 It is also necessary to impose location and scale normalizations, which I specify

as
∥∥β0∥∥ = 1 and α0

11 = 0, where
∥∥ ·
∥∥ denotes the Euclidean norm.25 Identification is based on

Assumptions 1-5 below.

Assumption 1 (Random sampling) There exist sequences of random vectors of fixed dimen-

sions λ0 :=
{
λ0
gt : (g, t)

}
, µ0 :=

{
µ0
g : g

}
, ξ0 :=

{
ξ0
i : i

}
, such that:

(a)
(
Y ′
i ,X

′
i,g

0
i

)′ is i.i.d. across i ∈ N conditional on α0, λ0, µ0.

(b) For all i ∈ N :
{(
Yit,X

′
it,α

0
g0

i t

)′
}
t≥2

is a strictly stationary strong mixing process with mixing

coefficients αi(·) conditional on g0
i ,µ

0
g0

i
, ξ0
i . Let α(·) = supiαi(·) satisfy α(l) ≤ cαρ

l with cα > 0,

and ρ ∈ (0,1).

(c) For all t ∈ T : Y1t |X1t,g
0
1,α

0,λ0,µ0, ξ0 d= Y1t |X1t,g
0
1,α

0
g0

1t
.

Assumptions 1(a)-1(b) restrict cross-sectional and time dependence in the data. Contrasting with

many papers, they allow for flexible patterns of unconditional spatial and time-series correlations

as captured by the clustering latent structure α0,λ0,µ0 and individual-specific effects ξ0. Assump-

tion 1(c) requires that λ0,µ0, ξ0 have no effect on the outcome after conditioning for the covariates,

cluster membership and the cluster-specific effects α0. This assumption is mostly for a matter

of simplicity in exposition. In Appendix B.1, I discuss several extensions such as cluster-specific

slopes, individual-fixed and time-fixed effects which possibly affect all observed variables.26

Assumption 2 (Latent clustering) X :=⋂∞
i=1 Xi is not empty and:

24This mirrors standard rotational invariance normalizations in interactive fixed effects models (see, e.g., Bai, 2009).
25These choices are, of course, arbitrary but normalizing

∥∥β0∥∥= 1 is standard in nonparametric single-index models
(see, e.g. Botosaru and Muris, 2017; Ichimura, 1993).

26In some application, it could be useful to allow for a non-scalar α0
gt. Estimation in semiparametric nonlinear

grouped factor models with many factors has recently been considered in Ando and Bai (2022).
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(a) There exist known X 0 ⊂ X , y ∈ Y, and functional ϕ such that, for all fixed (i, j) ∈ N 2, letting

ρi(x) : X 0 ∋ x 7→ Pr
(
Yi2 = y |Xi2 = x,g0

i ,µ
0
i , ξ

0
i

)
, ϕ(ρi,ρj) = 1

{
g0
i = g0

j

}
.

(b) For all g ∈ G0, almost surely Pr
(
g0

1 = g | α0,λ0,µ0, ξ0)> 0.

Assumption 2(a) requires clusters to be sufficiently well-separated in terms of individual-level con-

ditional probability functions. It is a low-level injectivity or “completeness”-type assumption à la

Bonhomme, Lamadon, and Manresa (2022) which ensures that latent variables are recoverable from

observed moments and leaves flexibility to the researcher for defining clusters of unobserved het-

erogeneity. In Appendix A.2, I provide sufficient conditions for Assumption 2(a) to hold, including

smoothness and the existence of a special regressor à la Honoré and Lewbel (2002) but without

large support. For such a mapping to exist, the intuition is that whenever g0
i ̸= g0

j , the conditional

distributions α0
g2 | Xi2 = x,g0

i ,µ
0
i , ξ

0
i and α0

g̃2 | Xj2 = x,g0
j ,µ

0
j , ξ

0
j across x ∈ X 0 should differ suffi-

ciently (and the link function h0 should be sufficiently smooth to convey such a difference) so as to

trigger a difference in the integrated-out conditional outcome probabilities captured by ϕ. In many

application, ϕ(f,g) = 1{f = g} makes sense (see, e.g., Vogt and Linton, 2017). Yet, the setting is

kept slightly more general as other clustering structures might be plausible. Assumption 2(b) rules

out asymptotically negligible clusters. Notice that allowing for an increasing number of clusters

or negligible clusters would need substantial changes to Assumption 1 (e.g., as the cross-sectional

identical distribution would not hold anymore).

Assumption 3 (Regularity and smoothness)

(a) Conditional on g0
i ,µ

0
g0

i
, ξ0
i , Xi2 admits a uniformly continuous density function fXi2|g0

i ,µ
0
g0

i

,ξ0
i

such that 0< δ ≤ infx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i
(x) ≤ supx∈X 0 fXi2|g0

i ,µ
0
g0

i

,ξ0
i
(x) ≤ δ <∞.

(b) Almost surely, E
(∥∥X12

∥∥2 | g0
1,α

0,λ0,µ0
)

is finite and E
(
X12X

′
12 | g0

1,α
0,λ0,µ0) is nonsingular.

(c)
∑
y∈Y yh

0(y, ·) is differentiable on R and not constant on the support of X ′
itβ

0 +α0
g0

i t
.

Assumption 3 collects sufficient technical conditions that are useful to achieve point identification of

β0,α0 given that h0 is unknown, by relying on existing results in Ichimura (1993) for nonparametric

i.i.d. single index models. In particular, it requires continuous covariates (which could be relaxed

at the expense of heavier conditions) and invertibility of conditional Gram matrices.

Assumption 4 (Monotonicity) There exists y ∈ Y such that h0(y,v) is strictly monotonic in v.
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Assumption 4 is a shape restriction which may be expected to hold at boundary points of Y

(e.g., outside option in random utility models, absence of trade, absence of patenting in acount

outcome model). Shape restrictions such as monotonicity have been routinely used to obtain

point-identification in nonseparable panel data models.27

Assumption 5 (Compensating variations) For all fixed (g, g̃, t), there exist x1,x2 ∈ X such

that

α0
g̃t

+x′
1β

0 = α0
gt+x′

2β
0. (7)

Similarly, for all (g, t, t̃), there exist x3,x4 ∈ X such that

α0
gt̃

+x′
3β

0 = α0
gt+x′

4β
0. (8)

Assumption 5 requires sufficient variation in the covariates and has the same flavor as the compensat-

ing variations used in D’Haultfoeuille, Hoderlein, and Sasaki (2021) and Mugnier and Wang (2022).

As in the latter paper, it does not necessarily require a covariate with large support (it depends on

the support of unobserved group-specific effects) and ensures that there is overlap in the single in-

dex across unobserved clusters (not individuals) and periods. Let W 0
N =

(
1
{
g0
i = g0

j

})
(i,j)∈{1,...,N}2

.

Theorem 1 below is the main identification result of the paper.

Theorem 1 Let Assumptions 1-3(a) hold, and let N and T diverge jointly to infinity. Then,

1. (W 0
N )N∈N∗ and G0 are point identified.

2. If Assumptions 3(b)-5 further hold, then h0, β0, and (α0
gt)(g,t)∈G0×N∗ are point identified.

For the proof see Appendix A.1.

Remark 3 A key argument of the proof of Theorem 1 is to frame the identification of the clustering

γ0 up to cluster relabeling as the equivalent problem of recovering the lower (or uppper)-triangular

submatrix of the adjency matrix W 0
N of the undirected graph GN = {V,E} whose set of vertices

V contains units i ∈ N and whose edges E contains all (i, j) ∈ N 2 such that g0
i = g0

j . Given the

clustering structure of the model, note that W 0
N has rank RN ≤ G0 which is also its number of

distinct rows as clusters forms disconnected cliques in GN .28 In other words, it is easily seen
27See, among many others, Athey and Imbens (2006); Evdokimov (2011); Klein and Spady (1993); Mugnier and

Wang (2022), and Altonji and Matzkin (2005).
28The related problem of “community detection” in networks has been widely studied in the statistical learning

literature, and in particular in the compressed sensing literature. I do not pursue adaptation of spectral clustering
techniques or recent development in Graph-cut problems for which very few asymptotic results in statistical settings
with complex structure of dependencies are known. See von Luxburg (2007); Wang and Su (2021).
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that identification of γ0 up to cluster relabeling is equivalent to identification of all sets C0(i) :={
j ∈ N : g0

j = g0
i

}
for i ∈ N . Such a characterization has two advantages: (i) it is invariant to

clusters relabeling and (ii) it reduces the NP-hard G0-mean clustering problem to that of solving

N(N − 1)/2 binary classification problems.29 Once the clustering γ0 has been identified for all N ,

identification of G0 follows easily by letting N → ∞. Identification of β0 can be obtained relying

on intra-cluster cross-sectional variation for a single cluster and a result by Ichimura (1993) for

a large class of cross-sectional nonparametric single-index models. Identification of cluster-specific

effects relies on the compensating variations and monotonicity of h0(y, ·).

3.2 Nonparametric Estimation

A nonparametric estimator can be build following exactly the identification strategy. I provide

below the roadmap and main steps:

1. For all i ∈ N : get an estimate ρ̂i of ρi using nonparametric density estimation (including

machine learning) methods.

2. Compute Ŵij = ϕ(ρ̂i, ρ̂j) or an approximate regularized version.

3. Set Ĝ=
∣∣∣{Ŵ1,., ...,ŴN,.

}∣∣∣ and pick (ĝ1, ..., ĝN )′ ∈
{

1, ..., Ĝ
}N

satisfying, for all (i, j) ∈ {1, ...,N}2,

[
ĝi = ĝj ⇐⇒ Ŵi,. = Ŵj,.

]
.

4. Estimate β̂gt within each group at each period using Ichimura (1993)’s SLS method, and let

β̂ = 1
TĜ

∑Ĝ
g=1

∑T
t=1 β̂gt.

5. Estimate (α̂gt)g,t by the compensating variation.

6. Estimate ĥ(y, ·) by non-parametric regression of 1{Yit = y} on Ẑit :=X ′
itβ̂+ α̂ĝit

.

This approach has the drawback of requiring a lot of nonparametric density estimation, i.e., a lot of

tuning parameters as it requires combining nonparametric estimates of conditionals probabilities.

This is similar to Gao, Li, and Xu (2022)’s approach in a pure network. I do not pursue the

theoretical analysis of an estimator of this type, because I aim at developing a simple method for
29Building on this insight, Mugnier (2022) proposes computationally straightforward pairwise differencing estima-

tors for linear grouped fixed effects models. A similar-in-philosophy though different trick to break NP hardness is
the binary segmentation approach of Wang and Su (2021).
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which inference tools are available. An open question is how the pairwise approach compares to the

bruteforce fully nonparametric maximum likelihood approach. I note that, for a class of directed

network models, the pairwise differencing approach developed in Mugnier (2022) yields a convenient

estimation procedure under conditional moment restrictions, without requiring any nonparametric

estimation, which reconciles computational simplicity and powerful inference.

4 Semiparametric Estimation

In the first part of this section, I propose a general M-estimation framework accomodating nonlinear

models when the number of clusters, G0 ∈ N∗, is known to the researcher.30 In the second part, I

specialize the framework to cases where h0 ∈ H is further assumed to be known (e.g., Probit, Logit,

Poisson) to define semiparametric NGFE estimators. In the third part, I discuss computation.

4.1 A Generic M-Estimation Framework

Assume from now that G0 ∈ N∗ is known to the researcher, and suppose there exists a known

function ρ : Y ×X ×B ×H ×G0N ×AG0T −→ R such that θ0
NT := (β0′

,h0,γ0′
,α0′)′ satisfies

θ0
NT = argmax

θ∈B×H×G0N ×AG0T

E
(

1
NT

N∑
i=1

T∑
t=1

ρ(Yit,Xit;θ) | γ,α
)
, (9)

where G0N =
{
1, ...,G0}N is the set of all partitions of {1, ...,N} into at most G0 clusters. Provided

it exists, the M-NGFE nonparametric estimator θ̂M
ρ := (β̂M′

, ĥM, γ̂M′
, α̂M′)′ of θ0

NT solves

θ̂M
ρ ∈ argmax

θ∈B×H×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

ρ(Yit,Xit;θ). (10)

Finding a suitable ρ-function, proving identification of θ0
NT (i.e., that eq. (9) holds), and deriving

the asymptotic properties of the sequence of θ̂M
ρ are certainly difficult problems beyond the scope

of the paper, each of them would require further assumptions. Moreover, computation of θ̂M
ρ is

generally infeasible because maximization problem (10) is a non-smooth non-concave optimization
30Estimating G0 in nonlinear models with time-varying unobserved heterogeneity is a difficult problem that is

beyond the scope of the paper. See Chen, Fernández-Val, and Weidner (2021) for a discussion in some concave
nonlinear factor type models. An AIC or BIC-type criterion à la Bai and Ng (2002); Bonhomme and Manresa (2015)
could be employed but would require to know at least an upper bound on G0. Letting G0 grow slowly with N,T
could also be of interest but would require a different analysis that is beyond the scope of the paper. Note that
Bonhomme, Lamadon, and Manresa (2022) need the number of clusters to increase as they assume a (possibly)
continuous underlying unobserved heterogeneity.
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problem with combinatorial optimization (due to the clustering part) over an infinite-dimensional

space (due to H). A practical solution to make the problem finite-dimensional is sieve-estimation

of h0 but this is beyond the scope of this paper. Instead, I focus on semiparametric versions where

h0 is assumed to be known and that are of practical interest in many empirical applications.

4.2 Semiparametric NGFE Estimators

From now on, I assume that h0 ∈ H is known (e.g., Logit, Probit, Poisson, etc.) and consider the

problem of estimating θ0
NT := (β0′

,γ0′
,α0′)′ in the semiparametric model (1) with known G0. The

semiparametric NGFE estimator of θ0
NT , denoted θ̂NGFE := (θ̂′, γ̂′, α̂′)′, is the M-NGFE estimator

θ̂M
ρ (once suppressing dependence on h) with ρ(Yit,Xit;θ) = lnh0 (Yit,X ′

itβ+αgit). In other words,

θ̂NGFE is solution to the following minimization problem:

θ̂NGFE ∈ argmin
θ∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

− lnh0 (Yit,X ′
itβ+αgit

)
, (11)

where the minimum is taken over all possible common parameters β, partitions γ = (g1, ...,gN )′

of the N individuals into G0 clusters, and cluster-specific time effects {αgt : (g, t)}. Note that the

NGFE estimator is a “classification likelihood” estimator. For given values of β and α, the optimal

cluster assignment for individual i is

ĝi(β,α) = argmin
g∈G0

1
NT

N∑
t=1

T∑
t=1

− lnh0 (Yit,X ′
itβ+αgt

)
, (12)

where the minimum g is taken in case of a non-unique solution. The NGFE estimator of (β0′
,α0′)′

in (11) can then be written as

(β̂, α̂) = argmin
(β,α)∈B×AG0T

1
NT

N∑
i=1

T∑
t=1

− lnh0
(
Yit,X

′
itβ+αĝi(β,α)t

)
, (13)

where ĝi(β,α) is given by (12).

4.3 Computation

The minimization problem (11) is not differentiable nor convex in ϕ. In particular, it may be

subject to the existence of local minima. Note that the number of partitions of N individuals

18



into G0 clusters increases steeply with N , making exhaustive search impossible.31 I propose the

following simple algorithm which is an extension of the popular Lloyd (1982)’s algorithm for k-

means, a “greedy” algorithm providing a converging sequence of heuristic solutions in polynomial

time.

Iterative Algorithm:

1. Let (β(0),α(0)) ∈ B ×AG0T be some starting value. Set s= 0.

2. Compute for all i ∈ {1, ...,N}:

g
(s+1)
i = argmin

g∈G0

T∑
t=1

− lnh0
(
Yit,X

′
itβ

(s) +α
(s)
gt

)
. (14)

3. Compute:

(
β(s+1),α(s+1)

)
= argmin

(β,α)∈B×AG0T

N∑
i=1

T∑
t=1

− lnh0
(
Yit,X

′
itβ+α

g
(s+1)
i t

)
. (15)

4. Set s= s+1 and go to Step 2 (until numerical convergence).

Algorithm 1 alternates between two steps. In the “assignment” step, each individual i is assigned

to cluster gi whose vector of time effects minimizes individual’s i time-averaged log-likelihood given

the slope parameter. In the “update step”, β and α are computed using maximum likelihood

and controlling for interactions of cluster and time dummies. A potential issue is that the solution

depends on the chosen starting values. Drawing starting values at random and selecting the solution

that yields the lowest objective is a practical solution in low-dimensional problems. Finding a fast

approximation of NGFE for larger-scale problems and controlling its optimization error is left for

further research.32

5 Asymptotic Properties of Semiparametric NGFE Estimators

In this section, I assume that θ0
NT := (β0′

,α0′
,γ0′)′ is identified (e.g., by Theorem 1) and derive the

asymptotic properties of semiparametric NGFE estimators. I consider an asymptotic framework
31The number of partitions of N objects into G0 disjoint and non-empty subsets is 1

N !
∑N

i=1(−1)N−i
(

N
i

)
NG0

∝
G0N

G0! . In fact the G0-means problem without regressors in a cross-sectional setting is NP-hard (see, e.g., Aloise,
Deshpande, Hansen, and Popat, 2009).

32Note that an algorithm similar to Algorithm 2 in Bonhomme and Manresa (2015) can be employed to improve
the trade-off between exploration and exploitation during the optimization process.
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where N and T tend jointly to infinity but G0 does not grow with N and T . I focus on binary

choice models with grouped fixed effects as the leading case. Similar results can be obtained for

other strictly concave models (see Appendix B.4), but I stick to binary choice models to keep the

exposition simple. I abstract from optimization errors and study the asymptotic behaviour of the

exact sequence of estimates defined in eq. (11).

5.1 Binary Choice Model With Grouped Fixed Effects

Consider the following data generating process:

Yit = 1
{
X ′
itβ

0 +α0
g0

i t
−εit ≥ 0

}
, i= 1, ...,N, t= 1, ...,T. (16)

For any Z = (Z11, ...,Z1T , ...,ZN1, ...,ZNT )′, let Z(t)
− = {Zis : 1 ≤ i≤N,1 ≤ s≤ t}, Z(t)

+ = {Zis : 1 ≤ i≤N,t≤ s≤ T},

and ε := {εit : (i, t)}.

Assumption 6

Eq. (16) holds and:

(a) For all t:
(
X(t)

− ,γ0,α0,ε
(t−1)
−

)
and ε

(t)
+ are independent.33

(b) The {εit : (i, t)} are identically distributed with known cumulative distribution function Ψ that

is fully supported on R, twicely continuously differentiable, strictly increasing, and such that

(lnΨ)′′ < 0. Moreover, Ψ′ is symmetric around 0.

Assumption 6(a) is a weak exogeneity assumption, standard in the panel data literature, which

allows Xit to contain predetermined variables with respect to Yit. In particular, Xit can include

lags of Yit to accommodate dynamic models. Such assumption does not restrict the correlation

between (γ0,α0) and {Xi : i}. Assumption 6(b) is standard in semiparametric panel discrete choice

models and yields strict concavity of the log-likelihood function under minimal amount of cluster-

specific and time-specific variation in the covariates (as assumed, e.g., in Bonhomme, Lamadon, and

Manresa, 2022; Chen, Fernández-Val, and Weidner, 2021; Fernández-Val and Weidner, 2016).34 The

second part of Assumption 6(b) is weak and is statisfied by the Probit (Ψ(u) =
∫ u

−∞(1/
√

2π)e−t2/2dt)

and Logit (Ψ(u) = 1/(1 + e−u)) distributions. Symmetry of Ψ is not necessary but it conveniently
33If one lag Yit−1 is included as regressor, I assume that Yi0 is observed and contained in X(t)

− . Higher-order
dependence can be accommodated similarly.

34See also, Pratt (1981).
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simplifies notation in the proofs. Under Assumption 6, note that eq. (16) is a semiparametric NGFE

model (1) with known link function h0(y,z) = Ψ(z)1{y=1}(1 − Ψ(z))1{y=0}. The corresponding

NGFE estimator writes

(β̂, γ̂, α̂) ∈ argmin
(β,γ,α)∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

− lnΨ
(
Qit

(
X ′
itβ+αgit

))
, (17)

where Qit = 2Yit−1.

5.2 Consistency

Consider the following assumption.

Assumption 7

(a) B and A are compact convex subsets of Rp and R, respectively.

(b) There exists a constant M > 0 such that
∥∥Xit

∥∥≤M almost surely.

(c) Let Xg∧g̃,t denotes the mean of Xit in the intersection of clusters g0
i = g, and gi = g̃. For all

partitions γ = {g1, ...,gN} ∈ ΓG0N , let ρ̂(γ) denote the minimum eigenvalue of the following

matrix:
1
NT

N∑
i=1

T∑
t=1

(Xit−Xg0
i ∧gi,t

)(Xit−Xg0
i ∧gi,t

)′.

Then, plimN,T→∞ minγ∈ΓG0 ρ̂(γ) = ρ > 0.

Assumption 7(a) and 7(c) are the same as Assumption 1(a) and 1(g) in Bonhomme and Man-

resa (2015). Assumption 7(b) strengthens Assumption 1(b) in Bonhomme and Manresa (2015).

It ensures (together with Assumption 7(a)) strong concavity of the log-likelihood function and

rules non-stationary covariates.35 Assumption 7(c) requires that Xit shows sufficient within-cluster

variation over time and across individuals, and is related to standard noncolinearity assumptions

encountered in the large-N , large-T panel data literature (see, e.g., Ando and Bai, 2022; Bai, 2009;

Chen, Fernández-Val, and Weidner, 2021; Vogt and Linton, 2017). It allows for time-invariant

covariates provided that they have a sufficiently rich support. As a special case highlighted in

Bonhomme and Manresa (2015), Assumption 7(c) is satisfied if Xit are discrete and, for all g, the

conditional distribution of Xi given g0
i = g has strictly more than G0 points of supports.

35One could relax this assumption by allowing covariates to have sub-gaussian tails (see, e.g., Vershynin, 2019, for
a definition). I do not pursue this avenue in order to keep the exposition light. Moment conditions in Bonhomme
and Manresa (2015) also rule out covariates.
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Theorem 2 (Consistency) Let Assumptions 6 and 7 hold. Then, as N and T tend to infinity:

1. β̂ p−→ β0.

2. 1
NT

∑N
i=1
∑T
t=1

(
α̂ĝit

−α0
g0

i t

)2 p−→ 0.

For the proof see Appendix A.3.

Theorem 2 shows that NGFE estimators of the common slope coefficient and cluster-specific

effects in NGFE binary choice models are both consistent.

5.3 Asymptotic Distribution

Consider the following assumption.

Assumption 8

(a) For all g ∈ G0: plimN→∞
1
N

∑N
i=1 1

{
g0
i = g

}
= πg > 0.

(b) For all (g, g̃) ∈ G02 such that g ̸= g̃: plimT→∞
1
T

∑T
t=1(α0

gt−α0
g̃t

)2 = cg,̃g > 0.

(c) There exist constants a > 0 and d > 0 and a sequence α(t) ≤ exp(−atd) such that, for all

i ∈ {1, ...,N} and (g, g̃) ∈ G02 such that g ̸= g̃,
{
α0
gt−α0

g̃t
: t
}

are strongly mixing processes

with mixing coefficients α(t).

Assumptions 8(a)-(c) are identical to Assumptions 2(a)-(c) in Bonhomme and Manresa (2015),

respectively. Assumption 8(a) ensures that no cluster is asymptotically negligible relative to the

others and that each cluster has a large number of observations in the population. This is equiva-

lent to the “strong factor” condition in approximate factor models (see, e.g., Assumption 1.(v) in

Chen, Fernández-Val, and Weidner, 2021). Assumption 8(b) imposes that the G0 clusters are well

separated in the population. As discussed in a recent work by Chetverikov and Manresa (2021),

departing from such an assumption seems quite difficult. Assumption 8(c) restricts the depen-

dence and tail properties of the processes (α0
gt −α0

g̃t
), which are assumed to be strongly mixing.

Assumption 8(d) is standard and requires a sufficient amount of variation in the covariates.

Assumption 8 allows me to rely on exponential inequalities for dependent processes (e.g., Rio,

2000) in order to bound misclassification probabilities, almost the same way as in the proof of

Theorem 2 in Bonhomme and Manresa (2015). The novelty here is that their assumption that the

idiosyncratic shock in the linear model is a strong mixing process is hidden in the parametric and

independence restrictions formulated in Assumption 6, the latter allowing to rely on exponential
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inequalities for martingale differences (see, e.g., Lesigne and Volný, 2001) to control remainder

terms in the proofs (essentially the score).

Let (β̃, α̃) be such an infeasible version of the NGFE estimator where cluster membership gi,

instead of being estimated, is fixed to its population counterpart g0
i :

(β̃, α̃) = argmin
(β,α)∈B×AG0T

1
NT

N∑
i=1

T∑
t=1

− lnΨ
(
Qit

(
X ′
itβ+αg0

i t

))
. (18)

This is the maximum likelihood estimator in the pooled regression of Yit on Xit and the interactions

of population cluster dummies and time dummies.

Assumptions 6, 7, and 8 provide conditions under which estimated cluster memberships con-

verge to their population counterparts, and the NGFE estimator defined in (17) is asymptotically

equivalent to the infeasible maximum likelihood estimator (β̃, α̃), when N and T tend to infinity

and N/T ν → 0 for some ν > 0 (see Lemma 7 in Appendix A.4.1). In particular, this allows T to

grow considerably more slowly than N . Because of invariance to relabeling of the clusters, the

results for cluster membership and cluster-specific effects are understood to hold given a suitable

choice of the labels (see the proof for details). Theorem 2 and eq. (52) crucially hinge on the

restrictive assumption that the number of well-separated clusters G0 is known and fixed, but it

could be that consistent estimation of β̂ remains possible under weaker assumptions that would

nonetheless prevent consistent estimation of cluster memberships.36

Given Lemma 7, showing asymptotic normality of the NGFE estimator then reduces to the

simpler problem of showing asymptotic normality of the infeasible (oracle) MLE (β̃, α̃). Let Z0
it =

X ′
itβ

0 +α0
g0

i t
. For all g ∈ G, all t ∈ {1, ...,T}, let X̃gt denote the projection of Xit on the space

spanned by the cluster membership variable under a metric weighted by (− lnΨ)′′(QitZ0
it):

X̃gt =
(

1
N

N∑
i=1

1
{
g0
i = g

}
(lnΨ)′′(QitZ0

it)
)−1(

1
N

N∑
i=1

1
{
g0
i = g

}
(lnΨ)′′(QitZ0

it)Xit

)
,

i.e., the weighted average of Xit for individuals
{
i : g0

i = g
}
. Also, let π̂gt denote the following

weighted average:

π̂gt = 1
N

N∑
i=1

1
{
g0
i = g

}
(− lnΨ)′′(QitZ0

it).

Assumption 9 below allows to characterize the asymptotic distribution of the infeasible MLE (β̃, α̃).

36I thank Martin Weidner for pointing out this to me, something also discussed in Dzemski and Okui (2021).

23



Assumption 9

(a) {Yit : (i, t)} are independent conditional on (X,γ0,α0).

(b) There exists a positive definite matrix Σβ such that

Σβ = plimN,T→∞
1
NT

N∑
i=1

T∑
t=1

(− lnΨ)′′(QitZ0
it)
[
Xit− X̃g0

i t

][
Xit− X̃g0

i t

]′
.

(c) As N and T tend to infinity,

1√
NT

N∑
i=1

T∑
t=1

{
(− lnΨ)′′(QitZ0

it)
(
Xit− X̃g0

i t

)}{
Qit(− lnΨ)′(QitZ0

it)
}

d−→ N (0,Σβ).

(d) For all (g, t): plimN→∞π̂gt = π̃gt > 0.

(e) For all (g, t):

lim
N→∞

1
N

N∑
i=1

N∑
j=1

E
(
1
{
g0
i = g

}
1
{
g0
j = g

}
QitQjt(lnΨ)′(QitZ0

it)(lnΨ)′(QjtZ0
jt)
)

= ωgt > 0.

(f) For all (g, t), and as N and T tend to infinity:

1√
N

N∑
i=1

1
{
g0
i = g

}
Qit(lnΨ)′(QitZ0

it)
d−→ N (0,ωgt).

(g) The true value of β, β0, is in the interior of B. For all T , the true value of α, α0, is in the

interior of AG0T .

Assumption 9(a) rules out dynamic or feedbacks.

Theorem 3 (Asymptotic Distribution) Let Assumptions 6-9 hold and let N and T tend to

infinity such that N/T → ∞ and, for some ν > 1, N/T ν → 0. Then:

√
NT (β̂−β0) d−→ N

(
0,Σ−1

β

)
, (19)

and, for all (g, t),
√
N
(
α̂gt−α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (20)

where Σβ, ωgt, and π̃gt are defined in Assumption 9.
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For the proof see Appendix A.4.2.

Theorem 3 demonstrates that NGFE estimators in NGFE binary choice models achieve the

parametric root-NT and root-N rates of convergence and are free of Neyman and Scott (1948)’s

incidental parameters problem. These rates are in contrast with standard interactive fixed-effects

models (see, e.g. Ando and Bai, 2022; Bai, 2003, 2009) for which root-N consistency of the time-

varying factors requires N/T 2 → 0 or more generally N/T → κ, 0 < κ < ∞, as it is assumed for

instance in Chen, Fernández-Val, and Weidner (2021); Fernández-Val and Weidner (2016). The

intuition behind is that the extreme sparsity of the factor loading structure in model (16) allows

NGFE estimators to achieve fast accurate classification of individuals which, reduces the problem

to that of a multidimensional fixed effect in the time-series dimension in the limit.37 Consistent

estimators of the asymptotic variances are given in Appendix C.

5.4 Average Partial Effects (APEs)

Under Assumption 6, if Xit,k, the kth element of Xit is binary, its partial effect on the conditional

probability of Yit is

∆(Xit,β
0,α0

g0
i t

) = Ψ(β0
k +X ′

it,−kβ
0
−k +α0

g0
i t

)−Ψ(X ′
it,−kβ

0
−k +α0

g0
i t

),

where β0
k is the kth element of β0, and Xit,−k and β0

−k include all elements of Xit and β0 except

the kth element. If Xit,k is continuous, the partial effect of Xit,k on the conditional probability of

Yit is

∆(Xit,β
0,α0

g0
i t

) = β0
kΨ′(X ′

itβ
0 +αg0

i t
),

where Ψ′ is the derivative of Ψ. As discussed in Fernández-Val and Weidner (2016), if (Xit,g
0
i ,(α0

gt)g∈G0)

is identically distributed over i but can be heterogeneously distributed over t, then E(∆it) = δ0
t and

δ0
NT = 1

T

∑T
t=1 δ

0
t changes only with T . If (Xit,g

0
i ,(α0

gt)g∈G0) is identically distributed over i and

stationary over t, then E(∆it) = δ0
NT , and δ0

NT = δ0 does not change with N and T .

Deriving the asymptotic properties of plug-in estimators of average partial effects of the type

δ̂NT = ∆(β̂, α̂, γ̂) is left for further research.
37To see the factor-loading structure, note that model (16) can be written as Yit = 1

{
X ′

itβ + λ′
ift − εit ≥ 0

}
, where

λ′
i = (1

{
g0

i = 1
}

, ...,1
{

g0
i = G0}) ∈

{
b ∈ {0,1}G0

:
∑G0

g=1 bg = 1
}

and ft = (α0
gt)′

g=1,...,G0 ∈ AG0×1. If N/T → κ ∈
(0,+∞), similar arguments than Chen, Fernández-Val, and Weidner (2021) apply and bias-correction methods are
needed.
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6 Monte Carlo Simulations

In this section, I conduct Monte Carlo experiments to assess the numerical performance of NGFE

estimators in finite samples, in terms of bias, root mean squared errors (RMSE), classification

(Precision, Recall, Rand Index), execution (CPU) time, and inference accuracy (standard errors,

standard deviation and coverage). I also report the results for currently available competitors. I

consider Chamberlain (1980); Rasch (1960)’s conditional logit (CMLE), nonlinear two-way fixed ef-

fects (NLTWFE, see, e.g. Fernández-Val and Weidner, 2016; Mugnier and Wang, 2022), Bonhomme,

Lamadon, and Manresa (2022)’s 2-step grouped fixed effects (2GFE), pooled OLS regression, linear

two-way fixed effects (LTWFE), and Bonhomme and Manresa (2015)’s GFE estimators.38

As in Bonhomme and Manresa (2015), I focus on settings of moderate size (N = 90, T = 7)

to highlight the performance of NGFE with small datasets as often encountered in macro/meso-

economics (e.g., in my empirical application). Having large N is not computationally demanding.

When T is very large, computation of the NGFE estimate might be demanding and results in

Mugnier (2022) could probably be adapted. I consider static and dynamic logit models, and four

DGPs for the time-varying covariates (more or less correlated with the unobserved heterogeneity,

UH hereafter), where the number of groups G0 each time varies across {2,3,5}. Variation across

time periods in the covariates is not necessary for NGFE but allows for comparisons (e.g., with

CMLE).

Overall, I find that NGFE estimators perform best uniformly across competitors in the design

they are meant to adress: correlated time-varying unobserved heterogeneity (DGP 1). In other

DGPs, where the unobserved heterogeneity does not vary with time, they might be slightly more

noisy than well-suited estimators (e.g., CMLE or NLTWFE) and have a larger finite sample bias.

6.1 Static Logit Model

The data generating process is

Yit = 1{Xitβ+αgit > εit} , i= 1, ...,N, t= 1, ...,T, (21)

where β = 1 and εit ∼Logit(0,π2/3), gi ∼Unif
{
1, ...,G0} for G0 ∈ {2,3,5}, and, letting with µ =

(−1,1)′ if G0 = 2, µ = (−π/
√

3,0,π/
√

3)′ if G0 = 3, and µ = (−2π/
√

3,−π/
√

3,0,π/
√

3,2π/
√

3)′

38I leave comparison with Charbonneau (2017)’s conditional logit and Chen, Fernández-Val, and Weidner (2021)’s
nonlinear factor models for further research. A definition of the metrics and more details are given in Appendix D.
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if G0 = 5, Vi such that Pr(Vi = −2) = 1/12,Pr(Vi = −1) = 1/4,Pr(Vi = 0) = 1/3,Pr(Vi = 1) =

1/4,Pr(Vi = 2) = 1/12, and Wit ∼ N (0,1):

• DGP1 (grouped patterns of time-varying UH): αg0 =µg, for t≥ 1, αgt = 0.1αgt−1 +(−1)g−1Ugt,

Ugt ∼Unif[0,1], Xit = 0.5Vi+0.8Ug0
i t

.

• DGP2 (grouped patterns of time-invariant UH): αgt = µg, Xit = 0.3µgi +Vi+0.8Wit.

• DGP3 (continuous time-invariant UH): αi ∼ N (0,1), Xit = αi+0.5Vi+0.8Wit.

• DGP4 (No UH): αgt = 0, Xit = 0.5Vi+0.8Wit.

The variables Ugt,Vi,Wit,gi and εit are independent and i.i.d. across individuals and time periods.

All the results are based on 50 Monte-Carlo replications and computed using Algorithm 1 with 200

randomized initialization points (results improve by increasing this number).

Table 1 reports the bias and RMSE of NGFE and five competing estimators. It shows that

NGFE estimates minimize both metrics across all estimators in DGP 1 (e.g., one order of magnitude

less than CMLE or 2STEPGFE, the best competitors). If there is no UH (DGP 4), NGFE keeps

a reasonable RMSE compared to CMLE but has small bias (e.g. RMSE of .151 v.s. .152 if G0 = 2

and .178 v.s. .118 if G0 = 5, Bias of 0.040 v.s. -0.002 and 0.114 v.s. 0.018 respectively). All linear

estimators perform very poorly. The 2-step GFE is more noisy in general.

Table 2 shows that any measure of the clustering accuracy remains at a high level because of

the high level of UH. For instance, the misclassification rate only falls below 50% when G0 = 2. In

unreported simulations, we show that it actually drops to 5% if one has G0 = 2 and cluster-specific

effects are not correlated with the covariates. There is a continum between the two that should

merit further investigation. The CPU time of the method is comparable to that of other clustering

methods such as Bonhomme, Lamadon, and Manresa (2022)’s 2-step GFE.

Table 3 suggests that estimates of the standard errors based on the large-T clustered variance

formula match on average the effective finite sample dispersion of the NGFE estimates. The re-

sulting confidence intervals have an almost correct coverage though showing a small finite-sample

under-coverage.39 In particular, Table 3 suggests good coverage rates around the prescribed theo-

retical level of 95% (e.g., .86, .80, .84 in DGP 1 and .92, .92, .88 in DGP 4), which fall with the

number of groups and, more generally, with the degree of continuity of the UH (e.g., below .5 in

DGP 3 but still .82 in DGP 2 with G0 = 2).
39A similar finite-sample undercoverage phenomenon is also reported in Bonhomme and Manresa (2015), who

suggest the use of a bootstrap estimator instead.
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6.2 Dynamic Logit Model

The data generating process is

Yit = 1{Yit−1β1 +Xitβ2 +αgit > εit} , i=, ...,N, t= 1, ...,T,

Yi0 = 1{Xi0β2 +αgi0 > εi0} , i= 1, ...,N. (22)

Tables 4-6 report the same statistics as Tables 1-3 but for the dynamic model. Results for β2 are

very similar to that for β. On the other hand, the precision of NGFE estimates of β1 is more

mixed (the conditional independence assumption 9(a) does not hold here). Previous comparison

still apply there.

7 Empirical Application: Revisiting the Inverted-U Relationship

Between Innovation and Competition

Does more competition lead to more innovation? This question of fundamental importance, e.g.,

for Antitrust and Competition policy, has been the subject of a longstanding debate in the fields

of industrial organization and macroeconomics of endogeneous growth theory (e.g., Gilbert, 2006;

Griffith and Van Reenen, 2021). On the one hand, more competition reduces profit and postin-

novation rents, and therefore disincentivizes innovation: this is the so-called Schumpetarian effect.

On the other hand, competition may reduce a firm’s preinnovation rents by more than it reduces

its postinnovation rent so that an escape-competition effect may dominate and foster innovation

and growth.

In an influential paper, Aghion, Bloom, Blundell, Griffith, and Howitt (2005) reconcile these

two contradictory views by documenting an inverted-U relationship between the number of citation-

weighted patents and product market competition within a panel data set of UK industries over the

period 1973-1994. The inverted-U is predicted by a model of endogeneous growth, and estimated

after controlling for additively separable industry and year fixed effects controlling for permanent

unobserved technological levels and common trends in a conditional FE Poisson model. The authors

assume in their preferred specification: for p ∈ {0,1, ...},

Pr(pit = p|cit,νi, ξt) = exp(p(g(cit)+νi+ ξt)exp(−exp(g(cit)+νi+ ξt)))
p! , (23)
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where pit represents the number of citation-weighted patents in industry i in year t, cit is 1−Lerner

indexit, νi is a permanent unobserved level of innovation, ξt captures macroeconomic trend, and

g(·) is a second-degree polynomial.40

Figure 1 replicates their Figure II, which is a scatterplot of an innovation measure (citation-

weighted patents) on an competition measure (1 minus the Lerner index) with exponential and

nonparametric spline fits predicted by their preferred specification:41

While model (23) is in line with a large body of the previous literature (see, e.g., Gourieroux,

Monfort, and Trognon, 1984; Hausman, Hall, and Griliches, 1984), it imposes strong assumptions

on the data generating process: conditional Poisson distribution and additive separability of unob-

served effects. In particular, the inverted-U relationship seems fragile as recent empirical research

has reported both increasing and decreasing monotonic relationships depending on the controls in-

cluded (Aghion, Van Reenen, and Zingales, 2013), whether accounting for structural breaks or not

(Correa, 2012), or the country data used (Askenazy, Cahn, and Irac, 2013; Hashmi, 2013), spurring

a variety of explanations and theoretical models. Yet, to the best of our knowledge, no paper has

assessed the robustness of the inverted-U relationship to modeling choices regarding unobserved

heterogeneity. A natural question is then:

Are all industries subject to the same economic trend (time-effect) during the 1973-1994 period

where, e.g., the development of I.T. has been exponential and plausibly shaped market structures?

As Aghion, Bloom, Blundell, Griffith, and Howitt (2005) and Correa (2012) argue, innovation is

a dynamic process and the potential endogeneity might comes from unobserved forces that drive

both innovation and the market structure in a dynamic way. Moreover, while industry might be a

good level to control for permanent scaling, it is likely that among the 311 firms of Aghion, Bloom,

Blundell, Griffith, and Howitt (2005)’s UK panel, a few time-varying path emerge.

In this section, I illustrate how the class of NGFE models together with semiparametric NGFE

estimators introduced in this paper can be used to adress this question, challenging the fact that

firms are all subjects to the same macroeconomic trends and that the unobserved propensity to

innovate and compete is industry-specific and fixed across time.
40The fact that the number of patents is weighted and averaged at the industry level makes it a “continuous”

variable with a mass point at 0. This is probably a reason why the authors apply a discrete model. See the summary
statistics in Table 7. See Aghion, Bloom, Blundell, Griffith, and Howitt (2005) for details on the construction of each
variable.

41I note that the scale of the y-axis in ABBGH’s Figure II is incorrect, as well as the legend of their Figure I since
the graph in fact corresponds to specification (1) in their Table I (and not (2) as claimed).
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Data. I use Aghion, Bloom, Blundell, Griffith, and Howitt (2005)’s data available at N. Bloom’s

website.42 This is an unbalanced industry-level panel based on 311 firms listed on the London Stock

Exchange and grouped in 17 two-digit SIC code industries, which received patent grants from the

United States Patent and Trademark Office (USPTO). The period covered by the dataset is from

1973 until 1994 and there are 354 observations. Table 7 reports summary statistics borrowed from

Hashmi (2013). In particular, one can see that some industries are never granted patents.43 Table 8

lists industries of the sample.

Evidence of Time-Varying Unobserved Heterogeneity. Before estimating a NGFE model, I

investigate the existence of a latent clustering structure by applying the tetrad pairwise differencing

estimator developed in Mugnier (2022) to ABBGH’s residuals pit− Ê[pit|cit, ν̂i, ξ̂t]−exp(ĝ(cit)+ ν̂i+

ξ̂t), plotted in Figure 2. This smooth exploration method allows for an unconstrained number of

clusters, run in polynomial time, provides a regularization path for the number of groups and

estimate time-varying effects without relying, e.g., on k-means and local minima.44. Figure 3 and

Figure 4 plot the regularization path corresponding to the largest plateau, i.e., for a regularization

parameter such that Ĝ= 3, and time effects respectively. Figures 4 reveals one cluster with residuals

centered around zero and low variance (red), one cluster with higher volatility and statistically from

zero at several periods and statistically different from the first cluster at least at one period (blue),

and a very high volatility cluster (green) that consists of industries with missing values. There is

evidence of time-varying unobserved heterogeneity.

A Mildly Inverted-U Relationship. I now estimate the following NGFE model:

Pr(pit = p | cit,αgit,gi) = exp(p(citβ1 + c2
itβ2 +αgit)exp(−exp(citβ1 + c2

itβ2 +αgit)))
p! , (24)

where gi ∈
{
1, ...,G0} is industry i’s unknown cluster membership and (α1t, ...,αG0t)′ ∈RG0 are time-

specific unobserved effects accounting for unobserved confounding variations in the propensity to

patent and product market competition in each of the G0 clusters. Given the small number of

industries, I report results for G0 ∈ {2,3,4}. Models (23) and (24) are non-nested as G0 <<N .

Table 9 and Figure 5 replicate ABBGH’s Table I and Figure I, and additionally show results
42https://nbloom.people.stanford.edu/sites/g/files/sbiybj4746/f/abbgh.zip.
43This does not mean that such industries never innovate. Patenting is an imperfect measure of innovation in

several aspects (Boldrin and Levine, 2013). Many studies perform robustnes checks by using R&D expenses as an
alternative measure (Aghion, Bloom, Blundell, Griffith, and Howitt, 2005).

44Yet, its statistical guarantees are currently not known in the Poisson model.
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of NGFE estimation for the choices G0 ∈ {2,3,4}, using 2,000 random initializers around 02+G0T .

Two results are striking. When G0 = 2, the in-sample relationship (no extrapolation) is a significant

increasing relationship. This can be explained by the structure of the clustered effects discussed

in the next paragraph: when G0 = 2, I only estimate two clusters that do not exhibit a lot of

variation over time. Estimation then acts as a constrained classical fixed effect estimator (where

industry-specific effects only have two points of support). When G0 increases, I find strong evidence

of a mildly inverted-U relationship. Estimates of the competition parameters are still significantly

different from zero but the inverted-U relationship is dramatically less pronounced (the curve is

flatter) when unobserved heterogeneity is allowed to be time-varying.

Clustered Unobserved Innovation Dynamics. The 70-90’s are characterized by the ex-

tremely rapid development of electronics, networks and the Internet. It is likely that economies

of scale, shocks and unobsered innovation trends are not the same for each industry. Figure 6

confirms this intuition by plotting the estimated cluster-specific effects obtained in specifications

(3)-(5) from Table 9, where predicted clusters of industries are given in Figure 7.

The NGFE estimates of the unobserved determinants of innovation reveal heterogeneous, time-

varying patterns, in particular for G0 ≥ 3.

Allowing for two clusters delivers two clusters that experience stable innovation paths over time,

albeit at very different levels. Cluster 1, which I refer to as the “high-innovation” cluster, mostly

contains highly-patenting, highly-competitive industries. It includes Manufacture of office machin-

ery and data processing equipment, Electrical and electronic engineering, Manufacture of motor

vehicles and parts therof, and Manufacture of other transport equipment, but also Chemical indus-

try. Cluster 2, which I refer to as “low-innovation” mostly includes low-patenting, low-competition:

metal manufacturing, textile industry, and processing of rubber and plastics, among others. This

clustering structure of unobserved heterogeneity is broadly consistent with an additive fixed-effects

representation, as the cluster effects α̂1t and α̂2t are approximately parallel over time. In contrast,

when allowing for more than two clusters, newly estimated clusters are not consistent with a fixed

effects model. For G0 = 3, Cluster 2 does not change significantly but the vast majority of industry

from Cluster 1 now belongs to Cluster 3 (“steady-catchers”) as they experience a steadily increase

during the all period towards the unobserved innovation level of Cluster 1. Only the car, food and

tobacco, and chemical industries remain in the stable “high-innovation” cluster 1 whereas cluster

3 now includes electrical and electronical engineering, office machinery and data processing equip-
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ment. Finally, when G0 = 4, Cluster 3 further split into two neck-to-neck catching-up clusters of

industries. The new Cluster 4 (“Noisy-catchers”), which is more volatile in the race, contains other

manufacturing industries and transport equipment. Steadily increasing industries now include,

among others: Manufacture of office machinery and data processing equipment, and Electrical and

electronic engineering.

Figure 8 plots estimated cluster effects, competition and innovation by estimated cluster mem-

berships. It suggests that the relationship between observables and unobservables is complex and

hardly predictable from observables only.

Endogeneity. Because competition is likely to be an endogeneous variable, ABBGH use a control

function approach by including as an additional regressor in their main specification the residual of

a first-stage where the lerner index is predicted by a set of policy instruments such as the Thatcher

era privatizations, the EU Single Market Programme, and the Monopoly and Merger Commission

investigations ate the industry level (see Table II in ABBGH). The first and fourth columns of

Table 10 show that coefficient estimates are similar to Table 9 in the case of NGFE models.

Testing for Structural Break. Finally, I revisit Correa (2012) who tests for the existence of a

structural break in 1981, and finds a decreasing relationships before and no effects of competition

afterwards. This would spuriously explains ABBGH’s inverted-U relationship. In contrast to

Correa (2012)’s results, I find no evidence of any relationships in both spells when using a NGFE

specification (see Table 10).

8 Conclusion

In this paper, I study the nonparametric identification and estimation of a new class of nonlinear

panel data model that accomodates clustered patterns of time-varying unobserved heterogeneity.

Sufficient low-level conditions delivering identification of all parameters of the models are provided.

Because nonparametric estimation might be overwhelmingly cumbersome in panel data with mod-

erate length, I propose semiparametric NGFE estimators that enjoy nice statistical properties (even

when T << N) and are free of the incidental parameters problem when T = o(N), which sharply

contrasts with many competing approaches. Individual are uniformly classified in the limit as T

grows at least as some power of N and cluster-specific and slope coefficient estimates are asymp-

totically normal (and centered at the true value). A simple Lloyd’s algorithm is shown to perform
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well in Monte-Carlo simulation. By applying this new estimator to revisit Aghion, Bloom, Blun-

dell, Griffith, and Howitt (2005), I demonstrate that their so-called inverted-U relationship between

innovation and product market competition is sensitive to the researcher’s choice of whether in-

cluding time-varying grouped effects in the model or not, and document a data-driven clustering

of industries. In particular, once controlling for two groups, the relationships becomes increasing.

Once controlling for 3 ≤G≤ 4 clusters, the relationship becomes a mildly inverted-U.

Interesting research avenues include quantifying the random uncertainty from picking the best

output from multiple runs of Lloyd’s algorithm with random initializers while basing inference in-

stead on the true NGFE estimate; bridging the gap between the nonparametric identification result

and the estimation method, and deriving a complete asymptotic theory accounting for uncertainty

in the clustering. I leave such extensions for future work.
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Appendix

A Proof of the Results

A.1 Proof of Theorem 1

Part 1.

Identification of W 0
N ∈ {0,1}N×N for all N ∈N∗. Let N ∈N∗. By Assumption 2, there exist X 0 ⊂ X ,

y ∈ Y, and a known functional ϕ such that, for all (i, j) ∈ N 2, the (i, j)-th entry of W 0
N satisfies

W 0
ijN := 1

{
g0
i = g0

j

}
= ϕ(ρi,ρj) with ρi(x) : X 0 ∋ x 7→ Pr

(
Yi2 = y |Xi2 = x,g0

i ,µ
0
i , ξ

0
i

)
. It is then

sufficient to show that, for all i ∈ N , ρi is identified. Let (i,x) ∈ N ×X 0. Under Assumptions 1(b)

and 3(a), and conditional on the σ-algebra generated by
(
g0
i ,µ

0′

g0
i
, ξ0′
i

)′
, the time-series process{

(Yit,X ′
it)

′ : t≥ 2
}

is strictly stationary strong mixing and satisfies regularity conditions given in

Hansen (2008) to obtain consistency of the Nadaraya-Watson estimator of E [1{Yit = y} | i,Xit = x].

Hence, point identification of E
[
1{Yi2 = y} |Xi2 = x,g0

i ,µ
0
g0

i
, ξ0
i

]
= ρi(x) follows by pooling unit i’s

choices when (Yit,X ′
it)

′ ∈ {y}×BT (x), where BT (x) is a well-chosen shrinking neighborhood of x as

T → ∞ (e.g., using any well-chosen kernel K and bandwidth hT ).

Identification of G0. For any fixed N ∈ N∗, R0
N the number of distinct rows in W 0

N , is identified.

But R0
N , which is also the rank of W 0

N , is exactly the number of clusters represented in the finite

sample of size N . Under Assumptions 1(a) and 2(b), G0 = limsupN→∞R0
N is thus identified.45

Part 2.

Identification of β0. Let (i, t) ∈N∗2. By Part 1, C0(i) :=
{
j ∈ {1, ...,N} : g0

j = g0
i

}
is identified for all

N ∈N∗. Under Assumption 1(a) and 2(b), conditional on (γ0′
,α0′

,λ0′
,µ0′)′,

{
Yjt,Xjt : j ∈ C0(i)\{i}

}
is an identified infinite sequence of i.i.d. random variables. By applying Theorem 4.1 in Ichimura

(1993) with φ(·) = ∑
y∈Y yh

0
(
y, ·+α0

g0
i t

)
, whose conditions 4.1 and 4.2(1-3) hold under Assump-

tions 1(c) and 3, β0 is identified up-to-scale. Because
∥∥β0∥∥= 1, β0 is identified.

Identification of cluster-specific time effects α0
gt for all (g, t) ∈ G0 ×N∗, up to cluster relabeling.

Given identification of W 0
N for all N ∈ N∗, I build the G0 groups sequentially starting from N = 2,

N = 3,... and regrouping at each step units with same rows in W 0
N . Without loss of generality, I

assume that the resulting labeling matches the true labeling. Let t∈ N∗, x∈ X , and y ∈ Y verifying
45From an estimation perpective, one would need conditions on the joint rate of convergence of (N,T ) to ensure

adequate controls on tails of the error terms (ρi should typically be estimated in sup-norm on X 0 at some polynomial
rate in T ).
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Assumptions 4. By pooling choices of individuals in cluster g and g̃ at time t for which Yit = y and

Xit = x, and applying a standard LLN using Assumptions 1(a) and 1(c), the following probabilities

are identified:

Pr
(
Y1t = y |X1t = x,g0

1 = g,α0
gt

)
= h0

(
y,x′

1β
0 +α0

gt

)
,

Pr
(
Y1t = y |X1t = x,g0

1 = g̃,α0
g̃t

)
= h0

(
y,x′

1β
0 +α0

g̃t

)
.

By Assumption 5 (eq. (7)), I can find x1,x2 ∈ X such that

Pr
(
Y1t = y |X1t = x2,g

0
1 = g,α0

gt

)
= Pr

(
Y1t = y |X1t = x1,g

0
1 = g̃,α0

g̃t

)
,

or, equivalently,

h0
(
y,x′

1β
0 +α0

g̃t

)
= h0

(
y,x′

2β
0 +α0

gt

)
. (25)

By strict monotonicity of h0
(
y, ·
)
, I can invert (25) and identify α0

g̃t
−α0

gt = (x2 −x1)′β0. As β0 is

already identified, it follows that α0
g̃t

−α0
gt is identified. Because the result holds for all (g, g̃, t), it

holds for g= t= 1 (for which α0
gt = 0 by the normalization assumption), thus (α0

g1)g∈G0 is identified.

A similar reasoning but now identifying x1,x2 ∈ X such that eq. (8) holds in place of eq. (7) yields

identification of α0
gt̃

−α0
gt for all (g, t, t̃), and, in turn, that of (α0

1t)t∈N∗ . Identification of α0
gt for all

(g, t) then follows because, for all (g, t) with g ̸= 1 and t ̸= 1, α0
gt can be decomposed as

α0
gt = α0

gt−α0
1t︸ ︷︷ ︸

:=a

+ α0
1t︸︷︷︸

:=b

,

where a and b are identified. Finally, h0(y,z) is identified as a function of y ∈ Y and index z =

X ′
itβ

0 +α0
g0

i t
.

The proof of Theorem 1 is complete.

A.2 Sufficient Condition for Assumption 2(a)

Lemma 1 below shows that Assumption 10 is sufficient for Assumption 2(a) to hold.

Assumption 10

(a) There exists an open set X 1 ⊂ X such that, for all (i, j,g, g̃,x) ∈N∗2 ×G02 ×X 1, the conditional

distribution α0
g2 |Xi2 =x,g0

i = g,µ0
g0

i
, ξ0
i admits a fully supported density fα0

g2|Xi2=x,g0
i =g,µ0

g ,ξ
0
i
(α)
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with respect to the Lebesgue measure such that

fα0
g2|Xi2=x,g0

i =g,µ0
g ,ξ

0
i
(α) = fα0

g̃2
|Xj2=x,g0

j =g̃,µ0
g̃
,ξ0

j
(α), λ(α)-a.e.

if and only if g = g̃.

(b) There exists k ∈ {1, ...,p} such that β0
k ̸= 0 and Xi2,k ⊥⊥ α0

g0
i 2 | Xi2,(−k),g

0
i ,µ

0
g0

i
, ξ0
i . Moreover,

almost surely, Supp
(
Xi2,k |Xi2,(−k),g

0
i ,µ

0
g0

i
, ξ0
i

)
is open.

(c) There exists y ∈ Y such that ψy : v 7→ h0(y,v) is stricly monotonic, real analytic with bounded

first derivative ψ′
y such that

∫ ∣∣∣ψ′
y

∣∣∣dλ <∞.46 Moreover, the characteristic function of ζ with

density fζ(z) = |ψ′
y(z)|∫

|ψ′
y|dλ does not vanish and is infinitely often differentiable in R\A for some

set A such that λ(A) = 0.

Real analyticity can be relaxed to continuous differentiability by strenghtenning the support in

Assumption 10(b) to be the full real line, which is equivalent to having a special regressor with

large support (see, e.g., Honoré and Lewbel, 2002).

Lemma 1 If Assumptions 1(c) and 10 hold, then Assumption 2(a) holds.

Proof of Lemma 1 W.l.o.g. I assume that k = 1 and denote x(−1) = (xj)j∈{2,...,p}. Let x =

(x1,x
′
(−1))′ ∈ X 1, and y ∈ Y verifying Assumption 10(c). I proceed in two steps. In the first step, I

construct X 0 ⊂ X 1. In the second step, I construct ϕ that fulfills Assumption 2.

Step 1: Let (i,x) ∈ N × X 1 and ρi(x) := Pr
(
Yi2 = y |Xi2 = x,g0

i ,µ
0
g0

i
, ξ0
i

)
. By the law of total

expectations, Assumption 1(c), using equation (1), and Assumption 10(a), I obtain

ρi(x) = E
[
Pr
(
Yi2 = y |Xi2 = x,g0

i ,α
0,λ0,µ0, ξ0

)
|Xi2 = x,g0

i ,µ
0
g0

i
, ξ0
i

]
= E

[
Pr
(
Yi2 = y |Xi2 = x,g0

i ,α
0
g0

i 2

)
|Xi2 = x,g0

i ,µ
0
g0

i
, ξ0
i

]
= E

[
ψy
(
x′β0 +α0

g0
i 2

)
|Xi2 = x,g0

i ,µ
0
g0

i
, ξ0
i

]
=
∫
R
ψy
(
x′β0 +α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α).

(26)

46Let I ⊂ R be an open set. A function f : I → R is called “analytic” if for any x0 ∈ I there is a neighborhood J of
x0 and a power series

∑
an(x − x0)n such that f(x) =

∑
n an(x − x0)n ∀x ∈ J (see, e.g., Krantz and Parks, 2002).
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By Assumption 10(b), there exists ϵ > 0 and an open set X 0 = {x+(v,0′)′ : v ∈ (−ϵ,ϵ)} ⊂ X 1

with Pr
(
Xi2 ∈ X 0) > 0 such that, for all w ∈ X 0, almost everywhere fα0

g0
i

2
|Xi2=w,g0

i ,µ
0
g0

i

,ξ0
i
(α) =

fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α). Since X 0 ⊂ X 1, eq. (26) yields, for all w ∈ X 0,

ρi(w) =
∫
R
ψy
(
w′β0 +α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α).

By Assumption 10(c), w 7→ ρi(w) is differentiable on X 0 and, for all w ∈ X 0,

∂ρi(z1, ...,zp)
∂z1

∣∣∣
z=w

= β0
1

∫
R
ψ′
y

(
w′β0 +α

)
fα0

g0
i

2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α)

= β0
1

(
1−21

{
ψ′
y(0)< 0

})∫
R

∣∣∣ψ′
y

(
w′β0 +α

)∣∣∣fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α)dλ(α),

(27)

where the second equality follows from strict monotonicity of ψy.

Step 2: Let ∆(a,b) := a− b and ∂1 be the partial differencing operator with respect to the first

argument (for multivalued functions). I prove below that ϕ(f,g) := 1{∆(∂1f,∂1g) = 0} verifies

Assumption 2(a). I have to show that, for all (i, j) ∈ N 2,

∂ρi(z1, ...,zp)
∂z1

∣∣∣
z=w

= ∂ρj(z1, ...,zp)
∂z1

∣∣∣
z=w

∀w ∈ X 0 ⇐⇒ g0
i = g0

j . (28)

Let (i, j) ∈ N 2.

⇐= : Suppose that g0
j = g0

i and let w ∈ X 0. By Assumption 10(c), I have

fα0
g0

i
2
|Xi2=x,g0

i ,µ
0
g0

i

,ξ0
i
(α) = fα0

g0
j

2
|Xj2=x,g0

j ,µ
0
g0

j

,ξ0
j
(α), λ(α)−a.e..

Equation (27) then implies ∂ρi(z1,...,zp)
∂z1

∣∣∣
z=w

= ∂ρj(z1,...,zp)
∂z1

∣∣∣
z=w

.

=⇒ : Suppose that, for all w ∈ X 0,

∂ρi(z1, ...,zp)
∂z1

∣∣∣
z=w

= ∂ρj(z1, ...,zp)
∂z1

∣∣∣
z=w

.

Dividing each side of this equation by
∫ ∣∣∣ψ′

y

∣∣∣dλ > 0, using (27) and the fact that

∣∣∣(1−21
{
ψ′
y(0)< 0

})
β0

1

∣∣∣= ∣∣∣β0
1

∣∣∣> 0,
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I obtain, denoting fα0
g0

i

(α) := fα0
g0

i
2
|Xi2,g0

i ,µ
0
g0

i

,ξ0
i
(α), for all w ∈ X 0,

∫
R
fζ
(
w′β0 +α

)
fα0

g0
i

(α)dλ(α) =
∫
R
fζ
(
w′β0 +α

)
fα0

g0
j

(α)dλ(α).

I show below that this constraint is equivalent to fα0
g0

j

= fα0
g0

i

a.e., which, by Assumption 10(a), in

turn implies g0
i = g0

j . Specifically, I show that the solution set S∗ ⊂ L1(R,B(R),λ) to the integral

inverse problem: fα ∈ S∗ if and only if

∫
R
fζ
(
w′β0 +α

)
fα0

g0
i

(α)dλ(α) =
∫
R
fζ
(
w′β0 +α

)
fα(α)dλ(α) ∀w ∈ X 0, (29)

verifies S∗ =
{
f ∈ L1(R,B(R),λ) : fα = fα0

g0
i

a.e.
}

. Suppose f∗
α ∈ S∗ and consider the change of

variable z = w′β0 +α in (29). Then, for all δ ∈
(
x′β0 −β0

1ϵ,x
′β0 +β0

1ϵ
)

⊂ R,

∫
R
fζ(z)f−α0

g0
i

(δ−z)dλ(z) =
∫
R
fζ(z)f∗

−α(δ−z)dλ(z). (30)

Note that both sides of eq. (30) are convolutions of fζ with df−α0
g0

i

or df∗
−α. By letting

W : δ 7→
∫
R
fζ(δ−z)

[
f−α0

g0
i

(z)−f∗
−α(z)

]
dλ(z),

and using commutativity of the convolution product, eq. (30) implies that there exists an open set

U ⊂ R such that

W(δ) = 0, ∀δ ∈ U. (31)

Given Assumption 10(c), it can be shown that W : R → R is real-analytic (see footnote 46). A

continuation theorem for real analytic functions (see e.g. Corollary 1.2.5 in Krantz and Parks,

2002) implies that eq. (31) holds for all δ ∈ R, i.e.:

∫
R
fζ(δ−z)

[
f−α0

g0
i

(z)−f∗
−α(z)

]
dλ(z) = 0, ∀δ ∈ R. (32)

Since the functions fζ ,f−α0
g0

i

, and f∗
−α belong to L1(R,B(R),λ), I can apply Fourrier transformation
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on both sides of eq. (32) to obtain

φfζ
(v)×

φf−α0
g0

i

(v)−φf∗
−α

(v)

= 0, ∀v ∈ R, (33)

where φf is the Fourrier transform of f . By Assumption 10(c) again, the set

{v ∈ R : φζ(v) = 0}

is of zero Lebesgue measure. Equation (33) therefore implies φf−α0
g0

i

= ψf∗
−α

a.e.. Since Fourrier

transforms are continuous, I obtain φf−α0
g0

i

= φf∗
−α

everywhere and thus fα0
g0

i

= f⋆α everywhere.

The proof of Lemma 1 is complete.

A.3 Proof of Theorem 2

The key argument is to linearize problem (17) by mean of a second-order Taylor expansion, bounding

the log-likelihood function by below by a quadratic function similar to that appearing in Lemma

A.2 in Bonhomme and Manresa (2015). For all θ = (β′,α′,γ′)′ ∈ B ×G0N ×AG0T , define

Q̂(θ) = 1
NT

N∑
i=1

T∑
t=1

− ln(Ψ(QitZit)) ,

where Zit = X ′
itβ+αgit and Qit = 2Yit − 1. Note that Zit is an implicit function of θ but I drop

this conditioning for the sake of clarity and let Z0
it =X ′

itβ
0 +α0

g0
i t

denote Zit evaluated at the true

parameter value θ0. Note that the NGFE estimator θ̂ minimizes Q̂(·) over all θ ∈ B ×G0N ×AG0T .

Define the auxiliary quadratic function:

Q̌(θ) = 1
NT

N∑
i=1

T∑
t=1

(
X ′
it

(
β−β0

)
+αgit−α0

g0
i t

)2
,

and let z := sup(β′,α′,g,x)′∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit) |Zit| and Z = [−z,z]. Note that Z is a

well-defined segment of R by Assumptions 7(a) and 7(b). By second-order Taylor expansion, for

any z1,z2 in Z,

− lnΨ(z1) = − lnΨ(z2)− (lnΨ)′(z2)(z1 −z2)− 1
2(lnΨ)′′(z∗)(z1 −z2)2,
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for some z∗ ∈]z1 ∧ z2,z1 ∨ z2[. By continuity of z 7→ −(lnΨ)′′(z) and because −(lnΨ)′′(z) > 0 by

Assumption 6(b), there exists a constant bmin > 0 such that, for all z ∈ Z,

bmin ≤ −(lnΨ)′′(z).

Hence, for all z1,z2 ∈ Z

− lnΨ(z1) ≥ − lnΨ(z2)+s(z2)(z1 −z2)+ bmin
2 (z1 −z2)2, (34)

where s(z) = −(lnΨ)′(z). Now substitute QitZit for z1 and QitZ
0
it for z2, and averaging (34) over

i, t, I have, for all θ ∈ B ×G0N ×AG0T ,

Q̂(θ)− Q̂(θ0) ≥ bmin
2 Q̌(θ)+ 1

NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit−Z0

it

))
, (35)

where Eit = s
(
QitZ

0
it

)
. Since the estimated parameter θ̂ minimizes Q̂(·), deduce

0 ≥ Q̂(θ̂)− Q̂(ϕ0) ≥ bmin
2 Q̌(θ̂)+ 1

NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Ẑit−Z0

it

))
, (36)

where Ẑit = X ′
itβ̂+ α̂ĝit

. I start by showing the following uniform convergence result, which is

reminiscent of Lemma A.1 in Bonhomme and Manresa (2015).

Lemma 2 Let Assumption 6 and Assumptions 7(a)-(b) hold. Then,

sup
θ∈B×G0N ×AG0T

1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit−Z0

it

))
= op(1).

Proof of Lemma 2: The proof closely follows that of Lemma A.1 in Bonhomme and Manresa

(2015), up to a few adjustments.

1
NT

N∑
i=1

T∑
t=1

Eit
(
Qit

(
Zit−Z0

it

))

= 1
NT

N∑
i=1

T∑
t=1

QitEit
(
X ′
it

(
β−β0

)
+αgit−α0

g0
i t

)

=
(

1
NT

N∑
i=1

T∑
t=1

QitEitXit

)′(
β−β0

)
+ 1
NT

N∑
i=1

T∑
t=1

EitQitαgit−
1
NT

N∑
i=1

T∑
t=1

EitQitα
0
g0

i t
.
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Let Ft = σ
({
γ0,α0,X(t)

− ,ε
(t−1)
−

})
denote the σ-field generated by γ0,α0,X(t)

− , and ε
(t−1)
− . Under

Assumptions 6(a) and 6(b), for all s < t, I have

E
(
QitQisEitEisX

′
itXis

)
= E

(
E(QitQisEitEisX ′

itXis | Ft)
)

= E
(
X ′
itXisQisEisE(QitEit | Ft)

)
= E

(
X ′
itXisQisEisE

(
Yit−Ψ(Z0

it)
Ψ(Z0

it)(1−Ψ(Z0
it))

Ψ′(Z0
it) | Ft

))

= E

X ′
itXisQisEis

E(Yit−Ψ(Z0
it) | Ft)

Ψ(Z0
it)(1−Ψ(Z0

it))
Ψ′(Z0

it)︸ ︷︷ ︸
=0


= 0,

where the penultimate equality follows because Ψ′(Z0
it) is Ft-measurable, and the last equality

follows from E(Yit | Ft) = Ψ(Z0
it). By Cauchy-Schwarz (CS) inequality, and using Assumption 6(b),

7(b), and Q2
it = 1, there exists a constant M ′ > 0 such that, for s= t,

E
(
QitQisEitEisX

′
itXis

)
= E

(
E2
it

∥∥Xit

∥∥2)≤
√
E
(
E4
it

)
E
(∥∥Xit

∥∥4)≤M ′ <∞.

Hence, I have ∣∣∣∣∣ 1
NT

N∑
i=1

T∑
t=1

T∑
s=1

E
(
QitQisEitEisX

′
itXis

)∣∣∣∣∣≤M ′. (37)

By (37), I have

E
(

1
N

N∑
i=1

∥∥ 1
T

T∑
t=1

QitEitXit

∥∥2
)

≤ M ′

T
,

so it follows from the Markov inequality that

1
NT

N∑
i=1

T∑
t=1

QitEitXit = op(1).

In addition,
∥∥β−β0∥∥ is bounded under Assumption 7(a), hence

(
1
NT

N∑
i=1

T∑
t=1

QitEitXit

)′

(β−β0) = op(1).
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I next show that 1
NT

∑N
i=1
∑T
t=1QitEitαgit is op(1), uniformly on the parameter space. This will

imply that 1
NT

∑N
i=1
∑T
t=1QitEitα

0
g0

i t
= op(1). I have

1
NT

N∑
i=1

T∑
t=1

QitEitαgit =
∑
g∈G0

[
1
NT

N∑
i=1

T∑
t=1

1{gi = g}QitEitαgt

]

=
∑
g∈G0

[
1
T

T∑
t=1

αgt

(
1
N

N∑
i=1

1{gi = g}QitEit

)]
.

Moreover, by the CS inequality and for all g ∈ G0:

(
1
T

T∑
t=1

αgt

(
1
N

N∑
i=1

1{gi = g}QitEit

))2

≤
(

1
T

T∑
t=1

α2
gt

)
×

 1
T

T∑
t=1

(
1
N

N∑
i=1

1{gi = g}QitEit

)2 ,
where, by Assumption 7(a), 1

T

∑T
t=1α

2
gt is uniformly bounded. Now, note that

1
T

(
1
N

N∑
i=1

1{gi = g}QitEit

)2

= 1
TN2

N∑
i=1

N∑
j=1

1{gi = g}1{gj = g}
T∑
t=1

QitQjtEitEjt

≤ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

QitQjtEitEjt

∣∣∣∣∣
≤ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

E(QitQjtEitEjt)
∣∣∣∣∣

+ 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

(QitQjtEitEjt−E(QitQjtEitEjt))
∣∣∣∣∣ .

Since E(QitQjtEitEjt) = 0 for i ̸= j, there exists a constant M ′′ > 0 such that

1
N

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

E(QitQjtEitEjt)
∣∣∣∣∣≤M ′′ <∞,

and, therefore, 1
N2
∑N
i=1
∑N
j=1

∣∣∣ 1
T

∑T
t=1E(QitQjtEitEjt)

∣∣∣≤ M ′′

N . Moreover, by the CS inequality,

 1
N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ 1T
T∑
t=1

(QitQjtEitEjt−E(QitQjtEitEjt))
∣∣∣∣∣
2

≤ 1
N2

N∑
i=1

N∑
j=1

(
1
T

T∑
t=1

(QitQjtEitEjt−E(QitQjtEitEjt))
)2

. (38)
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Similarly again, I can show that there exists a constant M ′′′ > 0 such that

∣∣∣∣∣∣ 1
N2T

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

Cov(QitQjtEitEjs,QisqjsEisEjs)

∣∣∣∣∣∣≤M ′′′ <∞.

Hence, the term in the right-hand side of (38) is bounded in expectation by M ′′′/T . This shows

that 1
NT

∑N
i=1
∑T
t=1QitEitαgit is uniformly op(1), and ends the proof of Lemma 2. □

Next, by Lemma A.2 in Bonhomme and Manresa (2015), it follows that

Q̌(θ̂) ≥ ρ̂
∥∥β̂−β0∥∥2

, (39)

where plimN,T→∞ρ̂= ρ > 0. Hence, combining (36), Lemma 2, and (39) I obtain

0 ≥ bminρ

2
∥∥β̂−β0∥∥2 +op(1),

from which it is concluded that β̂ = β0 +op(1).

Lastly, to show convergence in quadratic mean of the estimated unit-specific effects, note that

1
NT

N∑
i=1

T∑
t=1

(
α̂ĝit

−α0
g0

i t

)2

= Q̌(θ)− 1
NT

N∑
i=1

T∑
t=1

X ′
it

(
β0 − β̂

)
X ′
it

(
β0 − β̂

)
− 2
NT

N∑
i=1

T∑
t=1

X ′
it

(
β0 − β̂

)(
α0
g0

i t
− α̂ĝit

)

≤ Q̌(θ)− 1
NT

N∑
i=1

T∑
t=1

∥∥Xit

∥∥2 ×
∥∥β0 − β̂

∥∥2

+
(

4 sup
α∈A

|α|
)

× 1
NT

N∑
i=1

T∑
t=1

∥∥Xit

∥∥×
∥∥β0 − β̂

∥∥,
which is op(1) by Assumptions 7(a)-7(b), by consistency of β̂, and because Lemma 2 and (36)

together imply Q̌(θ̂) = op(1).

This completes the proof of Theorem 2.

A.4 Proof of Theorem 3

A.4.1 Step 1: A Useful Asymptotic Equivalence

Lemma 7 below provides an asymptotic equivalence result which is key to prove Theorem 3. I first

prove three lemmas (3, 4, and 5) that help in showing that NGFE estimators achieve uniformly
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consistent classification of individuals (Lemma 6). This, in turn, allows me to prove Lemma 7.

First, consistency of α̂ for α0 can be established as in Bonhomme and Manresa (2015). Because

the objective function is invariant to relabeling of the cluster labels, the consistency result holds

with respect to the Hausdorff distance dH in RG0T , defined by

dH(a,b)2 = max
{

max
g∈G0

(
min
g̃∈G0

1
T

T∑
t=1

(
ag̃t− bgt

)2
)
,max
g̃∈G0

(
min
g∈G0

1
T

T∑
t=1

(
ag̃t− bgt

)2
)}

.

Lemma 3 Let Assumptions 6-7, and 8(a)-8(b) hold. Then, as N and T tend to infinity,

dH
(
α̂,α0

)
p−→ 0.

Proof of Lemma 3: Given Theorem 2, the proof is identical to that of Lemma B.3 in Bonhomme

and Manresa (2015). □

Second, I rely on the use of exponential inequalities for dependent processes. Lemma 4 and

Lemma 5 are direct consequences of Theorem 6.2 in Rio (2000) (see also Merlevède, Peligrad, and

Rio, 2011) and Theorem 3.2 in Lesigne and Volný (2001), respectively.

Lemma 4 (Bonhomme and Manresa (2015), Lemma B.5) Let zt be a strongly mixing pro-

cess with zero mean, with strong mixing coefficient α[t] ≤ exp(−atd1), and tail probabilities Pr(|zt|<

z) ≤ exp
(
1−

(
z
b

)d2
)
, where a,b,d1, and d2 are positive constants. Then, for all z > 0, for all δ > 0,

T δPr
(∣∣∣∣∣ 1T

T∑
t=1

zt

∣∣∣∣∣≥ z

)
→ 0, as T → ∞.

Lemma 5 47 Let {zt,Ft}Tt=1 be a martingale difference sequence and assume that there exists δ,M >

0 such that E(exp(δ |zt|)) ≤M for all t= 1, ...,T . Then, for a > 0, there exist positive constants A

and B such that for all z ≥ a/
√
T

Pr
(∣∣∣∣∣ 1T

T∑
t=1

zt

∣∣∣∣∣≥ z

)
≤Aexp

(
−B(z2T )1/3

)
.

47I found this result in a 2013 unpublished manuscript by A.-B. Kock entitled “Oracle inequalities and variable
selection in high-dimensional panel data models” (Lemma 2). For completeness, I report the original proof of the
author here.
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Proof of Lemma 5: In the proof of their Theorem 3.2 Lesigne and Volný (2001) show that if

E(exp(|zt|) ≤M for all t= 1, ...,T , then for any x > 0 and t ∈ (0,1), I have

Pr
(∣∣∣∣∣

T∑
t=1

zt

∣∣∣∣∣> Tz

)

<

(
2+ M

(1− t)2

[1
4 t

4/3(z−2T−1)1/3 + t2/3(z−2T−1)2/3 +2z−2T−1
])

× exp
(

−1
2 t

2/3(z2T )1/3
)
. (40)

Note that Pr
(∣∣∣∑T

t=1 zt
∣∣∣> Tz

)
= Pr

(∣∣∣∑T
t=1(δzt)

∣∣∣> T (δz)
)

where {δzt}1≤t≤T , by assumption now

satisfy the conditions of Theorem 3.2 in Lesigne and Volný (2001) and so replacing z by δz in (40)

yields

Pr
(∣∣∣∣∣

T∑
t=1

zt

∣∣∣∣∣> Tz

)

<

(
2+ M

(1− t)2

[1
4 t

4/3δ−2/3(z−2T−1)1/3 + t2/3δ−4/3(z−2T−1)2/3 +2δ−2z−2T−1
])

× exp
(

−1
2 t

2/3δ2/3(z2T )1/3
)
.

Restricting z to be greater than a/
√
T , implying that z−2T−1 ≤ 1/a2, and using that M,t and δ

are constants the conclusion of the lemma follows. □

I am now in position to prove Lemma 6 which extends Lemma B.4 in Bonhomme and Manresa

(2015) and shows that ĝi(β,α) achieves uniformly consistent classification of individuals over a

neighbourhood of the true parameter values (β0,α0). Note that by the same arguments as in the

proof of Lemma B.3 in Bonhomme and Manresa (2015), there exists a permutation σ : G0 → G0

such that
1
T

T∑
t=1

(
α̂σ(g)t−α0

gt

)2 p−→ 0. (41)

By simple relabeling of the elements of α̂, I may take σ(g) = g. I adopt this convention in the rest

of the proof. For any η > 0, I let Nη denote the set of parameters (β,α) ∈ B × AG0T that satisfy∥∥β−β0∥∥2
< η and 1

T

∑T
t=1

(
αgt−α0

gt

)2
< η for all g ∈ G0.

Lemma 6 For η > 0 small enough, I have, for all δ > 0 and as N and T tend to infinity,

sup
(β,α)∈Nη

1
N

N∑
i=1

1
{
ĝi(β,α) ̸= g0

i

}
= op(T−δ).
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Proof of Lemma 6: Note that, from the definition of ĝi(·), for all g ∈ G0,

1{ĝi(β,α) = g} ≤ 1
{

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ+αg0

i t

)))
≤

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ+αgt

)))}
,

so

1
N

N∑
i=1

1
{
ĝi(β,α) ̸= g0

i

}
=
∑
g∈G0

1
N

N∑
i=1

1
{
g0
i ̸= g

}
1{ĝi(β,α) = g}

≤
∑
g∈G0

1
N

N∑
i=1

Wig(β,α),

where

Wig(β,α) = 1
{
g0
i ̸= g

}
×1

{
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ+αg0

i t

)))
≤

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ+αgt

)))}
.

I start bounding Wig(β,α), for all (β,α) ∈ Nη, by a quantity that does not depend on (β,α). To

proceed first note that, by Assumption 6(b), and 7(a)-7(b), v 7→ ln(Ψ(Qit (X ′
itv+αgt))) is uniformly

Lipschitz over (i, t,α,g) ∈ {1, ...,N}×{1, ...,T}×AG
0T ×G0, i.e., there exists a constant Lβ > 0 such

that, for all (i, t,α,g) ∈ {1, ...,N}×{1, ...,T}×AG
0T ×G0, all β1,β2 ∈ B, almost surely

∣∣ln(Ψ(Qit (X ′
itβ1 +αgt

)))
− ln

(
Ψ
(
Qit

(
X ′
itβ2 +αgt

)))∣∣≤ Lβ
∥∥β1 −β2

∥∥. (42)

Similarly, a 7→ ln(Ψ(Qit (X ′
itβ+a))) is uniformly Lipschitz over (i, t,β) ∈ {1, ...,N}×{1, ...,T}×B,

i.e., there exists a constant Lα > 0 such that, for all (i, t,β) ∈ {1, ...,N}×{1, ...,T}×B, all a,b ∈ A,

almost surely ∣∣ln(Ψ(Qit (X ′
itβ+a

)))
− ln

(
Ψ
(
Qit

(
X ′
itβ+ b

)))∣∣≤ Lα |a− b| . (43)

Then, by choosing g = g0
i ,β1 = β0 and β2 = β in (42), I have, for all (β,α) and all i,

Wig(β,α) ≤ 1
{
g0
i ̸= g

}
×1

{
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ

0 +αg0
i t

)))
≤

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ+αgt

)))
+TLβ

∥∥β−β0∥∥} .
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By choosing a= αg0
i t

, b= α0
g0

i
, and β = β0 in (43), I have, for all (β,α) and all i,

Wig(β,α) ≤ 1
{
g0
i ̸= g

}
×1

{
T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ

0 +α0
g0

i t

)))
≤

T∑
t=1

ln
(
Ψ
(
Qit

(
X ′
itβ+αgt

)))
+TLβ

∥∥β−β0∥∥+TLα
∥∥α0

g0
i

−αg0
i

∥∥} ,
where I used the norm inequality

∥∥u∥∥1 ≤
√
T
∥∥u∥∥≤ T

∥∥u∥∥ for all u ∈ RT , T ∈ N∗, where
∥∥ ·
∥∥

1 is the

ℓ1-norm. Next, a second-order Taylor expansion of z 7→ lnΨ(z) at QitZit around QitZ
0
it combined

with (A.3), yields

Wig(β,α) ≤ 1
{
g0
i ̸= g

}
×1

{
0 ≤

T∑
t=1

Yit−Ψ
(
Z0
it

)
Ψ
(
Z0
it

)(
1−Ψ

(
Z0
it

))Ψ′
(
Z0
it

)(
X ′
it

(
β−β0

)
+αgt−α0

g0
i t

)
−bmin

2
(
X ′
it

(
β−β0

)
+αgt−α0

g0
i t

)2
+TLβ

∥∥β−β0∥∥+TLα
∥∥α0

g0
i

−αg0
i

∥∥}

≤ max
g̃ ̸=g

1
{

0 ≤
T∑
t=1

[
Yit−Ψ

(
Z0
it

)
Ψ
(
Z0
it

)(
1−Ψ

(
Z0
it

))Ψ′
(
Z0
it

)(
X ′
it

(
β−β0

)
+αgt−α0

g̃t

)
−bmin

2
(
X ′
it

(
β−β0

)
+αgt−α0

g̃t

)2
]

+TLβ
∥∥β−β0∥∥+TLα

∥∥α0
g̃

−αg̃
∥∥} ,

Now, let define Vit = Yit−Ψ(Z0
it)

Ψ(Z0
it)(1−Ψ(Z0

it))
Ψ′ (Z0

it

)
, and

AT =
∣∣∣∣∣
T∑
t=1

[
Vit
(
X ′
it

(
β−β0

)
+αgt−α0

g̃t

)
− bmin

2
(
X ′
it

(
β−β0

)
+αgt−α0

g̃t

)2
]

+TLβ
∥∥β−β0∥∥

+TLα
∥∥α0

g̃
−αg̃

∥∥−
T∑
t=1

Vit
(
α0
gt−α0

g̃t

)
+ bmin

2
(
α0
gt−α0

g̃t

)2
∣∣∣∣∣ .

As I have

AT ≤
∣∣∣∣∣
T∑
t=1

VitX
′
it

(
β−β0

)∣∣∣∣∣+
∣∣∣∣∣
T∑
t=1

Vit
(
αgt−α0

g̃t

)
−

T∑
t=1

Vit
(
α0
gt−α0

g̃t

)∣∣∣∣∣+ bmin
2

∣∣∣∣∣
T∑
t=1

X ′
it

(
β−β0

)∣∣∣∣∣
+ bmin

∣∣∣∣∣
T∑
t=1

X ′
it

(
β−β0

)(
αgt−α0

g̃t

)∣∣∣∣∣+ bmin
2

∣∣∣∣∣
T∑
t=1

(
α0
gt−αgt

)(
α0
gt−2α0

g̃t

)∣∣∣∣∣
+TLβ

∥∥β−β0∥∥+TLα
∥∥α0

g̃
−αg̃

∥∥,
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it is easy to show using the CS inequality that, for (β,α) ∈ Nη,

AT ≤ T
√
η

(
1
T

T∑
t=1

V 2
it

)1/2(
1
T

T∑
t=1

∥∥Xit

∥∥2
)1/2

+TC1
√
η

(
1
T

T∑
t=1

V 2
it

)1/2

+ bmin

(
1
2 +2 sup

α∈A
|α|
)

√
η

T∑
t=1

∥∥Xit

∥∥
+T

√
η

3bmin
2 sup

α∈A

∥∥α∥∥+T
√
η (Lβ +Lα)

≤ T
√
η [(c1 ∨ c2)× (M +C1)+ bminC2M +C3 +Lβ +Lα] ,

where C1,C2,C3,

c1 := sup
(β,α,g,x)∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit)

Ψ′(Zit)/Ψ(Zit),

c2 := sup
(β,α,g,x)∈B×AG0T ×G0×∪t=1,...,i=1,...Supp(Xit)

Ψ′(Zit)/(1−Ψ(Zit)),

are positive constants, independent of η and T . I thus obtain that

Wig(β,α) ≤ max
g̃ ̸=g

1
{

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt−α0

g̃t

)2

+T√
η [(c1 ∨ c2)× (M +C1)+ bminC2M +C3 +Lβ +Lα]} .

Noting that the right-hand side of this inequality does not depend on (β,α), it follows that

sup(β,α)∈Nη
Wig(β,α) ≤W ig, where

W ig = max
g̃ ̸=g

1
{

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt−α0

g̃t

)2
(44)

+ = T
√
η [(c1 ∨ c2)× (M +C1)+ bminC2M +C3 +Lβ +Lα]} . (45)

As a result,

sup
(β,α)∈Nη

1
N

N∑
i=1

1
{
ĝi(β,α) ̸= g0

i

}
≤ 1
N

N∑
i=1

∑
g∈G0

W ig. (46)
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I have, using standard probability algebra and for all g ∈ G0,

Pr
(
W ig = 1

)
≤
∑
g̃ ̸=g

Pr
(

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)
≤ −bmin

2

T∑
t=1

(
α0
gt−α0

g̃t

)2

+T
√
η [(c1 ∨ c2)× (M +C1)+ bminC2M +C3 +Lβ +Lα]

)

≤
∑
g̃ ̸=g

{
Pr
(

1
T

T∑
t=1

(
α0
gt−α0

g̃t

)2
≤
cg,̃g
2

)

+Pr
(

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)
≤ −T

cg,̃gbmin

4

+T
√
η [(c1 ∨ c2)× (M +C1)+ bminC2M +C3 +Lβ +Lα]

)}
.

(47)

To end the proof, let Ft = σ
({

X(t)
− ,ε

(t)
− ,γ0,α0

})
denote the σ-field generated by X(t)

− ,ε
(t)
− ,γ0, and

α0 and set Sit =∑t
s=1Vis

(
α0
g̃s

−α0
gs

)
. Then, {(Sit,Ft),1 ≤ t≤ T} is a martingale under Assump-

tions 6(a) and 6(b) since

E
(

t∑
s=1

Vis
(
α0
g̃s

−α0
gs

)
| Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s

−α0
gs

)
+
(
α0
g̃t

−α0
gt

)
E
(

Yit−Ψ
(
Z0
it

)
Ψ
(
Z0
it

)(
1−Ψ

(
Z0
it

))Ψ′
(
Z0
it

)
| Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s

−α0
gs

)
+
(
α0
g̃t

−α0
gt

)
E
(
E
(

Yit−Ψ
(
Z0
it

)
Ψ
(
Z0
it

)(
1−Ψ

(
Z0
it

))Ψ′
(
Z0
it

)
| Ft−1,σ

(
X(t)

−

))
| Ft−1

)

=
t−1∑
s=1

Vis
(
α0
g̃s

−α0
gs

)
,

where the last equality follows from independence of εt and (X(t)
− ,ε

(t−1)
− ,γ0,α0) and

E
(
Yit |Xi1, ...,Xit,α

0,γ0
)

−Ψ
(
Z0
it

)
= 0.

By Assumption 7(b), for all i ∈ {1, ...,N},
{
Vit
(
α0
g̃t

−α0
gt

)
: t
}

is such that
∣∣∣Vit(α0

g̃t
−α0

gt

)∣∣∣≤ (c̃1 ∨

c̃2)<∞, where the positive constants c̃j = 2cj supα∈A |α|> 0, for j ∈ {1,2}, do not depend on (i, t).

Let a > 0. By Lemma 5, there exist positive constants A and B, independent from (i, t), such that

58



for all z > a/
√
T ,

Pr
(∣∣∣∣∣ 1T

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)∣∣∣∣∣≥ z

)
≤Aexp

(
−B(z2T )1/3

)
. (48)

I now bound the two terms on the right-hand side of (47).

• By applying Lemma 4, and conducting the same reasoning as in the first bullet point page

1176 in Bonhomme and Manresa (2015), under Assumptions 7(a) and 8(b)-(c), for all δ > 0

and as T tends to infinity,

Pr
(

1
T

T∑
t=1

(
α0
gt−α0

g̃t

)2
≤
cg,̃gbmin

2

)
= o(T−δ).

• Lastly, to bound the second term on the right-hand side of (47), I denote as c the minimum

of cg,̃g over all g ̸= g̃ and I take

η ≤
(

c

8[(c1 ∨ c2)× (M +C1)+ bminC2M +C3 +Lβ +Lα]

)2

. (49)

Note that this upper bound on η does not depend on T . Taking η satisfying (49) yields, for

all g̃ ̸= g,

Pr
(

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)
≤ −T

cg,̃gbmin

4 +T
√
η [(c1 ∨ c2)× (M +C1)+ bminC2M +C3 +Lβ +Lα]

)

≤ Pr
(

1
T

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)
≤ −

cg,̃g
8

)
.

Lastly, by applying (48) with z =
c

g,̃g

8 , for T sufficiently large, I obtain

Pr
(

1
T

T∑
t=1

Vit
(
α0
g̃t

−α0
gt

)
≤ −

cg,̃g
8

)
=O(exp(−C3T

1/3)) = o(T−δ), (50)

for all δ > 0, and for some constant C3 that does not depend on i,T , and g.

Combining results, I thus obtain, using (47), that for η satisfying (49) and for all δ > 0,

1
N

N∑
i=1

∑
g∈G0

Pr
(
W ig = 1

)
≤
∣∣∣G0
∣∣∣(∣∣∣G0

∣∣∣−1
)[
o(T−δ)+o(T−δ)

]
= o(T−δ). (51)
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To complete the proof of Lemma 6, note that, for η that satisfies (49), I have, for all δ > 0 and all

ε > 0,

Pr
(

sup
(β,α)∈Nη

1
N

N∑
i=1

1
{
ĝi(β,α) ̸= g0

i

}
> εT−δ

)
≤ Pr

 1
N

N∑
i=1

∑
g∈G0

W ig > εT−δ


≤

E
(

1
N

∑N
i=1
∑
g∈G0 W ig

)
εT−δ = o(1),

where I have used (46), the Markov inequality, and (51), respectively. This ends the proof of

Lemma 6. □

I am now in position to prove the three parts of the following asymptotic equivalence result.

Lemma 7 (Asymptotic Equivalence) Let Assumptions 6, 7, and 8 hold. Then, for all δ > 0

and as N and T tend to infinity

Pr
(

sup
i∈{1,...,N}

∣∣∣ĝi−g0
i

∣∣∣> 0
)

= o(1)+o(NT−δ), (52)

and

β̂ = β̃+op(T−δ), (53)

and

α̂gt = α̃gt+op(T−δ) for all g, t. (54)

Proof of Lemma 7: The proof closely follows pages 1178-1180 in Bonhomme and Manresa (2015).

#1. Properties of β̂. Define

Q̂(β,α) = 1
NT

N∑
i=1

T∑
t=1

− ln
(
Ψ
(
Qit

(
X ′
itβ+αĝi(β,α)t

)))
, (55)

Q̃(β,α) = 1
NT

N∑
i=1

T∑
t=1

− ln
(
Ψ
(
Qit

(
X ′
itβ+αg0

i t

)))
. (56)

Notice that Q̂(·) is minimized at (β̂, α̂) and Q̃(·) is minimized at (β̃, α̃). Let η > 0 be small enough

such that the conclusion of Lemma 6 holds. Using Assumptions 7(a) and 7(b), it is then easy to

see that, for all δ > 0,

sup
(β,α)∈Nη

∣∣∣Q̂(β,α)− Q̃(β,α)
∣∣∣= op(T−δ). (57)

By consistency of β̂ (Theorem 2) and α̂ (Lemma 3), and because β̃ and α̃ are also consistent under
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the conditions of Theorem 2, we have, as N and T tend to infinity,

Pr
((
β̂, α̂

)
̸∈ Nη

)
→ 0, (58)

Pr
((
β̃, α̃

)
̸∈ Nη

)
→ 0. (59)

Then, the same arguments as those appearing between (B-14) and (B-17) in page 1179 in Bonhomme

and Manresa (2015) can be used to show that eq. (57)-(59) imply

Q̃(β̂, α̂)− Q̃(β̃, α̃) = op(T−δ). (60)

Now, using that (β̃, α̃) minimizes the twicely continuously differentiable function Q̃(·), we obtain

under Assumption 6(b)

Q̃(β̂, α̂)− Q̃(β̃, α̃) ≥ bmin
2

1
NT

N∑
i=1

T∑
t=1

(
X ′
it

(
β̃− β̂

)
+ α̃g0

i t
− α̂g0

i t

)2
,

≥ bmin
2
(
β̃− β̂

)′
(

1
NT

N∑
i=1

T∑
t=1

(
Xit−Xg0

i t

)(
Xit−Xg0

i t

)′
)(

β̃− β̂
)

≥ ρ̂bmin
2

∥∥β̃− β̂
∥∥2
,

where ρ̂ p−→ ρ > 0 as a consequence of Assumption 7(c). Hence, β̃− β̂ = op(T−δ) for all δ > 0. This

shows (53).

#2. Properties of α̂. The proof is identical to page 1180 in Bonhomme and Manresa (2015).

#3. Properties of ĝi = ĝi(β̂, α̂). The proof is identical to page 1180 in Bonhomme and Manresa

(2015).

The proof of Lemma 7 is complete. □

A.4.2 Step 2: Asympotic Properties of the Oracle MLE

By Lemma 7 and Slutsky’s lemma, it is sufficient to analyze the limiting distribution of the unfea-

sible maximum likelihood estimator, (β̃, α̃), defined as

(β̃, α̃) = argmin
(β,α)∈B×AG0T

Q̃(β,α),
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where

Q̃(β,α) = 1
NT

N∑
i=1

T∑
t=1

∑
g∈G0

1
{
g0
i = g

}
×
[
− ln

(
Ψ
(
Qit

(
X ′
itβ+αgt

)))]
.

First, I show
√
NT

(
β̃−β0

)
d−→ N

(
0,Σ−1

β

)
. (61)

Second, I show for all g, t,
√
N
(
α̃gt−α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (62)

and conclude by Slutsky’s lemma.

# 1. (61) holds. Under Assumption 9, results in Hahn and Newey (2004) (eq. (3)) and Arellano

and Hahn (2007) (in case of multi-dimensional fixed effects of size G0) ensure

√
NT

(
β̃−β0

)
= SNT +

√
T

N
B+Op

√ T

N3

 ,
for some deterministic B ∈ Rp×p and SNT d−→ N

(
0,Σ−1

β

)
. The result then follows from T = o(N).

#2. (62) holds. Let (g, t) ∈ G0 ×N∗. For all β ∈ B, define the optimal α̃gt(β) as

α̃gt(β) = argmin
α∈A

1
N

N∑
i=1

−1
{
g0
i = g

}
× ln

(
Ψ
(
Qit

(
X ′
itβ+α

)))
.

The first-order optimality condition for α̃gt(β) writes

1
N

N∑
i=1

1
{
g0
i = g

}
Qit (lnΨ)′ (Qit (X ′

itβ+ α̃gt(β)
))

= 0. (63)

Differentiating eq. (63) with respect to β yields

dα̃gt(β)
dβ = −

(
1
N

N∑
i=1

1
{
g0
i = g

}
(lnΨit)′′

)−1(
1
N

N∑
i=1

1
{
g0
i = g

}
(lnΨit)′′Xjt

)
, (64)

where (lnΨit)′′ := (lnΨ)′′
(
Qit

(
X ′
itβ+ α̃g0

i t
(β)
))

. By Taylor’s theory, eq. (64) and Assumptions 7(a)-

(b) imply that there exists C > 0 such that, almost surely,

sup
β,β′∈B

∣∣α̃gt(β)− α̃gt(β′)
∣∣≤ C

∥∥β−β′∥∥. (65)
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Deduce that

√
N
(
α̃gt−α0

gt

)
=

√
N
(
α̃gt(β0)−α0

gt

)
+

√
N
(
α̃gt(β̃)− α̃gt(β0)

)
=

√
N
(
α̃gt(β0)−α0

gt

)
+Op

(√
N
∥∥β̃−β0∥∥)

=
√
N
(
α̃gt(β0)−α0

gt

)
+Op(1/

√
T )

=
√
N
(
α̃gt(β0)−α0

gt

)
+op(1), (66)

where the second and third equality use eq. (65) and (61) respectively. Now, by expanding each

summand in eq. (63) at X ′
itβ

0 + α̃gt(β0) around Z0
it, Taylor’s theory ensures again that there exists

Z∗
it ∈ Z such that

α̃gt(β0) = α0
gt−

(
N∑
i=1

1
{
g0
i = g

}
(− lnΨ)′′ (QitZ∗

it)
)−1( N∑

i=1
1
{
g0
i = g

}
Qit (− lnΨ)′

(
QitZ

0
it

))
. (67)

Equation (67) yields

√
N
(
α̃gt(β0)−α0

gt

)
= −

(
1
N

N∑
i=1

1
{
g0
i = g

}
(− lnΨ)′′ (QitZ∗

it)
)−1(

1√
N

N∑
i=1

1
{
g0
i = g

}
Qit (− lnΨ)′

(
QitZ

0
it

))

=
(
π̃−1
gt +op(1)

)( 1√
N

N∑
i=1

1
{
g0
i = g

}
Qit (lnΨ)′

(
QitZ

0
it

))
d−→ N

(
0, ωgt
π̃2
gt

)
,

where the second equality follows from supi=1,...,N
∣∣Z∗
it−Z0

it

∣∣ = op(1) (it is easy to prove that

α̃gt(β0) −α0
gt = op(1) using (67), Assumptions 6(b), 7(a)-(b), and 9(e)) and Assumption 9(c), and

the last convergence follows by Assumption 9(e). Given (66), (62) follows by Slutsky’s lemma.

#3. Conclusion. Let δ > 0. By Lemma 7,

√
NT

(
β̂−β0

)
=

√
NT

(
β̃−β0

)
+

√
NT

(
β̂− β̃

)
=

√
NT

(
β̃−β0

)
+op

(√
NT 1−δ

)
, (68)
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and, for all g ∈ G0, all t ∈ N∗,

√
N
(
α̂gt−α0

gt

)
=

√
N
(
α̃gt−α0

gt

)
+

√
N (α̂gt− α̃gt)

=
√
N
(
α̃gt−α0

gt

)
+op

(√
NT−δ

)
. (69)

Since (68) and (69) hold for all δ > 0, and there exists ν > 0 such that N/T ν → 0, as N and T tend

to infinity, I obtain

√
NT

(
β̂−β0

)
=

√
NT

(
β̃−β0

)
+op(1),

√
N
(
α̂gt−α0

gt

)
=

√
N
(
α̃gt−α0

gt

)
+op(1).

This result, combined with (61), (62), and Slustky’s lemma yields (19) and (20).

B Extensions

B.1 Cluster-Specific Slopes and Time-Specific Effects

In this section, I consider the following extension of model (1): for all (i, t) ∈ N ×T ,

Pr
(
Yit = y |Xi1, ...,Xit,α

0
g0

i t
,β0
g0

i
,g0
i , ζ

0
t

)
= h0

(
y,X ′

itβ
0
g0

i
+α0

g0
i t

+ ζ0
t

)
, (70)

where h0 ∈ H,
∥∥β0

1
∥∥ = 1 and α0

11 = ζ0
1 = 0 are normalizations. Absent of correlation between the

groups and if we knew the groups, we could just run separate analysis of each panel data {(i, t) ∈

N × T : g0
i = g}g∈G0 . Here, the difficulty arises from the assumption that the group membership

variables g0
i are unknown to the econometrician. Let β0 := {β0

g : g}. We first adapt Assumption 1:

Assumption 11 (Random sampling)

(a) (Y ′
i ,X

′
i,g

0
i )′ is i.i.d. across i ∈ N conditional on α0, β0, λ0, µ0.

(b) For all i∈ N : {(Yit,X ′
it,α

0
g0

i t
, ζ0
t )′}t≥2 is a strictly stationary strong mixing process with mixing

coefficients αi(·) conditional on g0
i ,µ

0
g0

i
, ξ0
i ,β

0
g0

i
. Let α(·) = supiαi(·) satisfy α(l) ≤ cαρ

l with

cα > 0, and ρ ∈ (0,1).

(c) For all t ∈ T : Y1t |X1t,g1,α
0,β0,λ0,µ0, ξ0 d= Y1t |X1t,g

0
1,α

0
g0

1t
,β0
g0

i
.

Assumption 12 (Latent clustering)
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(a) There exist known X 0 ⊂ X , y ∈ Y, and functional ϕ such that, for all fixed (i, j) ∈ N 2, letting

ρi(x) : X 0 ∋ x 7→ Pr
(
Yi2 = y |Xi2 = x,β0

g0
i
,g0
i ,µ

0
g0

i
, ξ0
i

)
, ϕ(ρi,ρj) = 1{g0

i = g0
j }.

(b) For all g ∈ G0, almost surely Pr(g0
1 = g | α0,β0,λ0,µ0, ξ0)> 0.

Assumption 13 (Regularity and smoothness)

(a) Conditional on g0
i ,µ

0
g0

i
, ξ0
i ,β

0
g0

i
, Xi2 admits a uniformly continuous density function fXi2|g0

i ,µ
0
g0

i

,ξ0
i ,β

0
g0

i

such that infx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i ,β

0
g0

i

(x) ≥ δ > 0 and supx∈X 0 fXi2|g0
i ,µ

0
g0

i

,ξ0
i ,β

0
g0

i

(x)<∞.

(b) Almost surely, E(
∥∥X12

∥∥2 | g0
1,α

0,β0,λ0,µ0) is finite and E(X12X
′
12 | g0

1,α
0,β0,λ0,µ0) is non-

singular.

(c) For all g ∈ G0:
∑
y∈Y yh

0(y, ·) is differentiable on R and not constant on the support of

X ′
itβ

0
g0

i
+α0

g0
i t

.

Assumption 14 (Monotonicity) There exists y ∈ Y such that h0(y,v) is strictly monotonic in

v.

Assumption 15 (Compensating variations)

(a) For all fixed (g, t, t̃), all x1 ∈ X , there exists x2 ∈ X such that

α0
gt+x′

1β
0
g + ζ0

t = α0
gt̃

+x′
2β

0
g + ζ0

t̃
. (71)

(b) For all fixed (g, g̃, t), all x3 ∈ X , there exists x4 ∈ X such that

α0
gt+x′

3β
0
g + ζ0

t = α0
g̃t

+x′
4β

0
g̃

+ ζ0
t . (72)

Theorem 4 (Identification) Let Assumptions 11, 12 and 13(a) hold, and let N and T diverge

jointly to infinity.

1. {W0
N :N ∈ N∗} and G0 are identified.

2. If Assumptions 13(b)-15 further hold, then

• β0 is identified.

• ζ0
t +α0

gt is identified for all (g, t) ∈ G0 ×N∗.
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Proof of Theorem 4: The proofs of Part 1 and identification of β0 are identical to the corre-

sponding parts of the proof of Theorem 1, up to running nonparametric regressions for all g ∈ G0

to identify β0
g . Next, Assumption 15(b) ensures that, for all (g, g̃, t), we can identify (x1,x2) ∈ X 2,

such that for some y ∈ Y,

h0
(
y,x′

1β
0
g +α0

gt+ ζ0
t

)
= h0

(
y,x′

2β
0
g̃

+α0
g̃t

+ ζ0
t

)
.

By inverting h0(y, ·), we obtain α0
gt −α0

g̃t
= x′

1β
0
g̃

−x′
2β

0
g . Since the right-hand side is identified,

α0
gt −α0

g̃t
is identified for all (g, g̃, t). In particular, (α0

g1)g∈G0 is identified. Now, suppose that

G0 ≥ 2. By Assumption 15(a), for all (g, t, t̃), we can identify (x3,x4) ∈ X 2 such that, for some

y ∈ Y,

h0
(
y,x′

3β
0
g +α0

gt+ ζ0
t

)
= h0

(
y,x′

4β
0
g +α0

gt̃
+ ζ0

t̃

)
. (73)

By inverting h0(y, ·) again, eq. (73) yields

ζ0
t − ζ0

t̃
= α0

gt̃
−α0

gt+(x4 −x3)′β0
g . (74)

Because ζ0
1 = α0

11 = 0, ζ0
t +α0

1t and ζ0
t +α0

gt = ζ0
t +α0

1t+α0
gt−α0

1t are identified for all (g, t).

B.2 Individual-Specific Slopes, Effects, Group-Specific Link Function, Time-

Varying Slope

TBA

B.3 Grouping Time Periods

Consider a model in which time effects are also grouped: there exists (g0
i ,k

0
t ) ∈

{
1, ...,G0}×{

1, ...,K0} such that

Pr
(
Yit = y |Xt

i ,α
0
g0

i k
0
t
,g0
i ,k

0
t

)
= h0

(
y,X ′

itθ
0 +α0

g0
i k

0
t

)
, i= 1, ...,N,t= 1, ...,T (75)

When N = T , this gives rise to a so-called Holland, Laskey, and Leinhardt (1983)’s stochastic block

model on latent variables. Methods developed in the present paper and in Mugnier (2022) can be

used to obtain identification results for nonlinear multiplicative models in cases where G0 = K0

and under symmetry (α0
gg̃

= α0
g̃g

almost surely).
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B.4 NGFE Large Sample Theory for Poisson Count Models

Theorem 2 can be generalized to NGFE models satisfying certain moment and concavity/regularity

conditions on the series of partial derivatives of (β,π) 7→ lnh0(Yit,X ′
itβ+π) ≡ ℓit(β,π).

Assumption 16

(a) Smoothness and moments: (β,π) 7→ ℓit(β,π) is three times continuously differentiable almost

surely. The partial derivatives of ℓit(β,π) with respect to the elements of (β,π) up to the second

order are bounded in absolute value uniformly over (β,π) ∈ B×A by a function M(Yit,Xit)> 0

almost surely, and

max
i,t

E
[
M(Yit,Xit)4 | X(t),α0

g0
i t

]
is almost surely uniformly bounded over N,T .

(b) Strict concavity: for all N,T , ∂2ℓit(β,π)
∂π2 < 0 almost surely for all (β,π) ∈ Rp+1.

In particular, Assumption 16(b) is verified by the Poisson count model (3).

Theorem 5 (Consistency in General Nonlinear Models) Let Assumptions 7 and 16 hold.

Then, as N and T tend to infinity:

1. β̂ p−→ β0, and

2. 1
NT

∑N
i=1
∑T
t=1

(
α̂ĝit

−α0
g0

i t

)2 p−→ 0.

The proof is available upon request.

Under the existence of a moment generating function for the score on a small interval around

zero, the concentration inequalities and most of the arguments in the proof of Theorem 3 could still

be applied to obtain asymptotic normality. A technical difficulty here is that Yit is not bounded

anymore so that uniform Lipschitz continuity in eq. (43) and (42) does not hold anymore. I only

state the result without proof for the Poisson count model. I denote as X̃gt the projection of Xit

on the space spanned by the cluster membership variable under a metric weighted by exp(Z0
it),

X̃gt =
(

1
N

N∑
i=1

1
{
g0
i = g

}
exp(Z0

it)
)−1(

1
N

N∑
i=1

1
{
g0
i = g

}
exp(Z0

it)Xit

)
,

i.e., the weighted mean of Xit in cluster g0
i = g. Also, let define the weighted average

π̂gt = 1
N

N∑
i=1

1
{
g0
i = g

}
exp(Z0

it).
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Consider the following assumption.

Assumption 17

(a) {(Yit,X ′
it)′ : (i, t)} are independent conditional on the fixed effects.

(b) There exists a positive definite matrix Σβ such that

Σβ = plimN,T→∞
1
NT

N∑
i=1

T∑
t=1

exp(Z0
it)
[
Xit− X̃g0

i t

][
Xit− X̃g0

i t

]′
.

(c) As N and T tend to infinity,

1√
NT

N∑
i=1

T∑
t=1

{
exp(Z0

it)
(
Xit− X̃g0

i t

)}{
Yit− exp(Z0

it)
}

d−→ N (0,Σβ).

(d) For all (g, t): plimN→∞π̂gt = π̃gt > 0.

(e) For all (g, t):

lim
N→∞

1
N

N∑
i=1

N∑
j=1

E
(
1
{
g0
i = g

}
1
{
g0
j = g

}
(Yit− exp(Z0

it))(Yjt− exp(Z0
jt)
)

= ωgt > 0.

(f) For all (g, t), and as N and T tend to infinity:

1√
N

N∑
i=1

1
{
g0
i = g

}
(Yit− exp(Z0

it))
d−→ N (0,ωgt).

(g) The true value of β, β0, is in the interior of B. For all T , the true value of α, α0, is in the

interior of AG0T .

Theorem 6 (Asymptotic Distribution in the Poisson Count Model – Conjectured) Let

eq. (3), Assumptions 7, 8, and 17 hold, and let N and T tend to infinity such that N/T → ∞ and,

for some ν > 0, N/T ν → 0. Then:

√
NT

(
β̂−β0

)
d−→ N

(
0,Σ−1

β

)
, (76)

and, for all (g, t),
√
N
(
α̂gt−α0

gt

)
d−→ N

(
0, ωgt
π̃2
gt

)
, (77)
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where Σβ, ωgt, and π̃g are defined in Assumption 17.

C Large-N , Large-T Inference

C.1 Binary Choice Model

Assuming independent observations across individual units, the asymptotic variance of α̂gt for all

g, t can be estimated as

Var(α̂gt) =
∑N
i=1 1{ĝi = g}

(
(lnΨ)′

(
Qit

(
X ′
itβ̂+ α̂ĝit

)))2

(∑N
i=1 1{ĝi = g}(− lnΨ)′′

(
Qit

(
X ′
itβ̂+ α̂ĝit

)))2 . (78)

Given Theorem 3, an estimate of the asymptotic variance of β̂ is

Var
(
β̂
)

=
(

1
NT

N∑
i=1

T∑
t=1

(− lnΨ)′′
(
Qit

(
X ′
itβ̂+ α̂ĝit

))[
Xit−

̂̃
X ĝi,t

][
Xit−

̂̃
X ĝi,t

]′
)−1

, (79)

where

̂̃
Xgt =

(
1
N

N∑
i=1

1{ĝi = g}(lnΨ)′′
(
Qit

(
X ′
itβ̂+ α̂ĝit

)))−1

×
(

1
N

N∑
i=1

1{ĝi = g}(lnΨ)′′
(
Qit

(
X ′
itβ̂+ α̂ĝit

))
Xit

)
.

C.2 Poisson Count Model

Assuming independent observations across individual units, the asymptotic variance of α̂gt for all

g, t can be estimated as

Var(α̂gt) =
∑N
i=1 1{ĝi = g}

(
Yit− exp

(
X ′
itβ̂+ α̂ĝit

))2

(∑N
i=1 1{ĝi = g}exp

(
X ′
itβ̂+ α̂ĝit

))2 . (80)

Given Theorem 6, an estimate of the asymptotic variance of β̂ is

Var
(
β̂
)

=
(

1
NT

N∑
i=1

T∑
t=1

exp
(
X ′
itβ̂+ α̂ĝit

)[
Xit−

̂̃
X ĝi,t

][
Xit−

̂̃
X ĝi,t

]′
)−1

, (81)

69



where

̂̃
Xgt =

(
1
N

N∑
i=1

1{ĝi = g}exp
(
X ′
itβ̂+ α̂ĝit

))−1

×
(

1
N

N∑
i=1

1{ĝi = g}exp
(
X ′
itβ̂+ α̂ĝit

)
Xit

)
.

D More Details on Monte Carlo Experiments

To measure classification accuracy, I focus on three metrics inspired from the binary classification

and clustering statistical literature, which are invariant to cluster relabeling.48 The three metrics

write

R ≡ Recall rate := TP

TP +FN
,

P ≡ Precision rate := TP

TP +FP
,

RI ≡ Rand Index := TP +TN

TP +TN +FP +FN
,

where

FP ≡ False Positives :=
∑
i<j

1{ĝi = ĝj}1
{
g0
i ̸= g0

j

}
,

TP ≡ True Positives :=
∑
i<j

1{ĝi = ĝj}1
{
g0
i = g0

j

}
,

FN ≡ False Negatives :=
∑
i<j

1{ĝi ̸= ĝj}1
{
g0
i = g0

j

}
,

TN ≡ True Negatives :=
∑
i<j

1{ĝi ̸= ĝj}1
{
g0
i ̸= g0

j

}
.

The Recall rate (R) measures the ability of the NGFE estimator to predict the same group for pairs

of individual who truly belong to the same group. The Precision rate (P) measures how precise the

pairing prediction is: among all the predicted pairs of individual sharing the same group, what is

the proportion of correct ones? The Rand Index (RI) is the proportion of correctly predicted pair

(true or false) made by the algorithm.
48Bonhomme and Manresa (2015) report a “Misclassification Rate” (M) defined as the minimum of∑N
i=1
∣∣ĝi − g0

i

∣∣/N over all possible cluster relabelings for the ĝi. Beyond the fact that computing MR can be very
demanding for large G0, it is not totally fair since the final labeling of ĝi requires knowledge of g0

i to be determined.
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Initialization of NGFE I use 1,000 initialization random points (θ′
init,α11init, ...,αG0T init)′ such

that θinit = v where v iid∼ N (0,(1/4)2) and αgt,init = µg,init +w where µg,init
iid∼Unif[−4,4] and w

iid∼

N (0,(1/4)2).

Computation Having large N is not computationally demanding. When T is very large, compu-

tation of the NGFE estimate might be demanding. Mugnier (2022) can be adapted. The statistical

asymptotic results are confirmed by increasing (N,T ) in unreported simulations.

E Additional Tables & Figures

E.1 Monte Carlo Simulations
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Table 1: Bias and Root Mean Squared Error of β̂ (Static Model)

NGFE CMLE NLTWFE 2STEPGFE Pooled OLS LTWFE GFE
DGP G0 Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 2 -0.072 0.268 -0.104 0.551 0.217 0.950 -0.252 1.516 -0.407 0.411 -0.790 0.812 -0.798 0.814

3 -0.089 0.294 0.294 0.637 0.669 1.000 0.355 0.893 -0.363 0.366 -0.724 0.734 -0.853 0.874
5 -0.022 0.264 0.167 0.538 0.359 0.824 0.104 0.779 -0.369 0.373 -0.766 0.776 -0.784 0.839

2 2 0.106 0.171 0.010 0.161 0.223 0.302 -0.278 0.309 -0.779 0.780 -0.831 0.831 -0.816 0.818
3 0.236 0.289 0.014 0.160 0.238 0.309 -0.300 0.345 -0.768 0.769 -0.867 0.867 -0.837 0.841
5 0.601 0.637 -0.004 0.169 0.250 0.332 -0.324 0.358 -0.747 0.747 -0.916 0.916 -0.853 0.860

3 2 0.352 0.385 -0.001 0.169 0.221 0.313 -0.110 0.211 -0.776 0.777 -0.857 0.857 -0.826 0.827
3 0.432 0.486 -0.002 0.170 0.219 0.308 -0.066 0.192 -0.788 0.789 -0.859 0.859 -0.845 0.846
5 0.471 0.499 0.011 0.156 0.235 0.309 -0.057 0.186 -0.787 0.788 -0.858 0.858 -0.833 0.836

4 2 0.040 0.151 -0.002 0.152 0.195 0.269 0.085 0.221 -0.789 0.789 -0.783 0.784 -0.788 0.789
3 0.095 0.159 0.016 0.124 0.223 0.269 0.109 0.213 -0.776 0.776 -0.778 0.779 -0.790 0.792
5 0.114 0.178 0.018 0.118 0.222 0.266 0.094 0.204 -0.775 0.775 -0.778 0.779 -0.803 0.809

Notes: Static logit model with β = 1, N = 90, and T = 7. G0 = true number of groups. NGFE (resp. 2STEPGFE and GFE) estimates are based on 1,000
(resp. 100 and 100) initialization points. Results are averaged across 50 Monte Carlo replications.

Table 2: Classification Accuracy and CPU Time (Static Model)
NGFE 2STEPGFE GFE

DGP G0 P R RI M CPU P R RI M CPU Ĝ P R RI M CPU
1 2 0.51 0.87 0.51 0.44 10.62 0.54 0.24 0.51 0.77 10.19 5.38 0.54 0.55 0.54 0.38 29.27

3 0.35 0.81 0.42 0.57 11.42 0.37 0.24 0.60 0.75 11.34 5.48 0.36 0.38 0.57 0.55 29.63
5 0.21 0.80 0.35 0.70 14.75 0.24 0.25 0.69 0.71 11.73 5.88 0.24 0.25 0.69 0.63 83.18

2 2 0.56 0.86 0.57 0.36 8.02 0.64 0.45 0.60 0.53 3.57 3.06 0.61 0.61 0.61 0.29 21.95
3 0.40 0.85 0.49 0.51 8.52 0.57 0.49 0.70 0.44 4.70 3.64 0.46 0.49 0.64 0.42 22.00
5 0.22 0.87 0.34 0.69 10.15 0.44 0.53 0.77 0.44 5.78 4.44 0.35 0.40 0.74 0.54 20.93

Notes: Static logit model with β = 1, N = 90, and T = 7. G0 = true number of groups, P = Precision rate, R = Recall rate, RI = Rand Index, M =
Misclassification Rate = minimum of

∑N
i=1 1

{
ĝi ̸= g0

i

}
/N over all possible cluster relabelings, CPU = CPU time in seconds computed with Python’s

time command time.perf_counter(), Ĝ = number of groups estimated by 2STEPGFE. NGFE (resp. 2STEPGFE and GFE) estimates are based on
1,000 (resp. 100 and 100) initialization points. Results are averaged across 50 Monte Carlo replications.
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Table 3: Inference for β (Static Model)

NGFE CMLE
DGP G0 SE SD .95 SE SD .95
1 2 0.16 0.26 0.86 0.15 0.54 0.38

3 0.17 0.28 0.80 0.16 0.56 0.40
5 0.17 0.26 0.84 0.15 0.51 0.42

2 2 0.12 0.13 0.82 0.06 0.16 0.52
3 0.12 0.17 0.46 0.07 0.16 0.62
5 0.14 0.21 0.08 0.08 0.17 0.66

3 2 0.12 0.16 0.22 0.06 0.17 0.52
3 0.12 0.22 0.18 0.06 0.17 0.52
5 0.12 0.16 0.04 0.06 0.16 0.56

4 2 0.12 0.15 0.92 0.05 0.15 0.38
3 0.13 0.13 0.92 0.05 0.12 0.56
5 0.13 0.14 0.88 0.05 0.12 0.56

Notes: Static logit model with β1 = 1, N = 90, and T = 7. SE reports
the median of the estimates of the analytical standard errors based on
the large-N , T analytical variance formula (81) across simulations;
SD reports the median of the actual standard deviation across simu-
lations; .95 reports the empirical nonrejection probabilities (nominal
size 5%) based on the analytical standard errors estimates. Results
are averaged across 50 Monte Carlo replications.
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Table 4: Bias and Root Mean Squared Error (Dynamic Model)

NGFE CMLE NLTWFE 2STEPGFE
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

DGP G0 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

1 2 -0.026 -0.128 0.229 0.328 -0.663 -0.174 0.689 0.526 -0.702 0.242 0.737 0.965 -0.032 -0.456 0.309 0.666
3 0.073 -0.144 0.323 0.447 -0.651 0.238 0.676 0.634 -0.684 0.663 0.716 0.995 -0.142 -0.282 0.254 0.745
5 0.156 -0.279 0.365 0.448 -0.592 0.090 0.629 0.524 -0.606 0.318 0.659 0.826 -0.051 0.158 0.277 0.492

2 2 0.486 0.043 0.630 0.141 -0.786 0.026 0.825 0.184 -0.839 0.248 0.893 0.337 0.695 -0.036 0.731 0.163
3 1.007 0.111 1.182 0.184 -0.780 0.017 0.820 0.156 -0.842 0.247 0.902 0.316 0.360 -0.109 0.757 0.165
5 2.144 0.297 2.272 0.358 -0.845 0.022 0.915 0.204 -0.912 0.295 1.015 0.394 0.682 0.077 1.159 0.254

3 2 0.298 0.300 0.507 0.339 -0.767 0.011 0.796 0.161 -0.821 0.242 0.859 0.325 -0.090 0.092 0.377 0.181
3 0.319 0.319 0.481 0.353 -0.797 0.016 0.842 0.166 -0.868 0.247 0.932 0.329 0.108 0.050 0.506 0.077
5 0.514 0.370 0.636 0.418 -0.734 0.030 0.770 0.161 -0.771 0.269 0.815 0.337 0.147 0.183 0.363 0.277

4 2 -0.114 0.052 0.267 0.159 -0.658 -0.003 0.676 0.143 -0.687 0.196 0.711 0.263 -0.045 0.071 0.126 0.105
3 -0.060 0.078 0.230 0.152 -0.677 0.023 0.694 0.128 -0.712 0.234 0.736 0.283 -0.084 0.114 0.242 0.187
5 -0.077 0.105 0.268 0.181 -0.685 0.018 0.713 0.118 -0.721 0.228 0.761 0.270 0.116 0.090 0.200 0.142

Notes: Dynamic logit model with β1 = 1, β2 = 0.5, N = 90, and T = 7. Results are averaged across 50 Monte Carlo replications. See Table 1 for details.

Table 5: Classification Accuracy and CPU Time (Dynamic Model)
NGFE 2STEPGFE GFE

DGP G0 P R RI MR CPU P R RI MR CPU Ĝ Failures P R RI MR CPU
1 2 0.50 1.0 0.50 0.46 11.06 0.51 0.91 0.51 0.90 0.49 2.33 0.82 0.53 0.55 0.54 0.38 29.60

3 0.33 1.0 0.33 0.62 12.98 0.34 0.94 0.36 0.93 0.38 2.14 0.86 0.36 0.39 0.57 0.55 29.62
5 0.20 1.0 0.20 0.74 16.48 0.20 0.97 0.23 0.97 0.18 2.00 0.92 0.24 0.26 0.69 0.64 29.53

2 2 0.50 1.0 0.50 0.46 8.80 0.50 0.95 0.50 0.91 0.25 2.00 0.86 0.60 0.62 0.60 0.30 21.68
3 0.33 1.0 0.33 0.61 9.69 0.34 0.99 0.35 0.97 0.10 2.50 0.96 0.45 0.47 0.63 0.43 22.91
5 0.20 1.0 0.20 0.74 10.05 0.23 0.97 0.28 0.92 0.37 2.33 0.82 0.36 0.46 0.74 0.54 21.09

Notes: Dynamic logit model with β1 = 1, β2 = 0.5, N = 90, and T = 7. Failures is the number of failures of the first step of 2STEPGFE. Results are averaged across
50 Monte Carlo replications. See Table 2 for details.
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Table 6: Inference for β1 and β2 (Dynamic Model)

NGFE CMLE
SE SD .95 SE SD .95

DGP G0 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

1 2 0.20 0.18 0.23 0.30 0.94 0.72 0.08 0.17 0.19 0.50 0.00 0.44
3 0.20 0.19 0.31 0.42 0.82 0.64 0.09 0.17 0.18 0.59 0.00 0.34
5 0.20 0.19 0.33 0.35 0.66 0.56 0.09 0.17 0.21 0.52 0.00 0.44

2 2 0.20 0.12 0.40 0.13 0.28 0.90 0.10 0.06 0.25 0.18 0.00 0.52
3 0.23 0.13 0.62 0.15 0.30 0.72 0.12 0.07 0.25 0.16 0.00 0.60
5 0.32 0.17 0.75 0.20 0.04 0.14 0.16 0.09 0.35 0.20 0.04 0.62

3 2 0.23 0.13 0.41 0.16 0.54 0.38 0.12 0.07 0.21 0.16 0.00 0.66
3 0.23 0.13 0.36 0.15 0.48 0.28 0.12 0.07 0.27 0.17 0.02 0.62
5 0.24 0.13 0.38 0.19 0.22 0.16 0.11 0.07 0.23 0.16 0.00 0.58

4 2 0.18 0.13 0.24 0.15 0.84 0.92 0.08 0.05 0.16 0.14 0.00 0.52
3 0.18 0.13 0.22 0.13 0.88 0.92 0.08 0.05 0.15 0.13 0.00 0.68
5 0.19 0.13 0.26 0.15 0.82 0.82 0.08 0.05 0.20 0.12 0.00 0.64

Notes: Dynamic logit model with β1 = 1, N = 90, and T = 7. See Table 3 for more details.

E.2 Empirical Application

Table 7: Summary Statistics

1-Lerner index Citation-weighted patents Technology gap
Mean 0.95 6.66 0.49
SD 0.02 8.43 0.16
p10 0.92 0 0.28
Median 0.95 3.35 0.51
p90 0.98 20.19 0.69

Notes: There are 17 industries, 354 observations and the time period covers 1973-94.
See Aghion, Bloom, Blundell, Griffith, and Howitt (2005) for the exact definition of each
variable.
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Figure 1: The Inverted-U Relationship Between Innovation and Competition
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Notes: This figure replicates Aghion, Bloom, Blundell, Griffith, and Howitt (2005)’s Figure II. Data include 17
industries of 311 firms listed on the London Stock Exchange observed between 1973 − 1994. For each industry i at
year t, the prediction replaces ν̂i + ξ̂t with an estimated constant α̂ (one industry and time dummies are dropped).

Figure 2: FE Poisson Residuals
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Notes: Each color represents an industry in Aghion, Bloom, Blundell, Griffith, and Howitt (2005)’s dataset. There
are 17 industries, period covers 1973-1994.
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Table 8: Industries in Aghion, Bloom, Blundell, Griffith, and Howitt
(2005) Data Set at the 2-Digit Level

SIC 2 Name

22 Metal manufacturing
23 Extraction of minerals not elsewhere specified
24 Manufacture of non-metallic mineral products
25 Chemical industry
31 Manufacture of metal goods not elsewhere specified
32 Mechanical engineering
33 Manufacture of office machinery and data processing equipment
34 Electrical and electronic engineering
35 Manufacture of motor vehicles and parts therof
36 Manufacture of other transport equipment
37 Instrument engineering
41 Food industry
42 Food, drink and tobacco manufacturing industries
43 Textile industry
47 Manufacture of paper and paper products; printing and publishing
48 Processing of rubber and plastics
49 Other manufacturing industries

Source: 1980 Notebook of the UK Office of National Statistics available here:
https://www.ons.gov.uk /methodology/classificationsandstandards/ ukstandardindustrialclassi-
ficationofeconomicactivities/uksicarchive.

Figure 3: TPWD Regularization Path
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Notes: Number of clusters estimated by the TPWD estimator as a function of the regularization parameter. There
are 17 industries, period covers 1973-1994.
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Figure 4: TPWD Cluster Estimates (Three Clusters)

Notes: Each color represents an estimated cluster. There are 17 industries, period covers 1973-1994.

Figure 5: Innovation and Competition Revisited: A Mildly Inverted-U Relationship
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Notes: Aghion, Bloom, Blundell, Griffith, and Howitt (2005) (spe. (2) in Table 9) includes a constant and drop a
time and an industry dummy (not included in the fit). NGFE (spe. (3), (4), and (5) in Table 9) does not specify a
constant and uses the average of unobserved effects as the intercept in the fit.
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Table 9: The Effect of Competition on Innovation

FE Poisson NGFE Poisson
Dependent variable: Citation-weighted patentsit (1) (2) (3) (4) (5)
Competitionit 152.80∗∗∗ 387.46∗∗∗ 171.28∗∗∗ 273.62∗∗∗ 392.23∗∗∗

(55.74) (67.74) (71.51) (70.21) (70.35)
Competition squaredit -80.99∗∗∗ -204.55∗∗∗ -85.15∗∗∗ -147.21∗∗∗ -210.19∗∗∗

(29.61) (36.17) (38.18) (37.62) (37.73)
Year effects Yes Yes
Industry effects Yes
Time-varying clustered effects Yes Yes Yes
Number of clusters 2 3 4

Notes: Analytical standard errors are under parentheses. The sample includes 354 observations from an unbalanced panel
of 17 industries over the period 1973-1994. Competitionit is measured by (1-Lerner index)it in the industry-year. NGFE
estimates are computed using Lloyd’s algorithm with 2,000 random initializers. ∗∗∗, ∗∗, ∗ denote statistical significance at 1,
5, and 10% respectively.

Figure 6: Estimated Cluster-Specific Time Effects
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Notes: Solid line=High-Innovation, dotted line=Low-Innovation, dashed line=Steady-Catchers, dashdotted
line=Noisy-Catchers. See Table 9 for more details.

Figure 7: Estimated Clusters
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Notes: Low-Innovation (1), High-Innovation (2), Steady-Catchers (3), Noisy-Catchers (4). From left to right:
NGFE estimates with G = 2,3,4.
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Figure 8: Unobserved Heterogeneity, Competition, and Innovation Vary Across Time
and Estimated Clusters
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Notes: Solid line=High-Innovation, dotted line=Low Innovation, dashed line=Steady-Catchers, dashdotted
line=Noisy-Catchers. From left to right: cluster-specific time-effects estimates (G = 4), average of cit by estimated
clusters, average of pit by estimated clusters.
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Table 10: The Effect of Competition on Innovation (Control Function Approach)

FE Poisson NGFE Poisson
Dependent Variable: Citation-weighted patentsit Annual Before 1983 After 1983 Annual Before 1983 After 1983
Competitionit 386.59∗∗∗ 229.18∗ 113.42 394.23∗∗∗ 265.86∗∗∗ 9.69

(67.61) (122.68) (100.73) (77.10) (128.18) (124.73)
Competition squaredit -205.32∗∗∗ -114.89∗ -60.85 -212.35∗∗∗ -144.18∗∗∗ -9.41

(36.11) (66.49) (53.37) (41.14) (67.95) (67.46)
Relationship steep inv-U increasing mildly inv-U mildly inv-U
Significance of: Competitionit, Competition squaredit 33.20 14.66 1.38

(0.000) (0.001) (0.5022)
Significance of policy instruments 3.70 1.67 1.77 3.70 1.67 1.77
in reduced form (0.001) (0.192) (0.064) (0.001) (0.192) (0.064)
Significant of other instruments 5.60 3.43 2.11 5.60 3.43 2.11
in reduced form (0.000) (0.000) (0.004) (0.000) (0.000) (0.004)
Control functions in regression 4.38 -.61 -3.56 1.54 16.14 -2.05

(3.51) (6.99) (6.13) (2.89) (7.05) (3.71)
R2 of reduced form 0.820 0.920 0.822 0.820 0.920 0.822
Year effects Yes Yes Yes
Industry effects Yes Yes Yes
Time-varying clustered effects Yes Yes Yes
Number of clusters 4 4 4

Notes: Competitionit is measured by (1-Lerner index)it in the industry-year. The sample includes 354 observations from an unbalanced panel of 17 industries over the
period 1973 to 1994 (Annual), 1973-1982 (Before 1983), or 1983-1994 (After 1983). Estimates are from a Poisson regression with industry and year fixed effects (FE)
or assuming unobserved clusters of time-varying heterogeneity (NGFE) with G0 = 4 clusters of industries. Numbers in brackets are standard errors (not adjusted for
the control functions). NGFE estimates are computed using Lloyd’s algorithm with 2,000 random initializers. ∗∗∗, ∗∗, ∗ denote statistical significance at 1, 5, and 10%
respectively.

81


	Introduction
	Nonlinear Discrete Outcome Models With Unobserved Clusters of Time-Varying Heterogeneity
	Nonparametric Identification and Estimation
	Large-N, Large-T Nonparametric Identification
	Nonparametric Estimation

	Semiparametric Estimation
	A Generic M-Estimation Framework
	Semiparametric NGFE Estimators
	Computation

	Asymptotic Properties of Semiparametric NGFE Estimators
	Binary Choice Model With Grouped Fixed Effects
	Consistency
	Asymptotic Distribution
	Average Partial Effects (APEs)

	Monte Carlo Simulations
	Static Logit Model
	Dynamic Logit Model

	Empirical Application: Revisiting the Inverted-U Relationship Between Innovation and Competition
	Conclusion
	Proof of the Results
	Proof of Theorem 1
	Sufficient Condition for Assumption 2(a)
	Proof of Theorem 2
	Proof of Theorem 3
	Step 1: A Useful Asymptotic Equivalence
	Step 2: Asympotic Properties of the Oracle MLE


	Extensions
	Cluster-Specific Slopes and Time-Specific Effects
	Individual-Specific Slopes, Effects, Group-Specific Link Function, Time-Varying Slope
	Grouping Time Periods
	NGFE Large Sample Theory for Poisson Count Models

	Large-N, Large-T Inference
	Binary Choice Model
	Poisson Count Model

	More Details on Monte Carlo Experiments
	Additional Tables & Figures
	Monte Carlo Simulations
	Empirical Application


