# Information Flows and Memory in Games 

Pierpaolo Battigalli<br>Bocconi and IGIER

Nicolò Generoso
Yale

August 24, 2022
EEA-ESEM 2022

Introduction / Motivation

## Introduction / Motivation

- Focus on information in sequential games.


## Introduction / Motivation

- Focus on information in sequential games.
- Traditional approach: stocks of information/information sets.



## Introduction / Motivation

- Focus on information in sequential games.
- Traditional approach: stocks of information/information sets.

- But impossible to disentangle aspects of the rules of the game from cognitive features.

Introduction / Flows of information

## Introduction / Flows of information

- Our methodological tenet: the formal description of the rules of the game should be independent of the personal features of those who happen to play the game.


## Introduction / Flows of information

- Our methodological tenet: the formal description of the rules of the game should be independent of the personal features of those who happen to play the game.
- Our idea: flows of information.



## Introduction / Flows of information

- Our methodological tenet: the formal description of the rules of the game should be independent of the personal features of those who happen to play the game.
- Our idea: flows of information.

- Note: this is determined by the rules of the game.


## Introduction / Memory

## Introduction / Memory

- We can add descriptions of cognitive features and retrieve information sets.


## Introduction / Memory

- We can add descriptions of cognitive features and retrieve information sets.
- For example, if Ann has "good" memory:



## Introduction / Memory

## Introduction / Memory

- But Ann may be forgetful:



## Introduction / Memory

- But Ann may be forgetful:

- Modeling cognitive limitations explicitly is important: a designer has control over the rules of interaction only!


## Roadmap

(1) Introduction
(2) Flows of information
(3) Memory
(4) Conclusion
(5) Bonus: An illustration

## Roadmap

## Introduction

(2) Flows of information
(3) Memory

4 Conclusion

5 Bonus: An illustration

Flows of information / Key ingredients

Flows of information / Key ingredients

- I players


## Flows of information / Key ingredients

- I players
- $A_{i}$ actions potentially available to $i \in I$.


## Flows of information / Key ingredients

- I players
- $A_{i}$ actions potentially available to $i \in I$.
- $M_{i}$ messages potentially observable by $i \in I$.


## Flows of information / Key ingredients

- I players
- $A_{i}$ actions potentially available to $i \in I$.
- $M_{i}$ messages potentially observable by $i \in I$.
- For $J \subseteq I, A_{J}:=X_{j \in J} A_{j}$ and $M_{J}:=X_{j \in J} M_{j}$.
$A:=\bigcup_{J \in 2^{\prime} \backslash\{\emptyset\}} A_{J}$ and $M:=\bigcup_{J \in 2^{\prime} \backslash\{\emptyset\}} M_{J} \rightarrow$ sets of action and message profiles.
* Note: we allow for situations where not every player moves or receives messages.

Flows of information / Key ingredients

## Flows of information / Key ingredients

- $\mathcal{A}_{i}: M_{i} \rightrightarrows A_{i} \quad$ action feasibility correspondence of $i \in I$. $\mathcal{A}_{i}\left(m_{i}\right) \subseteq A_{i} \quad$ set of actions available to $i$ after message $m_{i}$.
* Note: messages "explain" what actions can be chosen.


## Flows of information / Key ingredients

- $\mathcal{A}_{i}: M_{i} \rightrightarrows A_{i} \quad$ action feasibility correspondence of $i \in I$. $\mathcal{A}_{i}\left(m_{i}\right) \subseteq A_{i} \quad$ set of actions available to $i$ after message $m_{i}$.
* Note: messages "explain" what actions can be chosen.
- $f: A^{\leq L} \rightarrow M$ feedback function.
$f\left(a^{\ell}\right) \quad$ message profile generated after sequence of action profiles $a^{\ell}$.
* Notation: $X \leq L=$ set of sequences in $X$ of length $L$ or less, $x^{\ell}=$ sequence of length $\ell$.


## Flows of information / Key ingredients

- $\mathcal{A}_{i}: M_{i} \rightrightarrows A_{i} \quad$ action feasibility correspondence of $i \in I$. $\mathcal{A}_{i}\left(m_{i}\right) \subseteq A_{i} \quad$ set of actions available to $i$ after message $m_{i}$.
* Note: messages "explain" what actions can be chosen.
- $f: A^{\leq L} \rightarrow M$ feedback function.
$f\left(a^{\ell}\right) \quad$ message profile generated after sequence of action profiles $a^{\ell}$.
* Notation: $X \leq L=$ set of sequences in $X$ of length $L$ or less, $x^{\ell}=$ sequence of length $\ell$.
- A game structure is $\Gamma=\left\langle I, f,\left(A_{i}, \mathcal{A}_{i}, M_{i}\right)_{i \in I}\right\rangle$.
* Note: this describes the rules of the game only.

Flows of information / The game tree

## Flows of information / The game tree

- A play is $p=\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)$.
* Note: plays may be partial, different terminology from the usual one.


## Flows of information / The game tree

- A play is $p=\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)$.
* Note: plays may be partial, different terminology from the usual one.
- A history is $h=\left(m_{0}, a_{1}, m_{1}, \ldots, a_{\ell}, m_{\ell}\right)$.
* Interpretation: a message profile informs the players that the game is starting, then a message profile is generated after each action profile.


## Flows of information / The game tree

- A play is $p=\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)$.
* Note: plays may be partial, different terminology from the usual one.
- A history is $h=\left(m_{0}, a_{1}, m_{1}, \ldots, a_{\ell}, m_{\ell}\right)$.
* Interpretation: a message profile informs the players that the game is starting, then a message profile is generated after each action profile.
- We derive the trees of feasible plays and histories ( $P$ and $H$ ) from the rules $\Gamma$.
$\star$ Feasible $=$ action profiles are allowed, and message profiles are generated according to the feedback function.


## Roadmap

(1) Introduction
(2) Flows of information
(3) Memory
(4) Conclusion

5 Bonus: An illustration

Memory / A game-independent description

## Memory / A game-independent description

- Consider a set $X$ and $X \leq N$ (with $N \in \mathbb{N}$ ).
* Interpretation: $\mathbf{x} \in X \leq N$ is a sequence of pieces of information ( $\simeq$ a database).


## Memory / A game-independent description

- Consider a set $X$ and $X \leq N$ (with $N \in \mathbb{N}$ ).
$\star$ Interpretation: $\mathbf{x} \in X \leq N$ is a sequence of pieces of information ( $\simeq$ a database).
- A memory correspondence for agent $i$ is a nonempty-valued correspondence $\mathcal{M}_{i}: X \leq N \rightrightarrows X \leq N$.
* Interpretation: $\mathcal{M}_{i}(\mathbf{x})$ is the set of information streams/databases that are consistent with what $i$ remembers of x ( $\simeq$ how precisely $\mathbf{x}$ is stored/retained).


## Memory / A game-independent description

- Consider a set $X$ and $X \leq N$ (with $N \in \mathbb{N}$ ).
$\star$ Interpretation: $\mathbf{x} \in X \leq N$ is a sequence of pieces of information ( $\simeq$ a database).
- A memory correspondence for agent $i$ is a nonempty-valued correspondence $\mathcal{M}_{i}: X \leq N \rightrightarrows X \leq N$.
* Interpretation: $\mathcal{M}_{i}(\mathrm{x})$ is the set of information streams/databases that are consistent with what $i$ remembers of $\mathrm{x}(\simeq$ how precisely x is stored/retained).
- Example: $\mathbf{x}=$ Ann tells Bob she liked the movie $=($ Ann, liked, movie $)$.


## Memory / A game-independent description

- Consider a set $X$ and $X \leq N$ (with $N \in \mathbb{N}$ ).
$\star$ Interpretation: $\mathbf{x} \in X \leq N$ is a sequence of pieces of information ( $\simeq$ a database).
- A memory correspondence for agent $i$ is a nonempty-valued correspondence $\mathcal{M}_{i}: X \leq N \rightrightarrows X \leq N$.
* Interpretation: $\mathcal{M}_{i}(\mathbf{x})$ is the set of information streams/databases that are consistent with what $i$ remembers of x ( $\simeq$ how precisely $\mathbf{x}$ is stored/retained).
- Example: $\mathbf{x}=$ Ann tells Bob she liked the movie $=($ Ann, liked, movie $)$. Bob remembers (??, liked, movie).


## Memory / A game-independent description

- Consider a set $X$ and $X \leq N$ (with $N \in \mathbb{N}$ ).
$\star$ Interpretation: $\mathbf{x} \in X \leq N$ is a sequence of pieces of information ( $\simeq$ a database).
- A memory correspondence for agent $i$ is a nonempty-valued correspondence $\mathcal{M}_{i}: X \leq N \rightrightarrows X \leq N$.
* Interpretation: $\mathcal{M}_{i}(\mathbf{x})$ is the set of information streams/databases that are consistent with what $i$ remembers of x ( $\simeq$ how precisely $\mathbf{x}$ is stored/retained).
- Example: $\mathbf{x}=$ Ann tells Bob she liked the movie $=($ Ann, liked, movie $)$. Bob remembers (??, liked, movie). So (Chloe, liked, movie) $\in \mathcal{M}_{\text {Bob }}(\mathbf{x})$.

Memory / Some ideas

## Memory / Some ideas

- Perfect memory: retain/retrieve the exact sequence of pieces of information observed or actions taken.


## Memory / Some ideas

- Perfect memory: retain/retrieve the exact sequence of pieces of information observed or actions taken.
- Bounded memory: retain only the sequence of the most recent pieces of information.


## Memory / Some ideas

- Perfect memory: retain/retrieve the exact sequence of pieces of information observed or actions taken.
- Bounded memory: retain only the sequence of the most recent pieces of information.
- Statistical memory: remember which pieces of information were observed and their frequencies, but not their order.


## Memory / Some ideas

- Perfect memory: retain/retrieve the exact sequence of pieces of information observed or actions taken.
- Bounded memory: retain only the sequence of the most recent pieces of information.
- Statistical memory: remember which pieces of information were observed and their frequencies, but not their order.
- Approximate memory: remember something that is "similar" to the observed sequence.


## Memory / Some ideas

- Perfect memory: retain/retrieve the exact sequence of pieces of information observed or actions taken.
- Bounded memory: retain only the sequence of the most recent pieces of information.
- Statistical memory: remember which pieces of information were observed and their frequencies, but not their order.
- Approximate memory: remember something that is "similar" to the observed sequence.
- Context-dependent memory: remember pieces of information observed in contexts similar to the one being experienced.


## Memory / Memory in games

## Memory / Memory in games

- How are streams of information treated during a game?


## Memory / Memory in games

- How are streams of information treated during a game?
- Each play $p$ induces a unique history $h$ with the feedback function.

$$
p=\left(a_{1}, \ldots, a_{\ell}\right) \longrightarrow h=\left(m_{0}, a_{1}, f\left(a_{1}\right), a_{2}, f\left(a_{1}, a_{2}\right), \ldots, a_{\ell}, f\left(a_{1}, \ldots, a_{\ell}\right)\right)
$$

## Memory / Memory in games

- How are streams of information treated during a game?
- Each play $p$ induces a unique history $h$ with the feedback function.
- But player $i$ has access only to the actions he played and messages observed during $h$. This is the personal history $h_{i}$ induced by $h$.

$$
\begin{gathered}
p=\left(a_{1}, \ldots, a_{\ell}\right) \longrightarrow h=\left(m_{0}, a_{1}, f\left(a_{1}\right), a_{2}, f\left(a_{1}, a_{2}\right), \ldots, a_{\ell}, f\left(a_{1}, \ldots, a_{\ell}\right)\right) \\
h_{i}=\left(m_{0 i}, a_{1 i}, m_{1 i}, \ldots, a_{k i}, m_{k i}\right)
\end{gathered}
$$

## Memory / Memory in games

- How are streams of information treated during a game?
- Each play $p$ induces a unique history $h$ with the feedback function.
- But player $i$ has access only to the actions he played and messages observed during $h$. This is the personal history $h_{i}$ induced by $h$.
- $F_{i}(p)=$ personal history of $i$ induced by play $p=$ relevant stream of information for $i$ when $p$ has realized.

$$
\begin{aligned}
p=\left(a_{1}, \ldots, a_{\ell}\right) \longrightarrow & F_{i}=\left(m_{0}, a_{1}, f\left(a_{1}\right), a_{2}, f\left(a_{1}, a_{2}\right), \ldots, a_{\ell}, f\left(a_{1}, \ldots, a_{\ell}\right)\right) \\
& h_{i}=\left(m_{0 i}, a_{1 i}, m_{1 i}, \ldots, a_{k i}, m_{k i}\right)
\end{aligned}
$$

## Memory / Memory in games

## Memory / Memory in games

- Assume p has realized and take player i's perspective.


## Memory / Memory in games

- Assume $p$ has realized and take player i's perspective.
- The set of plays indistinguishable from $p$ is

$$
\mathcal{F}_{i}(p)=\left\{p^{\prime}: F_{i}\left(p^{\prime}\right)=F_{i}(p)\right\}=F_{i}^{-1}\left(F_{i}(p)\right)
$$

## Memory / Memory in games

- Assume $p$ has realized and take player i's perspective.
- The set of plays indistinguishable from $p$ is

$$
\mathcal{F}_{i}(p)=\left\{p^{\prime}: F_{i}\left(p^{\prime}\right)=F_{i}(p)\right\}=F_{i}^{-1}\left(F_{i}(p)\right)
$$

* Interpretation: given the actual stream of information $F_{i}(p)$, plays in $\mathcal{F}_{i}(p)$ cannot be ruled out (objective notion).


## Memory / Memory in games

- Assume $p$ has realized and take player i's perspective.
- The set of plays indistinguishable from $p$ is

$$
\mathcal{F}_{i}(p)=\left\{p^{\prime}: F_{i}\left(p^{\prime}\right)=F_{i}(p)\right\}=F_{i}^{-1}\left(F_{i}(p)\right)
$$

* Interpretation: given the actual stream of information $F_{i}(p)$, plays in $\mathcal{F}_{i}(p)$ cannot be ruled out (objective notion).
- What about (imperfect) memory $\mathcal{M}_{i}$ ? The set of plays possible given $p$ is

$$
\mathcal{P}_{i}(p)=\left\{p^{\prime}: F_{i}\left(p^{\prime}\right) \in \mathcal{M}_{i}\left(F_{i}(p)\right)\right\}=F_{i}^{-1}\left(\mathcal{M}_{i}\left(F_{i}(p)\right)\right)
$$

## Memory / Memory in games

- Assume $p$ has realized and take player i's perspective.
- The set of plays indistinguishable from $p$ is

$$
\mathcal{F}_{i}(p)=\left\{p^{\prime}: F_{i}\left(p^{\prime}\right)=F_{i}(p)\right\}=F_{i}^{-1}\left(F_{i}(p)\right)
$$

* Interpretation: given the actual stream of information $F_{i}(p)$, plays in $\mathcal{F}_{i}(p)$ cannot be ruled out (objective notion).
- What about (imperfect) memory $\mathcal{M}_{i}$ ? The set of plays possible given $p$ is

$$
\mathcal{P}_{i}(p)=\left\{p^{\prime}: F_{i}\left(p^{\prime}\right) \in \mathcal{M}_{i}\left(F_{i}(p)\right)\right\}=F_{i}^{-1}\left(\mathcal{M}_{i}\left(F_{i}(p)\right)\right)
$$

* Interpretation: given the remembered stream(s) of information $\mathcal{M}_{i}\left(F_{i}(p)\right)$, plays in $\mathcal{P}_{i}(p)$ cannot be ruled out (subjective notion).


## Memory / Back to the example

## Memory / Back to the example

Indistinguishability $\left(\mathcal{F}_{\text {Ann }}\right)$ :
"Chance chose $a^{\circ}$, it's your turn"


Possibility $\left(\mathcal{P}_{\text {Ann }}\right)$ :


Memory / Some comments

## Memory / Some comments

- How does our approach compare to the usual one? Two (intuitive) results.
$\star$ Terminology: information partition $=$ collection of information sets $=$ partition of plays.


## Memory / Some comments

- How does our approach compare to the usual one? Two (intuitive) results.
* Terminology: information partition $=$ collection of information sets $=$ partition of plays.
(1) An information partition satisfies perfect recall iff it is induced by some flows of information and players have perfect memory.


## Memory / Some comments

- How does our approach compare to the usual one? Two (intuitive) results.
* Terminology: information partition $=$ collection of information sets $=$ partition of plays.
(1) An information partition satisfies perfect recall iff it is induced by some flows of information and players have perfect memory.
* A simple characterization of the perfect recall property.


## Memory / Some comments

- How does our approach compare to the usual one? Two (intuitive) results.
* Terminology: information partition $=$ collection of information sets $=$ partition of plays.
(11) An information partition satisfies perfect recall iff it is induced by some flows of information and players have perfect memory.
* A simple characterization of the perfect recall property.
(2) Every information partition can be obtained using flows of information and some profile of memory correspondences.


## Memory / Some comments

- How does our approach compare to the usual one? Two (intuitive) results.
* Terminology: information partition $=$ collection of information sets $=$ partition of plays.
(1) An information partition satisfies perfect recall iff it is induced by some flows of information and players have perfect memory.
* A simple characterization of the perfect recall property.
(2) Every information partition can be obtained using flows of information and some profile of memory correspondences.
* Note: our approach is more expressive $\rightarrow$ it allows for cognitive limitations that do not induce information partitions (e.g., ruling out the actual play).


## Roadmap

(1) Introduction
(2) Flows of information
3) Memory
(4) Conclusion
(5) Bonus: An illustration

What's next?

## What's next?

In this paper:

- A framework to disentangle the objective information and subjective retention/retrieval in games.
- A rudimentary theory of memory.


## What's next?

In this paper:

- A framework to disentangle the objective information and subjective retention/retrieval in games.
- A rudimentary theory of memory.

Next steps:

- A theory of imperfect memory (or bounded rationality) and strategic thinking.
- A more structured theory of memory.


## Thank you

nicolo.generoso@yale.edu

## Roadmap

## 1) Introduction

(2) Flows of information

Memory
(4) Conclusion
(5) Bonus: An illustration

## An illustration / The absentminded driver

## An illustration / The absentminded driver

- A driver has to take a the second exit. But when she gets to an exit she cannot remember if she already encountered an exit or not (Piccione \& Rubinstein 1997):



## An illustration / The absentminded driver

- A driver has to take a the second exit. But when she gets to an exit she cannot remember if she already encountered an exit or not (Piccione \& Rubinstein 1997):

- The information set $\{\varnothing,(N o t)\}$ is often thought to be problematic (e.g., Alos-Ferrer \& Ritzberger 2016).


## An illustration / The absentminded driver

## An illustration / The absentminded driver

- We can retrieve absentmindedness with suitable mnemonic failures.


## An illustration / The absentminded driver

- We can retrieve absentmindedness with suitable mnemonic failures.
- The information flow:



## An illustration / The absentminded driver

- We can retrieve absentmindedness with suitable mnemonic failures.
- The information flow:

- Interpretation: the driver is just told (or, she can observe while driving) that she encountered an exit, but she is not reminded of whether it is the first or the second one.


## An illustration / The absentminded driver

## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:


## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:
(1) Driver does not remember if she took an action.


## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:
(1) Driver does not remember if she took an action.
(2) The message received after (Not) does not remind the driver of her previous action.


## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:
(1) Driver does not remember if she took an action.
(2) The message received after ( $N o t$ ) does not remind the driver of her previous action.
- The memory correspondence: the driver retains only the last message observed.


## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:
(1) Driver does not remember if she took an action.
(2) The message received after (Not) does not remind the driver of her previous action.
- The memory correspondence: the driver retains only the last message observed.
- The empty play $\varnothing$ induces the personal history $\left(m^{*}\right)$, where $m^{*}=$ "You reached an exit".


## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:
(1) Driver does not remember if she took an action.
(2) The message received after ( $N o t$ ) does not remind the driver of her previous action.
- The memory correspondence: the driver retains only the last message observed.
- The empty play $\varnothing$ induces the personal history $\left(m^{*}\right)$, where $m^{*}=$ "You reached an exit".
- The play (Not) induces the personal history ( $\left.m^{*}, N o t, m^{*}\right)$.


## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:
(1) Driver does not remember if she took an action.
(2) The message received after ( $N o t$ ) does not remind the driver of her previous action.
- The memory correspondence: the driver retains only the last message observed.
- The empty play $\varnothing$ induces the personal history $\left(m^{*}\right)$, where $m^{*}=$ "You reached an exit".
- The play (Not) induces the personal history $\left(m^{*}, N o t, m^{*}\right)$.
- So, they can be confused.


## An illustration / The absentminded driver

- The failure to distinguish the plays $\varnothing$ and (Not) is due to two factors:
(1) Driver does not remember if she took an action.
(2) The message received after ( $N o t$ ) does not remind the driver of her previous action.
- The memory correspondence: the driver retains only the last message observed.
- The empty play $\varnothing$ induces the personal history $\left(m^{*}\right)$, where $m^{*}=$ "You reached an exit".
- The play (Not) induces the personal history ( $m^{*}, N o t, m^{*}$ ).
- So, they can be confused.
- Absentmindedness emerges as a natural cognitive limitation: the agent remembers only the information materially available in that moment.


## References

Alos-Ferrer, C., \& Ritzberger, K. (2016). The Theory of Extensive Form Games.
Piccione, M., \& Rubinstein, A. (1997). On the interpretation of decision problems with imperfect recall. Games and Economic Behavior, 20(1), 3-24.

