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Abstract

We study information design in games with a continuum of actions such that
the players’ payoffs are concave in their own actions. A designer chooses an in-
formation structure—a joint distribution of a state and a private signal of each
player—and evaluates it according to the designer’s expected payoff under the
equilibrium play in the induced Bayesian game. We show an information structure
is designer optimal whenever it induces the equilibrium play that can be imple-
mented by an incentive contract in an auxiliary principal-agent problem with a
single agent who observes the state and controls all actions.

We use this result to characterize optimal information structures in a variety
of settings, including price competition, first-order Bayesian persuasion, and ven-
ture capital fundraising. If the state is normally distributed and the payoffs are
quadratic, then in many cases Gaussian information structures are optimal. Fully
informing a subset of players can also be optimal and robustly so, for all state
distributions.
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1 Introduction

Information flows are vital for the economy and are increasingly controlled by technolog-
ical giants who decide how to display products to consumers, what prices to recommend
to sellers, how to compose news feeds, what consumer characteristics to reveal to bid-
ding advertisers, and so on. These choices guide and structure strategic interactions at
an unprecedented scale. To understand these choices, one needs to understand optimal
information control, which was recently formalized in the field of Bayesian persuasion or
information design (Bergemann and Morris (2019), Kamenica (2019)). Existing method-
ology enables the designer’s problem to be posed and to be solved in important special
cases, such as those with a binary state, binary actions, a single player, or for special
classes of information structures. However, to date, there exist no solutions for large-
scale multiplayer games, with a continuum of states and actions and nonlinear payoffs.
In this paper, we develop a universal solution method to find unconstrained-optimal
information structures in such large-scale games.

Specifically, we introduce and study information design in concave games of incom-
plete information, i.e., games in which each player’s action can take values in a convex
set and the payoff of each player is strictly concave in his action, for any state and actions
of other players. The information designer takes the players’ payoffs and a prior state
distribution as given but can design an arbitrary information structure that specifies the
joint distribution of the state and private signals of the players. The designer anticipates
equilibrium play. In concave games, the best response of each player to his signal can be
found by means of a first-order optimality condition, and the joint equilibrium behavior
is determined by a system of such conditions. The induced distribution of state and
actions is assessed by the designer according to her expected payoffs. The goal is to find
an information structure that is optimal for the designer.

In a problem of this scale, a direct search for an optimal information structure is
intractable because of the sheer number of optimization parameters and equilibrium
constraints. Instead, we develop a solution method to check and certify the optimality
of candidate information structures. To do so, we observe a close connection between
an information-design problem and an optimal transport problem, and construct a dual
problem applying duality results in the optimal transport theory. In the dual problem,
a principal faces a single agent who fully controls all actions and perfectly observes the
state. The principal chooses an incentive contract that directly affects the agent’s payoff:
the payoff is a weighted sum of the designer’s payoff and the marginal payoffs of the
players in the information-design problem; the weights can depend only on individual
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actions and are specified by the contract. The principal anticipates the agent’s best
response and chooses the contract to minimize the expected agent’s payoff; hence, we
can interpret the dual problem as adversarial contracting.

The dual problem is important because its optimal value places an upper bound on
the optimal value of the information-design problem and, as such, on the value of infor-
mation control (Theorem 1). It in turn enables the optimality of any given information
structure to be certified: if a given state-action distribution can be implemented by some
information structure in the information-design problem and by some contract in the
adversarial-contracting problem, then these information structure and contract solve the
respective problems (Proposition 1). Moreover, the adversarial-contracting problem can
suggest the shape of optimal information provision. We discuss the general properties of
certifiably optimal information structures in Section 3.4 and the scope of the certification
method in Section 3.5.

The certification solution method can be applied to any concave game. However, its
application is particularly simple in games with quadratic payoffs because in such games
the players’ marginal payoffs are linear. Consequently, we show that in such games an
optimal information structure can often be certified by linear contracts.

First, in Section 4, we use this method to solve general information-design problems
in which the state is distributed according to a multivariate normal distribution and
the designer’s and players’ payoffs are quadratic in actions and the state. We provide
conditions under which an optimal information structure informs each player about a
linear combination of state components and explicitly derive its optimal coefficients
(Theorem 2). Under these conditions, the optimal information structure is Gaussian,
i.e., the private signals, as well as the induced actions, are jointly normally distributed.

In Section 4.1, we apply Theorem 2 to characterize an optimal information structure
in a differentiated Bertrand duopoly with linear demand curves and uncertain demand
shocks. We show that information structures that maximize a weighted average of the
consumer and producer surplus induce normally distributed prices that are linear in
demand shocks and correlated between firms. If the weight given to consumer surplus
is low, then the optimal information structure induces coordinated pricing; if it is high,
the pricing is anticoordinated. The shift between these two modes is discontinuous.

Second, in Section 4.2 we study a first-order persuasion setting in which each player
aims to make the best prediction of a common one-dimensional state and the designer
aims to polarize players’ predictions. We show that there co-exist two qualitatively
different classes of optimal information structures. In the first class, the designer fully
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informs a fraction of players and leaves all other players uninformed. In the second
class, the designer chooses a symmetric Gaussian information structure with noises finely
tuned across players. Both information structures induce the same aggregate prediction,
deterministic in the state, but differ in their egalitarian properties.

Third, in Section 4.3 we apply our solution method to an investment game in which
each player decides how much to invest in a project of uncertain quality. The average
investment profitability increases in the project quality but decreases in total invest-
ment. We characterize information structures that maximize investment profits. Once
again, two different classes of solutions co-exist. One solution is to fully inform a single
player while leaving all other players uninformed. This simple information structure
is optimal irrespectively of the number of players, prior state distribution, and other
payoff parameters. Another solution, which exists if the state is normally distributed,
is a symmetric and Gaussian information structure. Relative to no information or full
information, the optimal information control avoids dissipation of investment rents as
the number of players increases.

In Section 4.4, we discuss several features of optimal information structures that
we uncovered throughout our analysis: the multiplicity of solutions, the presence of
extraneous noise, the role of state dimensionality, and the limits at large economies.
Section 5 concludes.

Related Literature The literature on Bayesian persuasion or information design cov-
ers the analysis of information control in decision problems (Rayo and Segal (2010), Ka-
menica and Gentzkow (2011)) and multiplayer games (Bergemann and Morris (2016),
Taneva (2019)) and constitutes a vibrant field of research.

Our work is based on the duality methodology. This methodology was applied in the
past to solve information-design problems but primarily those with a single receiver, be
it a single player or a team.1 Dworczak and Martini (2019) solve a class of problems in
which the receiver cares only about the first moment of a state. Dworczak and Kolotilin
(2019) extend this analysis to higher moments and beyond.2 Malamud and Schrimpf
(2021) and Cieslak, Malamud, and Schrimpf (2021) establish some general properties
of optimal information structures building on optimal-transportation duality. Kolotilin

1The duality methodology is frequently used to solve optimization problems in many different
fields. In economics, it has been applied to consumer theory (Krishna and Sonnenschein (1990)),
matching problems (Galichon (2018)), multidimensional mechanism design (Cai et al. (2019)), and
robust mechanism design (Carroll (2017), Du (2018), Brooks and Du (2020)), among others.

2These authors pose the information-design problem in the space of belief distributions rather than
information structures; as a result, their dual problems are qualitatively different from ours.
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(2017) studies the persuasion of a receiver with uncertain preferences; his formalism is
closest to ours, and his problem may be viewed as an instance of our setting with a
single player and a one-dimensional state. Many of these works spend much effort on
establishing strong duality, whereas we stress that weak duality is sufficient to apply
our solution method. None of these works study games, formulate the dual problem as
adversarial contracting, or establish the optimality of Gaussian information structures.

We are not familiar with any previous or concurrent work that characterizes an
unconstrained-optimal information structure in a fixed game with many players and a
continuum of states and actions. For example, Galperti and Perego (2018) and Galperti,
Levkun, and Perego (2021) apply duality methodology to study information design in
games with general payoffs but with finitely many actions. As such, their incentive con-
straints feature utility comparisons of all possible deviations, as inequalities. Without
any structure on payoffs, the problem is unwieldy and the authors focus on the analysis
and interpretation of optimal dual variables rather than on the search for optimal infor-
mation structures. In contrast, we study continuous games and formulate the incentive
constraints as local first-order conditions, as equalities. This is the key step toward
tractability and translates into qualitatively different problems, primal or dual.

The strand of economic literature that perhaps comes closest to the understanding of
optimal information structures in large-scale games is one that studies optimal parame-
ters of symmetric Gaussian information structures in symmetric games with a normally
distributed state (Angeletos and Pavan (2007), Angeletos and Pavan (2009), Bergemann
and Morris (2013), Bergemann, Heumann, and Morris (2015), Ui (2020), Bergemann,
Heumann, and Morris (2021)). In general, an optimal information structure does not
have to be symmetric or Gaussian, even if the game is symmetric and the state is nor-
mally distributed. However, our results in Section 4 suggest that symmetric Gaussian
information structures may indeed be optimal in some of those settings and may be
possibly certifiable by our solution method.3

3As such, our results conform with the findings of Tamura (2018) who showed the optimality
of Gaussian information structures in a setting with a normally-distributed state, a single receiver,
and quadratic payoffs, building directly on statistical properties of covariance matrices of posterior
expectations. However, his analysis is not directly extendable to multiplayer games: the relevant
statistical properties are not clear and, more importantly, the player’s state expectation is generally not
a sufficient statistic for his best response.

5



2 Model

Payoffs There are N players indexed by i, 1 ≤ N <∞, and an information designer.
Each player is to take an action ai ∈ Ai = R.4 We denote by A the set of action profiles
A = ×iAi and write (ai, a−i) for an action profile when focusing on its i-th component.

A state ω is distributed over a possibly infinite set Ω ⊆ RK , K ≥ 1, according to a
prior distribution µ0 ∈ ∆(Ω). An action profile a = (a1, . . . , aN) ∈ A together with the
state determine the payoffs of player i according to the payoff function

ui : A×Ω → R. (1)

The primitives ((Ai, ui)Ni=1, µ0) constitute a basic game. The designer’s payoff given
action profile a at state ω is described by the payoff function

v : A×Ω → R. (2)

Information The players and the designer start with a common prior belief about the
state ω that coincides with the prior distribution µ0. The designer can provide additional
information to players by choosing an information structure I = (S, π) that consists of
a signal set S = ×iSi, which is a Polish space, and a likelihood function π ∈ ∆(Ω × S)
that has µ0 as its state marginal distribution. This information structure prescribes the
sets of private signals the players can observe and, through the likelihood function, their
informational content. The information structure governs information about the state
and coordinates the players’ actions.

The timing is as follows. First, the designer chooses an information structure I .
Second, the state ω and the signal profile s = (s1, . . . , sN) are realized according to the
chosen information structure. Finally, each player privately observes his corresponding
signal si and chooses an action ai.

The basic game together with the information structure chosen by the designer deter-
mine a Bayesian game of incomplete information. In that game, each player’s behavior
is described by a strategy that maps any received signal to a possibly random action,
σi : Si → ∆(Ai), and we consider as a solution concept a Bayes Nash equilibrium that
prescribes the players to form their beliefs via Bayes’ rule and to act to maximize their
expected payoffs.

4Our methodology can easily be extended to the case of multidimensional actions at the expense of
additional notation. The methodology is extended to the case of bounded actions in Appendix B.4.
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Definition 1. (Bayes Nash Equilibrium) For a given information structure I, a strategy
profile σ = (σ1, . . . , σN) constitutes a Bayes Nash equilibrium if

EI,σi,σ−i
[ui(ai, a−i, ω)] ≥ EI,σ′i,σ−i

[ui(a′i, a−i, ω)] (3)

for all i and σ′i : Si → ∆(Ai), where EI,σi,σ−i
[·] denotes a mathematical expectation given

information structure I and strategy profile (σi, σ−i).

An information-design problem consists of choosing an information structure that
maximizes the expected payoff of the designer without placing any additional restric-
tions on the sets of signals or the likelihood function. Formally, each strategy profile de-
termines a conditional distribution over the action profiles in each state α : Ω → ∆(A),
which we call an allocation rule. Each allocation rule together with the prior state
distribution µ0 and the payoff function (2) determines the designer’s expected payoff.
Therefore, the value of any information structure can be determined as the maximal
designer’s expected payoff that can arise in equilibrium of the induced Bayesian game.5

The solution to the information-design problem is an information structure such that
there does not exist an information structure with a strictly higher value.

In what follows, we analyze a specific class of basic games in which each player’s
payoff is everywhere concave in his own action:

Assumption 1. (Concave Payoffs) For all i = 1, . . . , N , ω ∈ Ω, and a−i ∈ A−i,
ui(ai, a−i, ω) is continuously differentiable in ai, strictly concave in ai, and obtains its
maximum at some finite value.

Assumption 1 resembles the assumption imposed in the seminal work on concave
games of complete information by Rosen (1965) but is weaker in that we do not require
differentiability or continuity of the player’s payoff with respect to the opponents’ actions.
Assumption 1 is standard in applied economic models with fixed information structures
because it simplifies the characterization of equilibrium behavior: the best response of
each player at any belief over the state and actions of other players can be found via
a first-order condition, and an equilibrium can be characterized by a system of such
conditions, one for each player’s signal.6 We show that the same assumption facilitates
the analysis of the information-design problem in which the information structure is
the object of design, for arbitrary designer’s payoffs. We call a basic game in which

5If a Bayesian game allows for multiple equilibria, the designer can choose the one she prefers. If
no equilibrium exists, the value is undefined.

6Our analysis can be applied in any game in which this property holds.
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Assumption 1 is satisfied a concave game. We call an information-design problem in a
concave game a concave information-design problem.

3 General Analysis

3.1 Equilibrium Conditions. Primal Problem.

We begin by simplifying the equilibrium conditions (3) utilizing the special payoff struc-
ture of concave games. Consider the choice of player i. In equilibrium, for any admissible
belief over the state and opponents’ actions ν ∈ ∆(A−i × Ω), the player must take a
best-response action a∗i (ν) that maximizes his expected payoff Eν [ui(ai, a−i, ω)]. By
Assumption 1, this payoff is continuously differentiable and strictly concave in ai since
it is a convex combination of continuously differentiable and strictly concave functions.
Thus, a∗i (ν) is a unique solution to a first-order condition. Denote the partial derivative
of the player’s payoff function by

u̇i(a, ω) , ∂ui(a, ω)
∂ai

. (4)

Assumption 1 implies that u̇i(a, ω) exists, is continuous, and strictly decreases in ai

everywhere. By Leibniz integral rule, the first-order condition that identifies the best
response a∗i (ν) can be written as

∂Eν [ui(a∗i , a−i, ω)]
∂ai

= Eν
[
∂ui(a∗i , a−i, ω)

∂ai

]
= Eν [u̇i(a∗i , a−i, ω)] = 0. (5)

To further simplify the information-design problem, we appeal to the revelation prin-
ciple (Myerson (1983), Bergemann and Morris (2016)) and focus, without loss of gen-
erality, on direct information structures that inform each player about a recommended
action S = A and induce posterior beliefs such that all players are obedient, i.e., are
willing to follow the recommendations. Each direct information structure corresponds
to a measure π ∈ ∆(A×Ω) that has µ0 as its state marginal.
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These two simplifications enable us to formulate an information-design problem as:

V P , sup
π∈∆(A×Ω)

∫
A×Ω

v(a, ω)dπ (6)

s.t.
∫
A′i×A−i×Ω

u̇i(a, ω)dπ = 0 ∀ i = 1, . . . , N,measurableA′i ⊆ Ai, (7)∫
A×Ω′

dπ =
∫
Ω′

dµ0 ∀measurableΩ′ ⊆ Ω. (8)

Constraints (7) capture players’ obedience and must hold at all measurable subsets
A′i ⊆ Ai. They effectively require that for each player i, the linear projection of π
on Ai weighted by the marginal utilities is equal to zero measure. This is a proper
formulation of first-order conditions (5) in light of a possible continuum of recommended
actions. Constraints (8) capture Bayes’ plausibility and, likewise, require that the linear
projection of π on Ω equals the prior distribution µ0.

Problem (6) is linear in π. In the spirit of linear programming, we view it as a
primal problem and call any π ∈ ∆(A × Ω) a primal measure. If a primal measure
satisfies the constraints of the primal problem, then we call that measure implementable
by information and call the corresponding value of the objective, V P , a feasible primal
value.

3.2 Dual Problem. Adversarial Contracting.

In this section, we develop a dual problem, applying duality from optimal transport
theory (see, for example, Villani (2003)). The significance of this problem, and dual
problems in general, comes from its ability to provide an upper bound on the information
designer’s payoffs and, ultimately, certify a solution. The dual problem to (6) is as
follows:

V D , inf
λ∈×iL(Ai),γ∈L(Ω)

∫
Ω
γ(ω)dµ0 (9)

s.t.
N∑
i=1
λi(ai)u̇i(a, ω) + γ(ω) ≥ v(a, ω) ∀ a ∈ A, ω ∈ Ω,

where L(X) denotes the space of measurable real-valued functions onX.7 The minimiza-
tion arguments, the dual variables (λ, γ), represent the Lagrange multipliers associated
with the primal incentive constraints (7) and the feasibility constraints (8), respectively.

7Throughout the paper, we adopt the convention that the value of an integral is set to +∞ whenever
the underlying function is not integrable.
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Thus, they have a clear economic interpretation: λi(ai) measures the marginal benefit
for the information designer from pushing action ai upward, whereas γ(ω) measures the
marginal benefit from increasing the prior probability of state ω.

The dual problem (9) can be simplified by reducing the number of optimization
parameters and admits an intuitive economic interpretation which, to the best of our
knowledge, is novel in the literature on information design. To this end, observe that the
objective in (9) is additive separable in γ(ω) and that the constraints at different states
ω are linked only through variables λ. Hence, for any λ and ω, an optimal γ(ω) must
be minimized across the values above the lower bounds imposed by the dual constraints
and hence must be equal to:

γ∗(λ, ω) = sup
a∈A

uλ(a, ω),

where uλ is a dual payoff defined as

uλ(a, ω) , v(a, ω)−
N∑
i=1

λi(ai)u̇i(a, ω). (10)

As a result, the dual problem (9) can be restated as

V D = inf
λ∈×iL(Ai)

∫
Ω

sup
a∈A

uλ(a, ω)dµ0 = inf
λ∈×iL(Ai)

Eµ0 [sup
a∈A

uλ(a, ω)], (11)

Problem (11) can be interpreted as adversarial contracting between a principal and a
single agent.8 The agent perfectly observes the state and alone controls the whole action
profile. To influence the agent’s behavior, the principal chooses an incentive contract
λ that consists of N functions λi(ai) and modifies the agent’s payoff according to (10),
i.e., the ith component of the contract links the agent’s utility to u̇i(a, ω). The timing
of the adversarial contracting is as follows. First, the designer chooses a contract λ.
Second, the state ω is realized and is observed by the agent. Finally, the agent chooses
an action profile a ∈ A. If the best responses exist at all states and induce the joint
action-state measure π(a, ω), then we say that λ implements π by incentives so that π
is implementable by incentives. Whenever the best response does not exist, the interim
payoff is assessed as a supremum. The contracting is adversarial in that the designer aims
to minimize the agent’s expected payoff; equivalently, the game between the designer
and the agent is zero sum. 9

8The “agent” is not to be confused with the “player” of the information-design problem.
9Note that in adversarial contracting, a benchmark feasible contract is a null contract λ1(a1) ≡
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3.3 Weak Duality. Optimality Certification.

In this section, we show that the optimal values of the primal and dual problems are
tightly connected. We demonstrate how this relationship can be used to solve concave
information-design problems.

Theorem 1. (Weak Duality) V P ≤ V D.

Proof. Take any dual variables (λ, γ) that satisfy the constraints of dual problem (9).
Take any measure π that satisfies the constraints of primal problem (6). Integrating
both sides of the dual constraints over a ∈ A and ω ∈ Ω against measure π yields:

∫
A×Ω

v(a, ω)dπ ≤
∫
A×Ω

N∑
i=1

λi(ai)u̇i(a, ω)dπ +
∫
A×Ω

γ(ω)dπ =
∫
Ω
γ(ω)dµ0, (12)

where the equality follows because π satisfies the primal constraints. The left-hand side
of (12) is the value of the primal problem given measure π. At the same time, the
right-hand side of (12) is the value of the dual problem given dual variables (λ, γ). As
the inequality (12) holds for any allowed values of primal measure and dual variables, it
holds also at the respective maximization and minimization limits.

Theorem 1 establishes that the adversarial-contracting problem provides an upper
bound on the value of information control. Importantly, this result underlies the certi-
fication approach to solve concave information-design problems.

Proposition 1. (Optimality Certification) If measure π ∈ ∆(A×Ω) is implementable
by information and by incentives, then π is optimal in the information-design problem.

Proof. Take any primal measure π implementable by information, i.e., that satisfies the
constraints of primal problem (6). If it is implementable by incentives, then there exist
dual variables λ that implement this measure in dual adversarial-contracting problem

· · · ≡ λN (aN ) ≡ 0. Faced with this contract, the agent would act to maximize v(a, ω) in each state,
thus implementing the first-best allocation rule of the information designer. The goal of the adversarial
principal can then be viewed as adjusting the null contract to minimize the expected payoff starting
from this benchmark level.
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(11), and

V D = inf
λ̂∈×iB(Ai)

Eµ0

[
sup
a∈A

uλ̂(a, ω)
]

(13)

≤ Eµ0,π

[
uλ(a, ω)

]
(14)

=
∫
A×Ω

v(a, ω)dπ −
∫
A×Ω

N∑
i=1

λi(ai)u̇i(a, ω)dπ (15)

=
∫
A×Ω

v(a, ω)dπ ≤ V P , (16)

where the first inequality follows from the implementability of π in the dual problem
and the last three steps follow from the feasibility of π in the primal problem.

Furthermore, by Theorem 1, V D ≥ V P . Combining the two inequalities, we obtain

V D =
∫
A×Ω

v(a, ω)dπ = V P , (17)

which proves the optimality of measure π.

Proposition 1 offers a solution method for concave information-design problems. In
the first step, one conjectures an optimal measure π∗. In the second step, one verifies
that it can be implemented with information, which is equivalent to its feasibility in
the primal problem, and that it can be implemented with incentives, e.g., by explicitly
constructing the dual contract λ that implements it. In the last step, one sets an
optimal information structure to privately recommend actions to players according to
π∗: I∗ = (A, π∗). The implementability of π∗ with information implies that the players
would follow the recommendations. The implementability of π∗ with incentives confirms,
by Proposition 1, that I∗ is optimal among all information structures. In this case, we
say that λ is a (dual) certificate of π∗, that λ certifies the optimality of π∗, and that π∗

is a certifiably optimal or, simply, certifiable information structure.

3.4 On Certifiable Information Structures

Before proceeding with the application of the certification solution method in specific
economic settings, we highlight one general property that holds for all certifiable infor-
mation structures. This property is based on the observation that an allocation rule
induced by a certifiable information structure must be undertaken at will by an agent in
possession of full information in the dual problem. It has two consequences. First, the
prior state distribution is irrelevant for the implementability of an allocation rule with
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incentives since the prescribed action profiles must be optimal state-by-state. Second,
if a certifiable allocation rule randomizes over several action profiles at some state, the
dual agent must be indifferent between these profiles and hence could just as well ran-
domize over these profiles with different probabilities. That is, only the support of an
allocation rule is relevant for the implementability with incentives.

Proposition 2. (Robustness to Marginal Distributions) Consider two concave
information-design problems that differ only in their prior state distributions, if at all.
Let information structure I∗1 be certifiably optimal in the first problem and implement
an allocation rule α∗1. If information structure I2 implements in the second problem an
allocation rule α2 such that suppα2(ω) ⊆ suppα∗1(ω) for all ω ∈ Ω, then I2 is certifiably
optimal in the second problem.

Proposition 2 highlights the robustness of certifiable information structures to their
marginal distributions: over states and over actions. Either of these distributions may
change without sacrificing optimality as long as the supports of the implemented allo-
cation rules remain the same.10

We highlight that Proposition 2 is specific to concave games and does not generally
hold in games with finitely many actions. For such problems, a given allocation rule is
typically implementable for many prior distributions, yet an optimal information struc-
ture continuously changes with the prior. For concreteness, consider a leading example
of Kamenica and Gentzkow (2011) in which a designer persuades a single receiver. The
state space and the action space are binary: A = {a0, a1}, Ω = {ω0, ω1}. The payoffs are
v(a, ω) = 1 if a = a1 and zero otherwise; u(a, ω) = 1 if a = a0, ω = ω0 or a = a1, ω = ω1

and zero otherwise. As long as µ0(ω1) ∈ (0, 1/2), an optimal information structure
sends two signals s0, s1 that induce posterior beliefs that assign probabilities 0 and 1/2
to state ω1, respectively. The allocation rule induced by the optimal information struc-
ture changes with the prior: the higher the prior probability of state ω1 is, the less likely
signal s1 is sent and action a1 is taken in that state. However, the same allocation rule is
implementable by information for a variety of priors. As a result, there is no robustness
to the prior distribution in this example.

Proposition 2 enables us to assess the optimality of full transparency. Namely, say
that an information structure is fully informative about the state if each player deduces
the state with certainty, i.e., each private signal induces an extreme posterior belief

10This property anticipates the multiplicity of optimal information structures that we observe in
applications in Section 4 and discuss in detail in Section 4.4.

13



about the state. Such an information structure can still allow for uncertainty about the
actions of other players. We have the following.

Corollary 1. (Full State Information) An information structure that is fully informative
about the state is certifiably optimal if and only if it is certifiably optimal under all prior
state distributions.

This corollary follows from Proposition 2. If an allocation rule is implemented by an
information structure that is fully informative about the state under some prior state
distribution, then the same rule is implemented by the same information structure under
any other prior state distribution because all prior uncertainty is resolved in either case.
Hence, if such information is certifiably optimal under one prior distribution, then it
implements the same allocation rule and is certifiably optimal under any other prior
distribution.

Alternatively, we can use Proposition 2 to assess the support of induced action profiles
under certifiable information structures. The larger the support is, the easier it is to
construct another information structure that implements an allocation rule within that
support. In the extreme case, if the action support covers the whole action space, then
the support condition of Proposition 2 has no bite, and any information structure can
be certified to be optimal.

Corollary 2. (Full-Support Noise) If an information structure I∗ is certifiably opti-
mal and induces an allocation rule α∗ with suppα∗(ω) = A for all ω ∈ Ω, then any
information structure is certifiably optimal.

Corollary 2 presents a case against using independent noises that induce full-support
individual actions in optimal information structures. These information structures can
never be optimal in concave problems with finitely many players, except in trivial cases in
which the designer’s expected payoff is invariant to the information provided.11 However,
such independent noises may optimally appear in the limit information structure as the
number of players grows to infinity, as we show in Section 4.4.

3.5 Scope of the Certification Method

Can any optimal information structure be certified? Observe that by Theorem 1, the
difference G , V D − V P ≥ 0 between the optimal values of primal and dual problems

11This finding resonates with the analysis of Taneva (2019), who studied a parameterized setting
with two players, a binary state, binary actions, and a symmetric designer’s payoff function and showed
that sending conditionally independent signals is never strictly optimal in that setting.
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is nonnegative and constitutes a duality gap. The solution to the information-design
problem can be certified if and only if (i) the duality gap is equal to zero, V D = V P ,
and (ii) solutions to both primal and dual problems exist. Thus, either all optimal
information structures can be certified or none of them can.

While we expect properties (i) and (ii) to hold quite generally, neither is trivial.
The former property is referred to as the case of “strong duality” in the literature on
optimization. Strong duality always holds in linear programs with a finite number of
arguments and constraints. However, for the first-order conditions to determine the
best response, the information-design problem necessarily has to feature a continuum of
actions and incentive constraints, and establishing strong duality even in well-behaved
infinite problems is challenging (e.g., Daskalakis et al. (2017), Dworczak and Martini
(2019), Dizdar and Kováč (2020)). The latter property requires the solutions to both
problems to exist, which might fail due to a lack of compactness of the underlying
optimization spaces.12

It is certainly of theoretical interest to understand under which conditions the certi-
fication method is guaranteed to work, and much study in the literature is devoted to
finding such conditions in various problems. For example, these conditions could help to
establish the properties of all optimal information structures without having to solve the
information-design problem itself. Thus, in the Appendix, we provide a set of sufficient
conditions by building on the Fenchel-Rockafellar duality of optimal transportation the-
ory.13 However, note that from a perspective of actually solving an information-design
problem, knowing that any optimal information structure can be certified does not help
in finding an optimal structure or a certifying contract. Conversely, any certifying con-
tract by its very existence proves that the certification method applies, i.e., the duality
gap is zero and both primal and dual solutions exist. Therefore, for any concave problem,
it may be worth constructing the dual problem and searching for certifiable information
structures. If successful, the method leads to the solution. This is exactly what we do
in the next section.

12To establish properties (i) and (ii) in an infinite problem, one typically has to impose carefully
chosen topologies on the relevant spaces, whereas the weak duality result is based solely on the algebraic
structure.

13Concurrently, Cieslak et al. (2021) and Malamud and Schrimpf (2021) use transportation theory
to establish strong duality in a class of settings with a single receiver.
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4 Application: Normal-Quadratic Settings

In this section, we apply our theoretical machinery to study a broad subclass of concave
information-design problems in which all payoffs are quadratic functions of actions and
states and the state is normally distributed.

In particular, addition to the basic structure of the previous section, we impose
two assumptions on the environment. First, we assume that the state components are
jointly normally distributed so Ω = RK and ω ∼ N(0, Σ), where all means are set to
zero without loss of generality and Σ is the arbitrary covariance matrix. Second, we
assume that there exist vectors b̂, b ∈ RN , matrices B̂, B ∈ RN×K and Ĉ ∈ RN×N , and
a positive definite matrix C ∈ RN×N such that the designer’s and player-i’s payoffs are,
respectively,

v(a, ω) = aT (b̂+ B̂ω)− 1
2a

T Ĉa, , (18)

ui(a, ω) = aT (b+Bω)− 1
2a

TCa. (19)

Elements b̂i, Bi• capture the base benefit of player i’s action, elements B̂ij, Bij capture
the interaction between player i’s action and the jth state component, and elements
Ĉij, Cii capture the interaction between the actions of players i and j, for the designer
and the players, respectively.14 This setting allows for asymmetries across players by
allowing the rows within matrices B and C to differ from each other.

To maximize her payoffs, the designer chooses an information structure I = (S, π).
One class of information structures available to the designer is the class of Gaussian in-
formation structures, under which the players’ individual signals and the state are jointly
normally distributed. This class has been extensively used in the economic literature
because of its richness and tractability. However, the focus on Gaussian information
structures excludes many other natural choices, e.g., monotone partitions of the state
space, and the question of how limiting this focus is has not been addressed.

In the following, we do not restrict the designer to use Gaussian information struc-
tures to achieve her objective. Instead, we provide conditions under which a Gaussian
information structure is optimal among all information structures. In particular, we
show the optimality of a direct Gaussian information structure that recommends ac-

14For any matrix X, the term Xi• denotes its ith row.
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tions proportionally to state components:

a∗(ω) = a0 +Rω, (20)

where a0 ∈ RN is a constant vector and R is an N × N responsiveness matrix that
determines the responsiveness of recommended actions to different state components.
Under this information structure, player i observes a recommendation ai(ω) = a0i+Ri•ω.
Thus, the player can only infer the value of a linear combination of the state components
and generically, as long as K > 1, receives only imperfect information about the state
and the actions of other players.

Theorem 2. (Optimal Information) An information structure that recommends a linear
allocation rule a(ω) = a0 +Rω is optimal among all information structures if:

(i) a0 = C−1b and (Ci•R−Bi•)ΣRT
i• = 0 for all i = 1, . . . , N , and

(ii) R = (Ĉ + 2D(x)C)−1(B̂ + D(x)B) for some x ∈ RN such that C + 2D(x)Ĉ is
positive definite, where D(x) is a diagonal matrix with D(x)ii , xi.

To prove the theorem, we use the certification method developed in the previous
section. In particular, we show that under the conditions of Theorem 2, allocation rule
(20) is implementable both by information in the primal problem and by incentives in
the dual problem.

The implementability of the allocation rule by information, i.e., the players’ obedience
in following recommendations, is captured by the system of first-order conditions, as in
any concave game. In a quadratic game, these conditions are linear in state components
and actions. These conditions must hold for all recommended actions so they must also
hold on average, which uniquely pins down the constant term a0, forming the first part
of condition (i). Next, since the state components are jointly normally distributed, the
marginal payoffs present in the first-order conditions are jointly normally distributed
with the recommended actions. Thus, the sufficient condition for obedience is that the
recommended actions and the marginal payoffs are uncorrelated, forming the second
part of condition (i).

To summarize, a linear allocation rule (20) is implementable by information whenever
its coefficients a0 and R satisfy the condition (i) of Theorem 2. However, the fact that
a given allocation rule is implementable does not mean that it is optimal. After all,
there are many implementable linear allocation rules and, potentially more importantly,
there are many implementable nonlinear allocation rules, which may be preferred by the
designer.
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This is where the second condition of Theorem 2 plays a role. Under this condition,
the linear allocation rule can be implemented by incentives in the dual problem. This
can be achieved using a contract such that λi(ai) is linear in ai with the proportionality
coefficient being equal to xi. Under the linear contract, the dual payoff is quadratic in
the action profile. The positive-definiteness requirement of condition (ii) ensures that
this payoff is concave and thus the best-response allocation rule exists and unique. The
first part of condition (ii) guarantees that this allocation rule responds to the state
according to the responsiveness matrix R. The constant terms of the linear contract
can then always be set such that the constant terms of the best-response allocation rule
match a0. The result follows.

Theorem 2 provides a two-step procedure for finding optimal information structures
in normal-quadratic environments. In the first step, one uses condition (i) to identify
the parameters a0, R of the candidate information structure. In the second step, one
searches for x ∈ RN that satisfies condition (ii); if such x exists, then it dual-certifies
the optimality of the candidate information structure. In the next section, we apply this
procedure to characterize optimal information regulation in a market with differentiated
product competition.15

4.1 Differentiated Bertrand Competition

We apply our solution method in a setting of differentiated product competition, in which
a designer controls the demand information available to firms. One can think of this
designer as a platform, such as Amazon or AliExpress, that organizes the marketplace
in which the firms compete. The platform has more detailed knowledge about demand
conditions than firms do, for instance, because it has access to a larger and more recent
sales data set or higher processing capabilities. The platform can communicate this
information privately to each firm, for instance, by giving it access to personalized
data analysis or by direct price recommendations. By programming its algorithms, the
platform can basically design and commit to any information structure. We characterize
the information structure such a platform would optimally design and the resulting
allocation distortions.

Formally, the market consists of two firms and a continuum of consumers. Each
firm sells a single product and competes in price with its opponent, so action ai is the

15In Sections 4.2 and 4.3, we present alternative settings in which the positive-definiteness part
of condition (ii) is not satisfied and in which, as a result, the optimal allocation rule can feature an
extraneous noise.
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price set by firm i. Demand is ex ante symmetric across firms and is generated by
a continuum of consumers that differ in their tastes. Each consumer has a type θ =
(θ1, θ2) ∈ R2 and decides how much of the firms’ products to consume, q = (q1, q2). The
type components are independently and identically distributed according to a normal
distribution with mean θ̄ and variance σ2. The ex post payoff of a type-θ consumer who
consumes quantities q at prices a is:

w(q, a, θ) , w0 + 1
2(θ − q)TW−1(θ − q)− aT q, (21)

where w0 is a constant shift parameter henceforth normalized to zero and W is an
N × N negative semidefinite matrix with W11 = W22. Thus, the consumer’s type θ
determines her consumption bliss points, optimal at zero prices, whereas W captures
the substitution effects across products.

For any price vector a ∈ A, the quantity of good i demanded by a consumer of type
θ is equal to:16

qi(a, θ) = θi + ηai + ξa−i, (22)

where η , Wii < 0 and ξ , W−ii; thus, equivalently, q(a, θ) = θ + Wa. Equation
(22) reveals that the chosen type structure microfounds linear demand; the consumer’s
type determines the intercept of the demand curve for each product. We refer to η as
own-price sensitivity and to ξ as cross-price sensitivity.

The firms have quadratic costs of production such that their profits are:

ui(a, θ) = aiqi(a, θ)− cqi(a, θ)2. (23)

The resulting ex post valuations for consumer surplus and total profits are:

CS(a, θ) = −aT θ − 1
2a

TWa, (24)

Π(a, θ) , u1 + u2 = −cθT θ + aT (1− 2cW )θ − 1
2a

T (2W + 2cW 2)a. (25)

The designer’s payoff is a convex combination of consumer surplus and total profits with
δ ∈ [0, 1] measuring the weight placed on consumer surplus:

v(a, θ) = δ × CS(a, θ) + (1− δ)×Π(a, θ). (26)
16As standard, this specification allows the prices and quantities to be negative.
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Given (26), the optimal designer’s choices in the extreme cases δ = 1 and δ = 0 cor-
respond to consumer-optimal and producer-optimal information structures, respectively,
whereas the choice in the case δ = 1/2 corresponds to the socially efficient information
structure. As the welfare weight δ spans the interval [0, 1], the corresponding solutions
span the Pareto frontier in the space of consumer surplus and total profits.

Clearly, this setting is normal-quadratic because (i) firms’ payoffs are quadratic and
concave, (ii) designer’s payoffs are quadratic, and (iii) consumer types are normally
distributed.17 Consequently, if the conditions of Theorem 2 are satisfied, then an optimal
information structure recommends a linear allocation rule and can be characterized in
closed form. At the end of this section, we show that this optimal characterization
indeed works, but first, we discuss several natural benchmarks to give a sense of the
trade-offs faced by the designer.

Direct Price Control We begin the analysis by studying a hypothetical scenario
in which the designer can directly control the prices set by the firms. This scenario
constitutes a first-best benchmark; it provides an upper bound on the designer’s payoff
and illustrates the designer’s preferred pricing.

This problem admits a solution only if δ is not excessively high, i.e., only if the seller
does not overly value the consumer’s welfare. Namely, there is a threshold value δFB:

δFB = 2 + 2c(−η − |ξ|)
3 + 2c(−η − |ξ|) , (27)

such that if δ > δFB, then the designer can arbitrarily increase her payoff by setting
arbitrarily large negative prices, because the monetary transfer to consumers outweighs
any allocation inefficiency. In contrast, if δ < δFB, then the designer’s problem is well-
behaved: it is concave and admits a unique solution that can be found by first-order
conditions to (26). The solution is proportional to the type and can be written in matrix
form as

aFB = RFBθ, (28)

where the entries of matrix RFB are nonlinear functions of the problem’s parameters and
their exact formulation is relegated to the Appendix. We use this solution to illustrate
the first-best benchmark later in the section.

17The exact mapping between the settings requires state normalization ωi , θi − θ̄ and is presented
in detail in the Appendix.
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In our setting, the designer does not control prices directly but rather indirectly
through demand information she supplies to firms. Before deriving the generally op-
timal policy, it is instructive to analyze two extreme information benchmarks that are
particularly easy to implement in practice: not informative and completely informative
information structures.

No Information If the firms obtain no demand information, S1 = S2 = {s0}, then
their beliefs stay at the prior, and the equilibrium prices satisfy the first-order conditions
derived from (24). In equilibrium, each firm sets a price:

aNIi = 1− 2cη
−2η(1− cη)− ξ(1− 2cη) θ̄. (29)

Lacking demand information, the firms fix their prices at a level proportional to the
expected consumer type. The equilibrium prices do not depend on finer details about
the type distribution because the demand is linear.

Full Information If the firms obtain full demand information, S1 = S2 = Θ and π is
concentrated on event s1 = s2 = θ, then the consumer type is always commonly known.
In equilibrium, each firm responds linearly to the type components perfectly anticipating
the price of its opponent:

aFIi (θ) = −2η(1− cη)(1− 2cη)
4η2(1− cη)2 − (1− 2cη)2ξ2 θi + (1− 2cη)2ξ

4η2(1− cη)2 − (1− 2cη)2ξ2 θ−i. (30)

In a sense, this behavior generalizes price-setting under no information. If θ1 = θ2 = µ,
then prices are the same as those under no information. If θ1 6= θ2, then demand is
asymmetric across firms, and prices are adjusted to reflect the competitive advantages.

Optimal Information Structure The choice of any of the extreme information struc-
tures has drawbacks. Providing no information misses the opportunity to strengthen the
link between consumer type and allocation and thus potentially limits efficiency. Provid-
ing full information may exacerbate competition and dissipate firm profits. Providing
partial information may alleviate the individual shortcomings of extreme information
structures and, as we will show, is the best option in most cases.

We find an optimal structure using the certification method developed for the normal-
quadratic setting. The sufficiency conditions of Theorem 2 stipulate the existence of
certification parameters (x1, x2) ∈ R2. Given the symmetry of the environment, it is
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natural to conjecture x1 = x2 = x. By condition (ii) of the Theorem, any such x uniquely
pins down the responsiveness matrix R(x), whose elements are quadratic functions of
x. Furthermore, condition (i) requires equation (Ci•R(x)− Bi•)ΣR(x)Ti = 0 to hold for
both firms. Due to the symmetry of the environment, this condition becomes a single
equation:

f(x) = 0, (31)

where f(x) is a degree-four polynomial whose coefficients depend on the parameters of
the problem and are explicitly defined in the Appendix. Equation (31) admits up to
four real solutions. If any of these solutions makes the matrix C + 2D((x, x))Ĉ positive
semidefinite, then by Theorem 2 the information structure that recommends the linear
allocation rule a(θ) = a0(x) +R(x)θ is optimal.

Proposition 3. (Optimal Demand Information) Polynomial f(x) certifies optimal de-
mand information: if there exists x ∈ R such that f(x) = 0 and C + 2D((x, x))Ĉ
is positive semidefinite, then an information structure that recommends allocation rule
a(θ) = a0(x) +R(x)θ is optimal.

We use Proposition 3 to derive optimal information structures, to understand how
they differ from the benchmarks presented above and to see how they depend on the
weight the designer attaches to consumer surplus. For concreteness, in what follows, we
fix the basic parameters of the problem to c = 1, θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2.

The equilibrium strategies under no information and under full information can be
immediately calculated as:

aNI(θ) = 6
5 , a

FI(θ) = 48
55θi + 18

55θ−i. (32)

The first-best benchmark can also be immediately calculated and is used in the upcoming
illustrations.

To solve for an optimal information structure for any given δ ∈ [0, 1], we construct the
polynomial f(x) and solve for its roots, which is possible to do in closed form in radicals.
We compute this solution and show that for all δ ∈ [0, 1], with the single exception of
δcr = 11/18, which we call a critical value, there exists a unique root of f(x) that makes
the matrix C + 2D((x, x))Ĉ positive definite. This root, henceforth denoted by x(δ),
forms a certifying parameter and is plotted in the Appendix as a function of δ.

Once we find the certifying parameter, we can immediately construct an optimal
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Figure 1: Price responsiveness to own demand (left) and opponent’s demand (right)
under no information, full information, and optimal information structure. Calculated

at c = 1, θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2.

information structure. This structure recommends a linear allocation rule

a∗i (θ) = ai0 + riθi + r−iθ−i. (33)

We refer to responsiveness coefficients ri, r−i as own-responsiveness and cross-
responsiveness, respectively. We plot the optimal responsiveness coefficients in Figure
1, together with their counterparts under full information and no information.

For δ < δcr, the optimally induced behavior resembles that under full information.
The own responsiveness is, in fact, exactly the same. However, the cross-responsiveness
differs, showing that providing full information is not optimal. At δ = 0, to dampen com-
petition, the designer induces larger responses to the opponent’s demand. As δ increases,
the cross-responsiveness decreases. Around δ = δcr, the optimal information structure
undertakes a discontinuous structural change. The own-responsiveness ri plummets in
absolute value, whereas the cross-responsiveness r−i changes its sign, so firms respond
oppositely to the same demand shock. As δ further increases in the region δ > δcr, both
responsiveness parameters gradually decrease in their absolute values. At δ = 1, both
parameters equal zero: a designer who wishes to maximize consumer surplus should not
reveal any demand information.

The induced equilibrium behavior translates into distinct patterns of price volatility
and price cross-correlation (Figure 2). For lower consumer weights δ < δcr, the price
volatility measured by price’s standard deviation σi = σ

√
r2
i + r2

−i is high, and the
prices are highly positively correlated, as witnessed by the high value of the Pearson
correlation coefficient ρi,−i = cov(ai,a−i)

σiσ−i
= 2rir−i

r2
i +r2

−i
. This region is marked by coordination
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Figure 2: Price volatility (left) and price correlation (right) under the optimal
information structure. Calculated at c = 1, θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2.

and high volatility of prices. In contrast, for higher consumer weights δ > δcr, the price
volatility is substantially lower and the product prices are negatively correlated. This
region is associated with anticoordination and low volatility of prices. These distinct
price patterns may be easier to observe in practice than are firms’ strategy parameters
and can serve as an indicator of the underlying information structure and interests of
the designer.

What occurs near the critical value of consumer weight δ? Why does the optimal
information structure change discontinuously? The formal explanation is as follows.
The certifying parameter x changes continuously for all δ ∈ (0, 1). However, the matrix
C + 2D((x, x))Ĉ evaluated at x = x(δcr) loses a rank and becomes noninvertible. As
a result, the optimal best response of an agent in a dual problem, proportional to the
inverse of that matrix whenever the matrix is invertible, changes discontinuously. In
other words, even though a certifying contract changes continuously, the allocation rule
that it implements exhibits a jump.

To intuitively understand the economic reasoning behind this discontinuity, it is in-
structive to compare the induced pricing under the optimal information structure to
its first-best counterpart under direct price control (Figure 3). Under direct price con-
trol, both responsiveness coefficients start high at δ = 0 and progressively decrease,
diverging to negative values as δ approaches δFB. The pricing behavior induced by
optimal information control overall follows the same responsiveness pattern. However,
information control has limits, as it needs to account for firms’ willingness to follow
recommendations. As a result, there are important caveats. For δ < δcr, only the cross-
responsiveness decreases, while the own-responsiveness remains at the full-information
level. At the critical value δ = δcr, the first-best responsiveness levels become too low
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Figure 3: Price responsiveness to own demand shock (left) and opponent’s demand
shock (right) in the first-best benchmark and under the optimal information structure.

Calculated at c = 1, θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2.

to be approached in a coordinated fashion, with both responsiveness coefficients be-
ing positive. As a result, both responsiveness coefficients discontinuously drop and the
cross-responsiveness becomes negative. For δ > δcr, the own-responsiveness begins to
gradually decrease while the cross-responsiveness increases, with both values converg-
ing to zero as δ approaches 1. Not being able to directly funnel monetary surplus to
consumers, the principal provides less and less consumer information to minimize price
targeting.

4.2 First-Order Persuasion

In this section, we apply our solution method to a game in which multiple players try to
correctly predict a common underlying state. The state is one-dimensional ω ∈ R and
distributed according to the prior distribution µ0. There are N ≥ 2 players that make
predictions, Ai = R, and the ex post payoff of each player is

ui(a, ω) = −(ai − ω)2. (34)

Each player’s payoff depends only on his action and the state; there is no strategic
interaction across the players. Information design in such games is referred to as first-
order Bayesian persuasion and studied by Arieli, Babichenko, Sandomirskiy, and Tamuz
(2021) in the case of a binary state.18

18The name is derived from the fact that in such a game, the player’s first-order belief about the
state is the sufficient statistic for a best response. It is not to be confused with the first-order approach
to information design put forward in the current manuscript.
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An alternative way of presenting this environment is to note that for any given belief
ν ∈ ∆(A−i×Ω), player i’s best response is simply the posterior expectation of the state:

a∗i (ν) = Eν [ω]. (35)

As such, the information-design problem is strongly connected with the question of what
distributions of posterior expectations can be induced by information structures.

If the designer’s objective v(a, ω) is additively separable across players’ actions, then
the first-order Bayesian persuasion reduces to a collection of single-receiver Bayesian
persuasion problems. However, if the designer’s objective features interaction across
players’ actions, then the whole action profile needs to be tracked at the same time
and the problem cannot be separated. In the following, we consider two classes of such
designer objectives: expectation polarization and co-movement.

4.2.1 Expectation Polarization

Following Arieli et al. (2021), we consider the question of inducing maximal polarization
of the players’ posterior beliefs. To this end, we set the designer’s payoff as

v(a, ω) =
∑
i,j

(ai − aj)2. (36)

Given the payoff, the designer aims to make the agents’ rational predictions as far as pos-
sible from each other. In this situation, the designer benefits from sending private signals:
any public information structure, including full information or no information, leads to
the players to have the same predictions and consequently minimizes the designer’s ob-
jective. At the same time, the designer cannot induce arbitrary action distributions
because (i) by Bayes’ plausibility, each individual prediction must be a martingale and
(ii) each individual prediction drifts toward the common true state (Doval and Smolin
(2021)). On the one hand, an optimal information structure must provide some state
information to move players’ predictions and, on the other hand, should heterogeneously
obfuscate the information to counterbalance truth drifting.

Proposition 4. (Optimal Polarizing Information) For any prior distribution µ0, if an
information structure I induces a best-response action profile such that for all ω ∈ Ω

1
N

N∑
i=1

ai(ω) = 1
2(ω + E[ω]), (37)
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then this information structure is optimal.

The proof is based on the duality certification method. We show that allocation
(37) can be implemented by incentives in the adversarial problem by linear contracts
with λi(ai) = −N(ai − E[ω]). Hence, if this allocation can be implemented by some
information structure, then that information structure is optimal.

Proposition 4 provides a sufficient condition for the optimality of a given information
structure. At the same time, the condition is placed only on the aggregate prediction
across all players. As such, it allows freedom with respect to how individual predictions
are distributed and anticipates the possible multiplicity of optimal information struc-
tures. We illustrate this multiplicity by presenting two classes of optimal information
structures.

Corollary 3. (Polarizing by Selective Informing) Let the number of players N be even.
For any prior distribution µ0, an information structure that fully reveals the state to half
of the players and provides no information to the other half is optimal.

Corollary 3 shows that in a large variety of settings, expectation polarization is
achieved by a remarkably simple information structure that informs only half of a pop-
ulation. This result extends the findings of Arieli et al. (2021) from two players and a
binary state to a general number of players and states. At the same time, this simple
policy is not symmetric and, moreover, not feasible for an odd number of players. It is
also not uniquely optimal. At least for the case of a normally distributed state, and for
any number of players, there exists an optimal information structure that is Gaussian
and symmetric.

Corollary 4. (Polarizing by Coordinated Informing) Let the state ω be normally dis-
tributed with mean ω̄ and variance σ2. For any number of players N ≥ 2, the information
structure that recommends the following actions as functions of the state is optimal:

ai(ω) = ω + ω̄

2 + εi −
1

N − 1
∑
j 6=i

εj, (38)

where εi are i.i.d. Gaussian noises with mean 0 and variance N−1
4N σ2.

Corollary 4 showcases an alternative way to polarize the posterior expectations of a
group of players—by carefully designing the correlation structure across their signals.
The optimal information structure is symmetric and provides imperfect information to
each player; the individual noises are negatively correlated and designed in a way to
ensure that the aggregate prediction follows optimality condition (37).
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4.2.2 Co-Movement and Miscoordination

In the previous section, the designer had a pure polarization objective, irrespective of
the state. In this section, we enrich her incentives by incorporating the willingness
to co-move the players’ actions with the state. Namely, assume that the prior state
expectation is zero, E[ω] = 0, so that by the martingale property, each prediction is zero
on average, E[ai] ≡ 0, and let the designer’s payoff be:

v(a, ω) =
∑N
i=1 ai
N

ω − ρ
∑N
i=1

∑
j 6=i aiaj

N2 . (39)

for ρ ≥ 0. The first element of (39) captures the designer’s willingness to co-move
the players’ average action with the state. The second element captures the designer’s
willingness to miscoordinate the individual actions of different players and is similar to
the polarizing payoff. The parameter ρ captures the intensity of the latter. These two
designer’s objectives are in conflict. To maximize the former, the designer should provide
full state information. However, doing so would make the actions perfectly correlated
and would dampen the miscoordination payoff component.

Proposition 5. (Optimal Co-Movement Information) For any prior distribution µ0: if
ρ ≤ N

2N−1 , then providing full information to all players is optimal; if ρ > N
2N−1 and an

information structure I induces a best-response action profile such that for all ω ∈ Ω

1
N

N∑
i=1

ai(ω) =
(

1
2ρ + 1

2N

)
ω, (40)

then this information structure is optimal.

As before, the proof is based on the duality certification method. We show that
allocation (40) can be implemented by incentives in the adversarial problem by linear
contracts with λi(ai) = − ρ

2N2ai. Hence, if that allocation can be implemented by some
information structure, then that information structure is optimal.

Note how Proposition 5 mirrors Proposition 4. Both results certify the optimality of
an information structure by linear dual contracts. Both results pin down only aggregate
action. However, condition (40) differs in its responsiveness of the aggregate action in
state—it depends on ρ and on the number of players. Naturally, the responsiveness
to the state increases as the miscoordination motive captured by ρ decreases. At the
critical value ρ = N

2N−1 , the responsiveness is maximal and equal to 1, corresponding to
full state information. For all ρ ≤ N

2N−1 , full state information is optimal.
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In the following, we focus on the case ρ ≥ N
2N−1 . Similar to the case of polarizing

information, we can implement the optimal allocation (40) in several ways.

Corollary 5. (Co-Moving by Selective Informing) If N∗ , N( 1
2ρ + 1

2N ) is a natural
number, then for any prior distribution µ0, an information structure that fully reveals
the state to N∗ players and provides no information to others is optimal.

The simple selective informing policy may again be optimal. The condition of Corol-
lary 5 is quite restrictive because it is not satisfied for “generic” ρ. However, note that
as the number of players grows, then the set of such ρ becomes denser and denser. As
such, selective informing would deliver an approximately optimal payoff for any prior
state distribution. At the same time, if the prior uncertainty is Gaussian, then there
exists an exactly optimal Gaussian information structure:

Corollary 6. (Co-Moving by Coordinated Informing) Let the state ω be normally dis-
tributed with mean 0 and variance σ2. The information structure that recommends the
following actions as the functions of the state is optimal:

ai(ω) =
(

1
2ρ + 1

2N

)
ω + εi −

1
N − 1

∑
j 6=i

εj, (41)

where εi ∼ N(0, σ2
ε) are symmetric noises independent of each other and the state, and

σ2
ε = 1

4ρ2
N−1
N

(
1 + ρ

N

) (
(2N−1)ρ

N
− 1

)
σ2.

According to Corollary 6, an optimal information structure provides each player
with a Gaussian estimate of the state. The estimate errors are correlated across players
in a way that ensures that an average action is a deterministic and linear function of
the state. The estimate precision is chosen to achieve an optimal trade-off between
the coordination of the average action with the state and the anticoordination across
players. Naturally, the precision decreases as the designer’s anticoordination motives
increase. For ρ ≤ N

2N−1 , providing perfect information is optimal, σ2
ε = 0. As ρ increases,

the noise variance σ2
ε increases and converges in the limit to (N−1)(2N−1)

4N2 σ2. This simple
Gaussian information structure is optimal across all possible information structures.

4.3 Investment Game

In this section, we demonstrate the applicability of our solution method in an investment
game in the spirit of the literature on large games (e.g., Angeletos and Pavan (2007)
and Bergemann and Morris (2013)).
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There are N players, who simultaneously decide how much to invest in a project,
Ai = R. The profitability of a project is uncertain; it depends on the unknown project
quality ω ∈ R and on the total amount of investment. The ex post payoff of player i is

ui(a, ω) = (ω − rA)ai − cai, (42)

where r > 0 is a congestion rate, c > 0 is an opportunity cost of investment, and
A ,

∑N
i=1 ai is a total investment in the project.19 As r > 0, the project has decreasing

returns to scale: its average profitability decreases in the total investment.
It is convenient to rewrite payoff (42) as

ui(a, θ) = r(θ − A)ai, (43)

where θ , ω/r − c is a normalized project quality. Given (43), for any belief ν ∈
∆(A−i ×Θ), the player i’s best response can be found via first-order condition to equal

a∗i (ν) = Eν
[
θ − A−i

2

]
, (44)

where A−i ,
∑
j 6=i aj, so that the best response linearly increases in the normalized state

expectation and linearly decreases in the expected amount of total investment made by
other players. The player’s actions are thus strategic substitutes.

Applying the ex ante expectation to both sides of (44) and using the law of it-
erated mathematical expectations, we observe that the profile of expected individual
investments must satisfy a system of linear equations which doesn’t depend on the in-
formation structure. This system has a unique and symmetric solution according to
which

E[ai] ≡
1

N + 1E[θ]. (45)

Hence, for any information structure, the expected individual investment of each player
is given by (45). The resulting total investment is fixed at E[A] ≡ N

N+1E[θ] =
N
N+1(E[ω]/r− c). Naturally, the total investment increases in the expected project qual-
ity, and decreases in the congestion rate r and in the opportunity costs c. It also increases
in the number of players, converging to the expected normalized state as this number

19Note that this setting can also be interpreted as a Cournot competition with linear demand and
linear production costs.
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goes to infinity. Intuitively, as the number of players grows, each individual investment
becomes smaller and each player internalizes less the congestion effect induced by his
investment.

The information designer can fully control the information about the project quality
and can privately inform each player about it. While the designer cannot affect the total
amount of investment, she can direct the investment towards more productive projects.
The designer aims to maximize the total profits generated by the project, her ex post
payoff is20

v(a, θ) =
N∑
i=1

(θ − A)ai = (θ − A)A = θA− A2. (46)

As such, the designer must balance two conflicting objectives. On the one hand, the
designer wants to make the aggregate investment correlated with the project quality to
maximize E[θA]. On the other hand, the designer wants to minimize the investment
volatility, to maximize the term E[−A2]. If she could direct the players’ actions directly,
then she would set the total investment to respond to the state as A(θ) = θ/2. However,
as we will see, this first-best outcome cannot be achieved with information control.

Before proceeding with derivation of the optimal information structure, we consider
two extreme information structures that present natural benchmarks.

No Information Under no additional information, all players base their investment
decisions only on the prior estimate of project quality. The unique equilibrium is one in
which each player invests

aNIi = 1
N + 1E[θ]. (47)

The investment is uniform across projects with different qualities, resulting in total
investment A = N

N+1E[θ] and the designer’s payoff

vNI = E
[
(θ − N

N + 1E[θ]) N

N + 1E[θ]
]

= N

(N + 1)2E
2[θ]. (48)

Full Information In contrast, under a fully informative information structure, each
player has a complete information about the project quality and takes it into account

20Because the expected investment and the expected investment costs are invariant to information,
this payoff also captures the objective of maximizing the total investor welfare.
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when investing. For any commonly known state, the ensuing game admits a strict
potential and, thus, has a unique equilibrium (Neyman (1997)). This equilibrium is
symmetric and each player invests proportionally to the normalized state as

aFIi (θ) = 1
N + 1θ. (49)

The investment is correlated with the project quality and is the same for all players,
resulting in total investment A(θ) = N

N+1θ. The designer’s payoff is

vFI = E
[
(θ − N

N + 1θ)
N

N + 1θ
]

= N

(N + 1)2E[θ2] = N

(N + 1)2 (E2[θ] + V[θ]). (50)

Comparing the designer’s payoffs in these two benchmarks, we see that providing full
information outperforms providing no information. The relative benefit increases in the
variance of normalized state θ. As such, it increases in the variance of the project quality
V[ω] and decreases in congestion rate r.

In both benchmarks, as the number of players goes to infinity, the designer’s payoff
which captures the total project profit converges to zero. Intuitively, since the aggregate
investment remains the same, as the number of players grows their individual contribu-
tions become increasingly small and the project must become increasingly less attractive.
In the limit, the individual rent as well as the total profit are dissipated.21 However,
in what follows, we show that this problem can be alleviated by a careful design of the
game’s information structure.

Optimal Information The design of an optimal information structure must reflect
the trade-offs present in designer’s objective (46). On the one hand, the designer should
provide information in order to make the investment better correlated with the project
quality and to boost the investment efficiency. On the other hand, providing information
correlates individual decisions and exacerbates investment congestion.

Proposition 6. (Optimal Investment Information) For any prior distribution µ0, if an
information structure I induces a best-response action profile such that for all θ ∈ Θ

N∑
i=1

ai(θ) = 1
2

(
θ + N − 1

N + 1E[θ]
)
, (51)

21If the setting is interpreted as Cournot competition, then this rent dissipation reflects the zero-profit
property of large competitive markets.
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then this information structure is optimal.

The proof is based on the duality certification method and demonstrates that allo-
cation (37) can be implemented by incentives in the adversarial-contracting problem.
However, in contrast to our other settings, the implementation is achieved by a constant
contract with λi(ai) = N−1

r(N+1)2E[θ].
As in Section 4.2, the optimality condition of Proposition 6 features only the aggre-

gate action and leads to multiplicity of optimal information structures.

Corollary 7. (Guiding Investment by Selective Informing) For any prior distribution
µ0 and any number of players, an information structure that fully reveals the project
quality to a single player and provides no information to all others is optimal.

Corollary 7 shows that, remarkably, in a large variety of settings, the same informa-
tion structure is optimal among all possible information structures. The designer can
simply designate a single player and provide full state information to him. This player
will be the only one making informed decisions. All other players will be investing the
same amount irrespective of the project quality. This information structure ensures that
the total investment follows (51).

The selective informing policy is robustly optimal across many environments, yet, it
is inegalitarian in that it places all information in the hands of a single player. However,
similarly to the results in Section 4.2, if the prior state is normally distributed, then
there is another optimal information structure which provides information symmetrically
across players.

Corollary 8. (Guiding Investment by Coordinated Informing) Let the normalized state
θ be normally distributed with mean θ̄ and variance σ2. The information structure that
recommends the following actions as the functions of the state is optimal:

ai(θ) = 1
2N θ + N − 1

2N(N + 1) θ̄ + εi −
1

N − 1
∑
j 6=i

εj, (52)

where εi ∼ N(0, σ2
ε) are independent noises with σ2

ε = N−1
8N2 σ

2.

The symmetric Gaussian information structure (52) obtains the same allocation rule
as the optimal selective informing by carefully coordinating the players’ individual noises.

Comparing the allocation under the optimal information structures with the alloca-
tions under no information and full information, we observe that the total investment
responds to the project quality more than under no information, 1/2 > 0 but less than
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under full information 1/2 < N/(N + 1). Thus, the information design is used to guide
the investment but to a limited extent to avoid investment congestion.

Importantly, the information control avoids rent dissipation observed under the no-
and full- information benchmarks as the number of players grows to infinity. Indeed, the
optimal designer’s payoff equals

v∗ = E
[(
θ − θ

2 −
N − 1
N + 1E[θ]

)(
θ

2 + N − 1
N + 1E[θ]

)]
= N

(N + 1)2E
2[θ] + 1

4V[θ]. (53)

As such, the project’s total profit stays above V[θ]/4 and converges to this level as
N → ∞. The limit payoff naturally decreases in the congestion rate r. This payoff
does not depend on the individual investment cost c and increases in the variance of the
project quality. Under optimal information structure, the riskier projects lead to higher
realized profits even if they have the same expected quality.

4.4 Discussion

Our analysis showcased several notable features of optimal information structures in
multiplayer games. In this section, we discuss some of these features in detail.

Information Multiplicity One feature discovered in Sections 4.2 and 4.3 is the mul-
tiplicity of optimal information structures. This multiplicity is substantive. Different
optimal information structures induce different allocation rules and lead to different
players’ payoffs.

To the best of our knowledge, such multiplicity has rarely been observed in the ex-
isting literature on information design and Bayesian persuasion. One way to explain
this is to note that despite their multiplicity, the optimal information structures induce
the same aggregate action behavior. In “small-scale” settings, which have been most
studied in the literature to date, e.g., with a single receiver, or binary receivers and
binary actions, the scope in which the same aggregate behavior can be implemented by
information in different ways is limited and often translated into a unique optimal infor-
mation structure. In contrast, in the “large-scale” settings that we study, with multiple
receivers and a continuum of actions and states, there are more ways to implement the
same aggregate behavior.

This observation suggests that in “large-scale” settings, one can possibly encounter
the multiplicity of optimal information structures driven by the multitude of ways to
implement an optimal behavior of some coarse statistic of players’ actions.
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Extraneous Noise An open question in Bayesian persuasion literature is when does
an optimal information structure feature an extraneous noise and when does it not, i.e.,
when it is a deterministic function of a state.22 Our analysis presented both of these
cases. The certifiably optimal Gaussian structures in Section 4.1 did not feature an
extraneous noise whereas the certifiably optimal Gaussian structures of Sections 4.2 and
4.3 did.

One broad conjecture is that extraneous uncertainty is introduced by the designer
to compensate for the lack of prior uncertainty captured by the state. We show some
support for this conjecture but specify that one should be careful regarding exactly
what the “lack” of prior uncertainty means. A naive approach would be to measure
the richness of prior uncertainty by the state variance: if the variance is low, then ex-
traneous noise is introduced to increase the behavior volatility. However, this approach
overlooks the Bayesian nature of belief updating. When the information structure be-
comes more noisy, rational players take noise into account and, in fact, their posterior
beliefs generally become less volatile, because each signal is less informative about the
state. Accordingly, in the optimal information structures that we found, the qualitative
presence of extraneous noise does not depend on the absolute value of the state variance.

Instead, we suggest measuring the richness of prior uncertainty by its effective di-
mensionality, i.e., the number of state components that are not perfectly correlated. If
this dimensionality is low, then extraneous noises may need to be introduced. In Sec-
tion 4.1, the number of state components equals the number of players and the optimal
Gaussian information structure does not require extraneous noise; in Section 4.2, the
number of state components is smaller than the number of players, and the optimal
Gaussian structure features extraneous noise.

This view is further corroborated by the following observation which we formally
articulate in Appendix B.3. In the co-movement setting in Section 4.2.2, if the state
had several components that were not perfectly correlated and each player cared about
an individual state component, then there would exist an optimal Gaussian informa-
tion structure that would be a deterministic function of the state. This deterministic
structure would, however, converge to the Gaussian stochastic structure that we found.
Intuitively, as long as the Gaussian state components are not perfectly correlated, one
can extract the relevant individual noises from the states themselves and then success-
fully use them to implement the optimal behavior. In other words, our analysis suggests
that what matters for the presence of exogenous noise is not the variation of each state

22For a recent example of the latter, see Candogan and Strack (forthcoming).
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component but rather the variation across state components.

Infinite Economies In Section 4.2, under certifiably optimal information structures,
the players’ aggregate action is a deterministic function of the state. This feature is
achieved with finitely many players by either selective informing or precise coordination
of their individual noises. In contrast, in games with infinitely many players, the same
feature can appear due to the law of large numbers even if the individual noises are
independent.

For concreteness, consider the polarization setting of Section 4.2.1 with a normally
distributed state. Select an optimal symmetric Gaussian information structure (38) and
consider its limit as the number of players goes to infinity. As N → ∞, the correlated
components of the individual noises vanish by the law of large numbers, and in the
limit, each player is provided with a conditionally independent estimate of the state.
The optimal aggregate behavior is ensured by the large population size rather than by
noise correlation. This analysis suggests that the Gaussian information structures with
independent noises commonly considered in the literature on infinite economies, e.g., by
Angeletos and Pavan (2007) and Bergemann and Morris (2013), may indeed be optimal
among all information structures. However, as our analysis clarifies, there may exist
alternative optimal information structures that induce the same aggregate behavior, and
moreover, independent noises are likely to not be optimal in finite economies (Section
3.4).

5 Conclusion

In this paper, we developed a universal solution method for concave information-design
problems. This method builds upon the duality between information design and ad-
versarial contracting. We illustrated the power and tractability of the solution method
in quadratic environments with a normally distributed state. Our applications offer
insights into the determinants of price coordination in markets, the limits of belief po-
larization, and the disclosure practices that encourage investment. Along the way, we
provide justification for the use of Gaussian information structures from the optimality
perspective. Overall, our analysis paves the way and provides tools to study information
design in “large-scale” games.
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A Omitted Proofs and Derivations

Proof of Theorem 2. We show that under the conditions of Theorem 2, allocation
rule (20) is implementable both by information in the primal problem and by incentives
in the dual problem.

The implementability of the allocation rule in the information-design problem is
captured by the system of first-order conditions. An allocation rule α : Ω → ∆(A) is
incentive compatible if and only if

E[bi +Bi•ω − Ci•a | ai] = 0 ∀i = 1, . . . , N, ai ∈ Ai, (54)

for all actions ai recommended under α.
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Because conditions (54) must hold for all ai, they must also hold, on average; thus,

Eµ0 [bi +Bi•ω − Ci•a] = 0 ∀i = 1, . . . , N. (55)

The recommended actions are linear in the state components. Since E[ωk] ≡ 0, the
constant term of the linear information structure is uniquely pinned down as

a0 = C−1b. (56)

The recommended action profile a∗ and the variable Ci•a − Bi•ω − bi are jointly
normally distributed. Hence, the sufficient condition for (54) is that ai and Ci•a−Bi•ω−bi
are uncorrelated for all i:

cov(Ci•a∗ −Bi•ω − bi, a∗i ) = E[(Ci•R−Bi•)ωRi•ω] = E[(Ci•R−Bi•)ωωTRT
i• ]

= (Ci•R−Bi•)E[ωωT ]RT
i• = (Ci•R−Bi•)ΣRT

i• = 0. (57)

Conditions (56) and (57) together form condition (i) of the theorem.
It remains to show that under the second set of conditions, the linear allocation rule

is implementable in the dual adversarial problem. The dual payoff is

uλ(a, ω) = v(a, ω)−
∑
i

λi(ai)(Ci•a−Bi•ω − bi) (58)

= aT (b̂+ B̂ω)− 1
2a

T Ĉa− λT (a)(Ca−Bω − b). (59)

Under the conditions of the theorem, the linear allocation rule can be implemented
in the dual problem by a contract λ = x0 + x ∗ a, where “∗” is the Hadamard product.
Given this contract, the optimal best response of the dual agent solves, at any state
ω ∈ Ω:

max
a∈A

aT (b̂+ B̂ω)− 1
2a

T Ĉa− (x0 + x ∗ a)T (Ca−Bω − b),

max
a∈A

aT
(
b̂+D(x)b− CTx0 + (B̂ +D(x)B)ω

)
− 1

2a
T
(
Ĉ + 2D(x)C

)
a+ xT0 (Bω + b),

where D(x) is a diagonal matrix with D(x)ii = xi. This is a quadratic optimization
problem. Since matrix Ĉ + 2D(x)C is positive definite, the agent’s best response equals

a∗(ω) = (Ĉ + 2D(x)C)−1(b̂+D(x)b− CTx0) + (Ĉ + 2D(x)C)−1(B̂ +D(x)B)ω. (60)
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The conditions of the theorem ensure that x implements the best response with the
responsiveness matrix R. It remains to construct x0 to capture the constant vector
a0 = C−1b, i.e.,

(Ĉ + 2D(x)C)−1(b̂+D(x)b− CTx0) = C−1b

C(Ĉ + 2D(x)C)−1CTx0 = c0,

for some vector c0. However, (Ĉ+2D(x)C)−1 is positive definite and, by the maintained
assumption, C is positive semidefinite. Hence, C(Ĉ + 2D(x)C)−1CT is invertible, and
one can always find x0 that implements the targeted linear allocation rule.

Proof of Proposition 4 Given Proposition 1, it suffices to show that allocation (37)
is implementable by incentives. The dual payoff is

uλ(a, ω) = v(a, ω)−
N∑
i=1

λi(ai)u̇i(a, ω) =
∑
i,j

(ai − aj)2 + 2
∑
i

λi(ai)(ai − ω). (61)

Set the contract to be λ(ai) = −N(ai − E[ω]). The agent’s payoff can be rewritten as:

∑
i,j

(ai − aj)2 − 2N
∑
i

(ai − E[ω])(ai − ω) = −2(
∑
i

ai −NE[ω])(
∑
i

ai −Nω). (62)

For any state ω, the agent’s payoff is concave and quadratic in the aggregate action∑N
i=1 ai with a unique optimal aggregate action satisfying ∑N

i=1 ai(ω) ≡ N
2 (ω + E[ω]).

Hence, allocation (37) is implementable by incentives, and the result follows.

Proof of Corollary 4 Note that by construction of the optimal information structure,
the noise variance is equal to the variance of the state component:

V[ω + ω̄

2 ] = V[εi −
∑
j 6=i εj

N − 1 ] = σ2

4 . (63)

Hence, by Gaussian belief updating, the information structure is obedient:

E[ω + ω̄

2 | ai] = 1
2(E[ω + ω̄

2 ] + ai) = 1
2(ω̄ + ai), (64)

and, consequently, E[ω | ai] = ai.
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At the same time, the aggregate action satisfies the optimality condition (37):

N∑
i=1

ai(ω) =
N∑
i=1

ω + ω̄

2 +
N∑
i=1

(εi −
∑
j 6=i εj

N − 1 ) = N
ω + ω̄

2 +
N∑
i=1

εi −
N∑
i=1

εi = N

2 (ω + E[ω]).

(65)

The result thus follows from Proposition 4.

Proof of Proposition 5 Consider a contract with λi(ai) = − ρ
2N2ai. The correspond-

ing dual payoff is

v(a, ω)−
∑
i

λi(ai)u̇i(a, ω) =
∑N
i=1 ai
N

ω − ρ
∑N
i=1

∑
j 6=i aiaj

N2 + 2
N∑
i=i

λi(ai)(ai − ω) (66)

=
∑N
i=1 ai
N

N + ρ

N
ω − ρ

(∑N
i=1 ai
N

)2

. (67)

Thus, the agent’s best response in state ω is any action profile a that satisfies
∑N
i=1 ai
N

= N + ρ

2ρN ω. (68)

The proposed contract implements the candidate allocation rule and, by Proposition 1,
certifies the optimality of the information structure that induces it.

Proof of Corollary 6 Allocation rule (41) is obedient, E[ω|ai] ≡ ai. Indeed, ai(ω)
and ω are jointly normally distributed. Therefore, the obedience reduces to E[ω] = E[ai],
satisfied since E[ω] = 0, and to

E[ai(ω − ai)] = 0. (69)

By the definition of the recommended actions:

E[ai(ω − ai)] =
(

1
2ρ + 1

2N

)(
1
2ρ + 1

2N − 1
)
V[ω] + V[εi −

1
N − 1

∑
j 6=i

εj], (70)

and

V[εi −
1

N − 1
∑
j 6=i

εj] = N

N − 1σε. (71)
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Hence, the obedience is satisfied for the chosen variance σ2
ε .

At the same time, the aggregate action satisfies the optimality condition (40):

N∑
i=1

ai(ω) =
N∑
i=1

(
1
2ρ + 1

2N

)
ω +

N∑
i=1

(εi −
∑
j 6=i εj

N − 1 ) (72)

= N

(
1
2ρ + 1

2N

)
ω +

N∑
i=1

εi −
N∑
i=1

εi = N

(
1
2ρ + 1

2N

)
ω. (73)

The result thus follows from Proposition 5.

Derivations for Section 4.3
No Information: Under no additional information, each player’s action cannot de-

pend on the state and is thus uniquely determined by best-response condition (44).
Full Information: For any θ, the ensuing game admits a strictly concave poten-

tial Ψ(a, θ) = (θ − A
2 )A −∑N

i=1 a
2
i and thus has a unique equilibrium. Parameterize a

symmetric linear strategy profile as

ai(θ) = k0 + k1θ. (74)

The best-response condition (44) can be rewritten as

ai(θ) = −N − 1
2 k0 + 1− k1(N − 1)

2 θ, (75)

that pins down the equilibrium parameters at k0 = 0 and k1 = 1
N+1 .

Proof of Proposition 6 Given Proposition 1, it suffices to show that allocation (51)
can be implemented by incentives. The dual payoff is

uλ(a, θ) = v(a, ω)−
N∑
i=1

λi(ai)u̇i(a, θ) = (θ − A)A−
N∑
i=1

λi(ai)r(θ − A− ai). (76)

Set the contract to be λ(ai) = N−1
r(N+1)2E[θ]. The agent’s payoff can be rewritten as:

uλ(a, θ) = (θ − A)A− N − 1
(N + 1)2E[θ](N(θ − A)− A). (77)
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For any normalized state θ, the payoff is concave and quadratic in A with a unique
maximizer satisfying

A(θ) = 1
2

(
θ + N − 1

N + 1E[θ]
)
, (78)

that corresponds to (51).

Proof of Corollary 7 Under selective informing, each uninformed player i plays the
same action irrespectively of a state, ai = aNIi = 1

N+1E[θ]. Thus, a fully informed player
optimally responds to the normalized state according to best-response condition (44) as

ai(θ) = θ

2 −
N − 1

2
E[θ]
N + 1 , (79)

leading to total investment (51). The result thus follows by Proposition 6.

Proof of Corollary 8 If obedient, information structure (52) results in total invest-
ment (51). It if left to demonstrate obedience.

Because ai and θ−A−ai are jointly normal, the obedience condition E[θ−A−ai|ai] =
0 is equivalent to E[θ − A − ai] = 0 and E[ai(θ − A − ai)] = 0. These conditions are
easily verified:

E[θ − A− ai] = E[θ − (N + 1)( θ

2N + (N − 1)µ
2N(N + 1))] = E[ (N − 1)(θ − µ)

2N ] = 0, (80)

and,

E[ai(θ − A− ai)] = E[ θ2N
(N − 1)(θ − µ)

2N − (εi −
∑
j 6=i εj

N − 1 )2] (81)

= (N − 1)σ2

4N2 − 2σ2
ε = 0. (82)

The result thus follows by Proposition 6.
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B Supplementary Appendix

B.1 Derivations for Section 4.1

The firms’ profits are equal to

ui(a, θ) = ai(θi + ηai + ξa−i)− c(θi + ηai + ξa−i)2,

so the derivative with respect to their own actions is:

∂ui(a, θ)
∂ai

= θi(1− 2cη) + 2aiη(1− cη) + a−iξ(1− 2cη),

= µi(1− 2cη) + (θi − µi)(1− 2cη) + 2aiη(1− cη) + a−iξ(1− 2cη).

By comparison with the F.O.C. of (55), we recover the parameters of Section 4:

b = (1− 2cη)θ̄, B = (1− 2cη)I, C =
−2η(1− cη) −ξ(1− 2cη)
−ξ(1− 2cη) −2η(1− cη)

 .
Regarding the designer’s payoff, consumer surplus can be written as:

CS(a, θ) = −aT θ − 1
2a

TWa = −θ̄ − aT (θ − θ̄)− 1
2a

TWa.

Comparing it with the payoff function (18), we recover

b̂CS = −θ̄, B̂CS = −I, ĈCS = W =
η ξ

ξ η

 .
Similarly, the total profits can be written as

Π(a, θ) = aT (θ +Wa)− c(θ +Wa)T (θ +Wa)

= −cθT θ + aT (1− 2cW )θ − 1
2a

T (−2W + 2cW 2)a

≈ aT (1− 2cW )θ̄ + aT (1− 2cW )(θ − θ̄)− 1
2a

T (−2W + 2cW 2)a,

where the last line ignores the action-independent term −cθT θ. Comparing it with the
payoff function (18), we recover:

b̂Π = (I − 2cW )θ̄, B̂Π = I − 2cW, ĈΠ = −2W + 2cW 2.
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For any given δ ∈ [0, 1], the parameters of the designer’s problem are the weighted
averages:

b̂ = δb̂CS + (1− δ)b̂Π ,

B̂ = δB̂CS + (1− δ)B̂Π ,

Ĉ = δĈCS + (1− δ)ĈΠ .

Direct Price Control: The designer’s first-order condition is

B̂θ − Ĉa = 0,

which results in the first-best responsiveness matrix

RFB = Ĉ−1B̂.

The threshold value δFB is the one that equalizes the determinant of Ĉ to zero.
Full Information and No Information: Equilibrium pricing behavior satisfies and can

be derived from the system of first-order conditions

Eµ[qi(ai, a−i, θ) + ∂qi(ai, a−i, θ)
∂ai

(ai − 2cai)] = 0, i = 1, 2, (83)

after substituting the linear form (22) of demand function qi and setting the belief µ
equal to µ0 for no-information equilibrium and equal to the belief concentrated on θ for
full-information equilibrium.

Optimal Information Structure: As discussed in the main text, the optimal informa-
tion structure can be certified by a contract with certifying parameters (x1, x2) = x. By
Theorem 2, the parameter x and the corresponding responsiveness matrix R(x) must
satisfy the conditions (Ci•R − Bi•)ΣRT

i• = 0 and R = (Ĉ + 2D(x)C)−1(B̂ + D(x)B).
Plugging in the parameters of the differentiated Bertrand competition, we obtain the
certifying condition f(x) = 0, where f(x) is the following polynomial:

f(x) = b0 + b1x+ b2x
2 + b3x

3 + b2x
4,
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b0 = −8c3(δ − 1)3(ξ − η)(η + ξ)(δη4 + (δ − 1)ξ4 + 3(2δ − 1)η2ξ2)

+ 4c2(δ − 1)2η(δ(5− 8δ)η4 + (δ(8δ − 11) + 4)ξ4 − 2(δ(16δ − 19) + 6)η2ξ2)

+ 2c(3δ − 2)(δ − 1)(δ(7δ − 4)η4 + (δ − 1)δξ4 + (3δ(8δ − 9) + 8)η2ξ2)

+ (2δ − 1)(−(2− 3δ)2)η(δη2 + (3δ − 2)ξ2),

b1 = 32c5(δ − 1)3(η2 + ξ2)(η3 − ηξ2)2

− 16c4(δ − 1)2η(ξ − η)(η + ξ)((8− 11δ)η4 + 2(δ − 1)ξ4 + (2− 3δ)η2ξ2)

+ 8c3(δ − 1)(ξ − η)(η + ξ)((−42δ2 + 64δ − 25)η4 + (δ − 1)2ξ4 + δ(2− 3δ)η2ξ2)

+ 4c2((δ(2(78− 31δ)δ − 133) + 38)η5 + (δ − 1)(δ(δ + 7)− 6)ηξ4

+ (δ(5δ(25δ − 58) + 226)− 60)η3ξ2)− 2c((δ((79− 17δ)δ − 88) + 28)η4 + (δ − 1)δ(5δ − 4)ξ4

+ 2(δ(δ(102δ − 211) + 146)− 34)η2ξ2) + (3δ − 2)η((δ(7δ + 4)− 4)η2 + (δ(41δ − 52) + 16)ξ2),

b2 = −2((η − 1)η3(δ2(8(η − 2)η(10(η − 2)η + 13) + 29)− 4δ(η − 1)(2η − 1)(20(η − 2)η + 13)

+ 20(2η2 − 3η + 1)2) + 2(δ − 1)(1− 2η)2r4(2(δ − 1)η2 − δ + 2η)

+ ηr2(δ2(η(4η(η(8(11− 3η)η − 145) + 135)− 271) + 56)

+ 2δ(η − 1)(4η(η(8η(3η − 7) + 63)− 37) + 37)− 8(η − 1)(3(η − 1)η + 1)(4(η − 1)η + 3))),

b3 = −16η(1− 2cη)2(cη − 1)(ξ2(4c2(δ − 1)η2 + 2c(2− 3δ)η + 3δ − 2)

− 2η2(cη − 1)(2c(δ − 1)η − 3δ + 2)),

b4 = −8η(1− 2cη)2(cη − 1)(4η2(cη − 1)2 − ξ2(1− 2cη)2).

For the parameters of the numerical example, the polynomial becomes

f(x) = (2996δ4 − 7880δ3 + 7490δ2 − 3000δ + 414) + (6728δ3 − 20948δ2 + 20234δ − 6210)x

+ (−52780δ2 + 88084δ − 36368)x2 + (77184δ − 62208)x3 − 31680x4,

and the condition f(x) = 0 can be solved in radicals for any δ ∈ [0, 1]. The solution x
that makes Ĉ + 2D(x)C positive definite is a certifying parameter. Calculations show
that such x is unique for all δ 6= δcr, and its value is plotted in Figure 4. The value δcr
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Figure 4: Parameter x that certifies an optimal information structure plotted as a
function of the consumer surplus weight δ.

is the one that makes the determinant of matrix Ĉ + 2D(x(δ))C equal to zero:

δcr = 2(c(|ξ|+ η)(−2cη |ξ|+ |ξ|+ η(−2cη + 3))− η)
− |ξ| (−2cη(−4cη + 5) + 1)− η(4c− η(−cη + 2) + 5) + 2cξ2(−2cη + 1) = 11

18 .

(84)

B.2 Strong Duality

Notation Denote by R the set of real numbers and by N the set of strictly positive
integers. For a Polish space X, denote by P(X) the space of its measurable subsets, by
M(X) the space of Radon measures on X, by ∆(X) ⊆ M(X) the space of probability
measures on X, by B(X) the space of real-valued bounded functions on X, by C(X) the
space of measurable real-valued continuous functions on X equipped with the uniform
norm ‖·‖∞, ‖f‖∞ , supx∈X |f(x)|. For an arbitrary collection of sets {Xi}, denote their
product set by ×iXi.

In this section, we prove the applicability of the certification method for a subclass of
concave games, i.e., that (i) the duality gap is equal to zero, V D = V P , and (ii) solutions
to both primal and dual problems exist.

Assumption 2. (Compactness) The state space Ω is finite. For each i = 1, . . . , N ,
there exists a convex compact subset Âi ⊆ Ai such that all actions ai /∈ Âi are strictly
dominated for player i.

Assumption 3. (Responsiveness) There exists ε > 0 such that for each i = 1, . . . , N ,
and ai ∈ Ai: (i) there exist ω− ∈ Ω, a−−i ∈ A−i such that u̇i(ai, a−−i, ω−) < −ε and
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u̇j(ai, a−−i, ω−) = 0 for all j 6= i, and (ii) there exist ω+ ∈ Ω, a+
−i ∈ A−i such that

u̇i(ai, a+
−i, ω

+) > ε and u̇j(ai, a+
−i, ω

+) = 0 for all j 6= i.

Assumption 3 implies responsiveness of players’ actions to the state. It requires that
each action may be “too high” in some states and “too low” in others, under complete
information if all others respond optimally. This assumption guarantees that in the dual
problem, the designer would never use over-powered incentives; hence, the domain of
contracts can be bounded.

Theorem 3. (Strong Duality) If Assumption 2 holds, then the optimal value of the
information-design problem (6) is equal to the optimal value of the dual adversarial-
contracting problem (11):

V P = V D. (85)

Moreover, in this case, an optimal value in (6) is achieved by some information structure.
If, in addition, Assumption 3 holds, then an optimal value in (11) is achieved by some
contract.

Proof: Define auxiliary functions φ, ψ : B(A×Ω)→ R ∪ {+∞} as follows:

φ(f) ,

0, if f(a, ω) ≥ v(a, ω) ∀ a ∈ A, ω ∈ Ω,

+∞, o/w.

ψ(f) , inf
λ∈×iB(Ai),γ∈B(Ω)



∫
Ω γ(ω)dµ0, if f(a, ω) = ∑N

i=1 λi(ai)u̇i(a, ω) + γ(ω)

∀ a ∈ A, ω ∈ Ω,

+∞, o/w.

In Lemma 1, we show that (i) φ(f) and ψ(f) are convex. Moreover, by Assumption 2,
v(a, ω) is bounded from above by V , supa∈A,ω∈Ω v(a, ω) < +∞. Hence, there exists
f0(a, ω) = V +1 such that (ii) φ(f0) < +∞ (as φ(f0) = 0), (iii) ψ(f0) < +∞ (as ψ(f0) ≤
f0 since one can set λ ≡ 0 and γ(ω) ≡ V +1), and (iv) φ is continuous at f0 (as φ(f) ≡ 0
for all f with ‖f − f0‖∞ < 1). Consequently, by the Fenchel–Rockafellar duality (Villani
(2003), Theorem 1.9), there exists a solution to supπ∈M(A×Ω)(−φ∗(−π)− ψ∗(π)) and:

max
π∈M(A×Ω)

(−φ∗(−π)− ψ∗(π)) = inf
f∈C(A×Ω)

(φ(f) + ψ(f)), (86)
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where φ∗ and ψ∗ are Legendre-Fenchel transforms of φ and ψ, respectively:

φ∗(π) , sup
f∈C(A×Ω)

(∫
fdπ − φ(f)

)
,

ψ∗(π) , sup
f∈C(A×Ω)

(∫
fdπ − ψ(f)

)
,

and where we used the fact that M(A × Ω) is a topological dual space of C(A × Ω)
(Aliprantis and Border (2006), Corollary 14.15) since A × Ω is a compact metrizable
space (Assumption 2).

In Lemma 2, we show that the left-hand side of (86) is in fact equal to V P :

max
π∈M(A×Ω)

(−φ∗(−π)− ψ∗(π)) = V P .

Moreover, the right-hand side of (86) is at least as large as V D:

inf
f∈C(A×Ω)

(φ(f) + ψ(f)) ≥ inf
f∈B(A×Ω)

(φ(f) + ψ(f)) = V D,

where the inequality follows from C(A×Ω) ⊆ B(A×Ω) and the equality follows from
the definition of φ and ψ. As a result, V P ≥ V D; thus, by Theorem 1, V P = V D.

Lemma 1. φ and ψ are convex.

Proof. φ: Towards a contradiction, assume that φ is not convex. Then, there exist
f1, f2 ∈ C(A×Ω) and α ∈ (0, 1) such that φ(αf1 + (1− α)f2) > αφ(f1) + (1− α)φ(f2).
It is possible only if the right-hand side is finite, that is, only if f1(a, ω) ≥ v(a, ω)
and f2(a, ω) ≥ v(a, ω) for all a ∈ A, ω ∈ Ω. However, in that case, αf1(a, ω) + (1 −
α)f2(a, ω) ≥ v(a, ω); thus, φ(αf1 + (1 − α)f2) = 0 = αφ(f1) + (1 − α)φ(f2), which is a
contradiction.

ψ: Take any f1, f2 ∈ C(A × Ω). If either ψ(f1) = +∞ or ψ(f2) = +∞, then
ψ(αf1+(1−α)f2) ≤ αψ(f1)+(1−α)ψ(f2) = +∞ for all α ∈ (0, 1). If both ψ(f1), ψ(f2) <
+∞, then for any n ∈ N, there exist λn1 , γn1 , λn2 , γn2 such that for all a ∈ A, ω ∈ Ω:

∫
ω∈Ω

γn1 (ω)dµ0(ω) ≤ ψ(f1) + 1/n, f1(a, ω) =
N∑
i=1

λn1i(ai)u̇i(a, ω) + γn1 (ω),

∫
ω∈Ω

γn2 (ω)dµ0(ω) ≤ ψ(f2) + 1/n, f2(a, ω) =
N∑
i=1

λn2i(ai)u̇i(a, ω) + γn2 (ω).
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Hence, for any α ∈ (0, 1), for all a ∈ A, ω ∈ Ω:

αf1(a, ω) + (1− α)f2(a, ω) =
N∑
i=1

λnαi(ai)u̇i(a, ω) + γnα(ω),

where λnαi(ai) , αλn1i(ai) + (1 − α)λn2i(ai) and γnα(ω) , αγn1 (ω) + (1 − α)γn2 (ω). Conse-
quently,

ψ(αf1 + (1− α)f2) ≤
∑
ω∈Ω

γnα(ω)µ0(ω)

≤
∑
ω∈Ω

(αγn1 (ω) + (1− α)γn2 (ω))µ0(ω)

≤ αψ(f1) + (1− α)ψ(f2) + 1/n.

Since this inequality holds for arbitrarily large n ∈ N, the result follows.

Lemma 2. V P = maxπ∈M(A×Ω)(−φ∗(−π)− ψ∗(π)).

Proof. We can write:

−φ∗(−π) = − sup
f∈C(A×Ω)

(∫
fd(−π)− φ(f)

)
−ψ∗(π) = − sup

f∈C(A×Ω)

(∫
fdπ − ψ(f)

)
= inf

f∈C(A×Ω),f≥v

(∫
fdπ

)
= inf

f∈C(A×Ω)

(
−
∫
fdπ + ψ(f)

)

=


∫
vdπ, if π ∈ ∆(A×Ω),

−∞, o/w.
=

0, if (7) and (8) hold,

−∞, o/w.

The last line in the derivation of −φ∗(−π) holds because (i) if π /∈ ∆(A × Ω), then π
assigns a negative measure to some set and one can diverge the value of −φ∗(−π) to
−∞ by choosing f ∈ C(A×Ω) that assigns arbitrarily large values to that set and (ii)
π ∈ ∆(A × Ω), then the infimum is obtained by setting f ≡ v ∈ C(A × Ω). Similarly,
to establish the last line in the derivation of −ψ∗(π), note that for any given f , by the
definition of ψ:

−
∫
fdπ + ψ(f) ≥ −

∫ (
N∑
i=1

λi(ai)u̇i(a, ω) + γ(ω)
)
dπ +

∫
Ω
γ(ω)dµ0

=
∫
Ω
γ(ω)dµ0 −

∫
γ(ω)dπ −

N∑
i=1

∫
λi(ai)u̇i(a, ω)dπ,

for any λ, γ such that ∑N
i=1 λi(ai)u̇i(a, ω) + γ(ω) = f(a, ω) for all a ∈ A, ω ∈ Ω. If (7)
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and (8) hold, then −
∫
fdπ + ψ(f) ≥ 0. Furthermore, the zero value can be achieved

by setting f ≡ 0. If (7) or (8) do not hold, then it is possible to diverge the value to
−∞ by assigning arbitrarily large absolute values, positive or negative, of γ or λ to a
set with a non-zero measure such that f(a, ω) set equal to ∑N

i=1 λi(ai)u̇i(a, ω) + γ(ω) is
continuous.

As a result, the maximization problem

max
π∈M(A×Ω)

(−φ∗(−π)− ψ∗(π))

is identical to the primal problem (6). The result follows.

Thus far, we have been able to use the Fenchel–Rockafellar duality to establish the
strong duality between the primal and dual problems. To complete the proof of Theorem
3, we must confirm that the solutions to these problems exist under the stated conditions.

Lemma 3. (Existence of Solutions) Solutions to the primal problem (6) and to the dual
problem (9) exist.

Proof. For the primal problem (6), equip ∆(Ω × A) with a weak∗ topology. In this
topology, ∆(Ω×A) is compact and the objective and the constraints are continuous due
to Assumption 1. The solution then exists by the extreme value theorem. (Alternatively,
observe that the solution existence follows directly from Fenchel-Rockafellar duality (86)
and the proof of Lemma 2.)

For the dual problem (9), define

γ(λ, ω) , sup
a∈A

(v(a, ω)−
N∑
i=1

λi(ai)u̇i(a, ω)),

and observe that for any given λ ∈ ×iB(Ai), setting γ(ω) equal to γ(λ, ω) obtains the
infimum of the objective in (9): any γ(ω) < γ(λ, ω) is infeasible and any γ(ω) > γ(λ, ω)
can be improved upon by decreasing γ(ω). Hence, the dual problem can be equivalently
stated as

V D = inf
λ∈×iB(Ai)

∫
Ω
γ(λ, ω)dµ0.

To establish the existence of the solution, we first show that the domain can be bounded.
To bound the domain from above, define

λ ,
V P + 1− V
ε infω∈Ω µ0(ω) ,
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where V = infa,ω v(a, ω) > −∞ by Assumption 2 and ε is that of Assumption 3. Consider
any λ such that for some i = 1, . . . , N and ai ∈ Ai, λi(ai) > λ. By Assumption 3, there
exist ω− and a−i such that:

γ(λ, ω−) = sup
a′∈A

(v(a′, ω−)−
N∑
i=1

λi(a′i)u̇i(a′, ω−))

≥ v(ai, a−i, ω−)− λi(ai)u̇i(ai, a−i, ω−)

≥ V + ελ,

Moreover, for any ω ∈ Ω, γ(λ, ω) ≥ V . Indeed, according to the Glicksberg-Fan theorem,
there exists an allocation a such that u̇i(a, ω) ≡ 0 that achieves v(a, ω) ≥ V irrespective
of λ. Hence, under such λ, the value of the dual problem is at least v+µ0(ω−)ελ > V P+1.
However, by strong duality, V D = V P ; consequently, such λ may be excluded from the
optimization domain without any loss. An analogous argument bounds the optimization
domain from below.

Second, by the definition of the infimum, there exists a sequence {λn}∞n=1 such that
limn→∞

∫
Ω γ(λn, ω)dµ0 = V D. As the domain is bounded, there exists a bounded point-

wise limit of this sequence, λ∗ ∈ ×iB(Ai), λ∗i (a) , limn→∞ λ
n
i (a) for all i = 1, . . . , N ,

a ∈ A. We have:

V D = lim
n→∞

∫
Ω
γ(λn, ω)dµ0

=
∫
Ω

lim
n→∞

sup
a∈A

(
v(a, ω)−

N∑
i=1

λni (ai)u̇i(a, ω)
)
dµ0

≥
∫
Ω

sup
a∈A

lim
n→∞

(
v(a, ω)−

N∑
i=1

λni (ai)u̇i(a, ω)
)
dµ0

=
∫
Ω
γ(λ∗, ω)dµ0

≥ V D,

where the third line follows from the order of the supremum and the last line follows
from the definition of V D as the optimal value of the dual problem. Hence, {λ, γ} =
{λ∗, γ(λ∗, ω)} solve the dual problem. This concludes the proof.

As argued in the main text, the dual problem (9) is equivalent to the dual adversarial-
contracting problem (11). This concludes the proof of Theorem 3.
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B.3 Multidimensional State Perturbation

In Sections 4.2 and 4.3, we observed a multiplicity of optimal information structures
driven by the many ways in which one can implement an optimal aggregate action.
Moreover, a symmetric Gaussian information structure featured an exogenous noise. In
this section, we argue that these features may be driven by a limited dimensionality of
a state space and they disappear in a “nearby” multi-dimensional setting.

In particular, we consider the following multidimensional version of a co-movement
setting of Section 4.2.2. The state is N -dimensional, ω = (ω1, . . . , ωN) ∈ RN and is
normally distributed according to a normal distribution with mean 0 and covariance
matrix Σ such that Σii = 1 and Σij = 1−∆2 for j 6= i, where ∆ ≥ 0.

Player i aims to predict the ith state component: Ai = R and

ui(a, ω) = −(ai − ωi)2. (87)

The designer’s payoff features the co-movement and the miscoordination components:

v(a, ω) =
∑N
i=1 aiωi
N

− ρ
∑N
i=1

∑
j 6=i aiaj

N2 , (88)

so that it is analogous to payoff (39) with the difference that the co-movement component
accounts for the state’s multi-dimensionality and keeps track of the average of individual
co-movement components. We focus on the case ρ ≥ N

2N−1 .
For all ∆ ≥ 0, the state’s cumulative probability distribution is point-wise continuous

in ∆. At ∆ = 0 the setting is equivalent to the setting of Section 4.2.2. As such, the
settings for small ∆ > 0 can be viewed as small perturbations of the original setting.
We show, however, that a certifiably optimal information structure in the perturbed
settings with ∆ > 0 does not feature an exogenous noise. Moreover, the certifiably
optimal allocation rule is uniquely optimal under the linear certifying contracts.

For any ∆ > 0, consider the dual problem and set the contract as λi(ai) = − q
2N2ai,

parameterized by q ∈ R. The dual payoff is

v(a, ω)−
∑
i

λi(ai)u̇i(a, ω) =
∑N
i=1 aiωi
N

− ρ
∑N
i=1

∑
j 6=i aiaj

N2 − q

N2

N∑
i=i

λi(ai)(ai − ω)

(89)

= 1
N2 ((q +N)aTω − aTMN(q, ρ)a), (90)
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where MN(x, y) is an N -dimensional rectangular matrix in which each on-diagonal el-
ement equals x and each off-diagonal element equals y. For q > ρ, matrix MN(q, ρ) is
positive-semidefinite and the agent’s best response can be found from first-order condi-
tions as:

a∗(ω; q) = q +N

2 M−1
N (q, ρ)ω = q +N

2(q − ρ)(q + (N − 1)ρ)MN(q + (N − 2)ρ,−ρ)ω, (91)

or, equivalently,

a∗i (ω; q) = q +N

2(q − ρ)(q + (N − 1)ρ)((q + (N − 2)ρ)ωi − ρ
∑
j 6=i

ωj), (92)

Any such allocation rule a∗(ω; q) is implementable by a linear contract with parameter
q > ρ. Since the state is normally distributed and E[ai − ωi]=0, for such allocation rule
to be implementable with incentives, it suffices that for all i

E[a∗i (ω; q)(a∗i (ω; q)− ωi)] = 0. (93)

Condition (93) is equivalent to

E[((q + (N − 2)ρ)ωi − ρ
∑
j 6=i

ωj)∗ (94)

(2(q − ρ)(q + (N − 1)ρ)ωi − (N + q)(q + (N − 2)ρ)ωi + (N + q)ρ
∑
j 6=i

ωj)] = 0,

which in turn is equivalent to

(q + (N − 2)ρ)[2(q − ρ)(q + (N − 1)ρ)− (N + q)(q + (N − 2)ρ) + (N + q)ρ(N − 1)(1− ε2)]
(95)

−ρ(N − 1)[2(q − ρ)(q + (N − 1)ρ)(1− ε2)− (N + q)(q + (N − 2)ρ)(1− ε2)]

−ρ2(N + q)[(N − 1) + (N − 1)(N − 2)(1− ε2)] = 0.

This condition is satisfied if and only if q satisfies the following:

2
q +N

− 1
q − ρ

− 1
q + (N − 1)ρ + 1

q − ρ+∆2ρ(N − 1) = 0. (96)

There exists a unique real solution to this equation, q∗(∆), which indeed satisfies q∗(∆) >
ρ. As such, for all ∆ > 0 the information structure that recommends a∗i (ω; q∗(∆)) is
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optimal. It is symmetric, Gaussian, and does not feature any exogenous noise.
Moreover, as ∆ → 0, this information structure converges to the noisy symmetric

Gaussian structure (41) that we identified as optimal at ∆ = 0 in the main text. To see
this, note that by Taylor expansion, q∗(∆) = ρ+ γ∆+ o(∆) where γ =

√
ρ2N(N−1)(N+ρ)
ρ(2N−1)−N .

Furthermore, the Gaussian state admits a decomposition into a common component and
independent noises as:

ωi =
√

1−∆2ω0 +∆εi, (97)

where ω0 and εi are independently distributed according to N(0, 1). Then, as ∆ → 0,
the recommended actions (92) converge almost surely to:

ai(ω) ∼ ρ+N

2∆γNρ

(∆γ + (N − 1)ρ)(ω0 +∆εi)− ρ((N − 1)ω0 +∆
∑
j 6=i

εi)
 (98)

= ρ+N

2Nρ ω0 + ρ+N

2Nγ εi −
ρ+N

2Nγ
∑
j 6=i

εj. (99)

Substituting γ, we obtain that this is exactly the symmetric Gaussian structure (41).
The analysis in this section suggests a modification of our certification method for

the environments in which an optimal information structure features extraneous noise.
In such environments, if the optimal noise structure is difficult to guess, it might help
considering a perturbed model which approaches the original model in the limit and in
which the allocation rule is uniquely pinned down in the adversarial contracting problem.
The right noise structure could then be obtained as the limit of this allocation rule.

B.4 Bounded Action Spaces

In the main text, we presented and studied the information-design problem in games
with unbounded action spaces, Ai = R for all i. This enabled us to ignore the possibility
of corner solutions and to present the analysis in its simplest form. In this section, we
extend our methodology to bounded action spaces, which may be more natural in some
applications, and show that our solution method easily generalizes to this case.

To this end, consider the concave information-design problem as in the main text,
but let the action space of each player to be bounded from below and from above,
Ai = [ai, ai], −∞ < ai < ai < +∞.23 In this setting, for any given belief over the

23The extension to half-bounded spaces is straightforward.

56



state and opponents’ actions ν ∈ ∆(A−i × Ω), the player’s best-response action a∗i (ν),
if interior, must be unimprovable by local deviations to lower and higher actions and
hence satisfies the same first-order condition as in the unbounded setting,

Eν [u̇i(a∗i , a−i, ω)] = 0. (100)

At the same time, the optimal boundary actions must only be unimprovable by one-sided
local deviations. As such, the player’s best response if located on the boundary must
satisfy the first-order conditions in the inequality form:

Eν [u̇i(a∗i , a−i, ω)] ≤ 0, (101)

Eν [u̇i(a∗i , a−i, ω)] ≥ 0. (102)

We can write the primal information-design problem with the modified obedience
constraints as:

V P , sup
π∈∆(A×Ω)

∫
A×Ω

v(a, ω)dπ (103)

s.t.
∫
A′i×A−i×Ω

u̇i(a, ω)dπ = 0 ∀ i = 1, . . . , N,measurableA′i ⊆ (ai, ai),

(104)∫
A′i×A−i×Ω

u̇i(a, ω)dπ ≤ 0 ∀ i = 1, . . . , N,measurableA′i ⊆ [ai, ai),

(105)∫
A′i×A−i×Ω

u̇i(a, ω)dπ ≥ 0 ∀ i = 1, . . . , N,measurableA′i ⊆ (ai, ai],

(106)∫
A×Ω′

dπ =
∫
Ω′

dµ0 ∀measurableΩ′ ⊆ Ω. (107)

This primal problem entails the dual problem

V D , inf
λ∈×iL(Ai),γ∈L(Ω)

∫
Ω
γ(ω)dµ0 (108)

s.t.
N∑
i=1
λi(ai)u̇i(a, ω) + γ(ω) ≥ v(a, ω) ∀ a ∈ A, ω ∈ Ω,

λi(ai) ≤ 0, λi(ai) ≥ 0 ∀ i = 1, . . . , N. (109)

The presence of additional obedience constraints (105), (106) in the primal problem
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translates into the sign constraints on the Lagrange multipliers (109) in the dual problem.
Intuitively, the marginal benefit from pushing the action ai upward is negative at the
lower bound and positive at the upper bound.

As was in the case of unbounded actions, the dual problem (108) can be simplified
and rewritten as an adversarial-contracting problem:

V D = inf
λ∈×iL(Ai)

Eµ0 [sup
a∈A

uλ(a, ω)] (110)

s.t. λi(ai) ≤ 0, λi(ai) ≥ 0 ∀ i = 1, . . . , N. (111)

That is, the adversarial-contracting interpretation remains intact, but the space of al-
lowed contracts is limited at the boundary actions by the presence of sign constraints
on contract parameters.

In the case of bounded actions, say that the measure π ∈ ∆(A×Ω) is implementable
by information if it satisfies the constraints of the primal problem (103) and that it
is implementable by incentives if there exists a feasible contract in the dual problem
(110) that induces this measure as a best response. The results on weak duality and the
certification solution method continue to hold verbatim.

Theorem 4. (Weak Duality with Bounded Action Spaces) V P ≤ V D.

Proof. Take any dual variables (λ, γ) that satisfy the constraints of dual problem (108).
Take any measure π that satisfies the constraints of primal problem (103). Integrating
both sides of the dual constraints over a ∈ A and ω ∈ Ω against measure π yields:

∫
A×Ω

v(a, ω)dπ ≤
∫
A×Ω

N∑
i=1

λi(ai)u̇i(a, ω)dπ +
∫
A×Ω

γ(ω)dπ ≤
∫
Ω
γ(ω)dµ0, (112)

where the second inequality follows because π satisfies the primal constraints and the
Lagrange multipliers satisfy the dual constraints. (This inequality holds as equality in
the case of unbounded action spaces.) The left-hand side of (112) is the value of the
primal problem given measure π. At the same time, the right-hand side of (112) is
the value of the dual problem given dual variables (λ, γ). As inequality (112) holds for
any allowed values of primal measure and dual variables, it also holds at the respective
maximization and minimization limits.

Proposition 7. (Optimality Certification with Bounded Action Spaces) If measure
π ∈ ∆(A × Ω) is implementable by information and by incentives, then π is optimal
in the information-design problem.

58



Proof. Take any primal measure π implementable by information, i.e., that satisfies the
constraints of primal problem (103). If it is implementable by incentives, then there
exist dual variables λ that implement this measure in the dual problem (110), and

V D = inf
λ̂∈×iL(Ai)

Eµ0

[
sup
a∈A

uλ̂(a, ω)
]

(113)

≤ Eµ0,π

[
uλ(a, ω)

]
(114)

=
∫
A×Ω

v(a, ω)dπ −
∫
A×Ω

N∑
i=1

λi(ai)u̇i(a, ω)dπ (115)

≤
∫
A×Ω

v(a, ω)dπ ≤ V P , (116)

where the first inequality follows from the implementability of π in the dual problem
and the last three steps follow from the feasibility of π in the primal problem and the
sign constraints on dual variables. (The one but last step holds as equality in the case
of unbounded actions.)

Furthermore, by Theorem 4, V D ≥ V P . Hence,

V D =
∫
A×Ω

v(a, ω)dπ = V P , (117)

which proves the optimality of measure π.

To summarize, information design in concave games with bounded action spaces can
be approached with the same methodology as the information design in concave games
with unbounded action spaces presented in the main text.
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