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Abstract

The robustness of inferential results drawn using econometric methods is central
to their credibility. In this paper, we investigate the sensitivity of regression-based
inference to the removal of influential sets of observations theoretically and em-
pirically. We explore three approximate algorithms that address computational
challenges and masking issues. We investigate sensitivity in previous development
economics studies that assess the development impacts of slave trade, microcredit,
and migration. The results of these studies are sensitive to relatively small influen-
tial sets. We show how sensitivity checks to influential sets can inform researchers
about misspecification issues, the existence of heterogeneous effects, and problems
with external validity.
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1 Introduction
Econometric methods are an important instrument of scientific discovery and vital for the
design of evidence-based policy. By approximating real-world phenomena, they provide us
with empirical insights, allow us to test theories, and facilitate prediction. The sensitivity
of empirical inferences drawn to modeling assumptions is of particular importance in
the field of applied econometrics, and is a long-standing and active subject of research.
The existing literature tends to focus on sensitivity along the horizontal dimension of
the data, i.e., related to the functional form of model specifications. Approaches that
address these aspects include extreme bounds analysis (Leamer, 1983), shrinkage methods
(Sims, 1980), model averaging (Steel, 2020), elaborate research designs that reduce model
dependence (Angrist and Pischke, 2010), and randomization (Athey and Imbens, 2017).
The sensitivity of inference to certain sets of observations, i.e., the vertical dimension of
the data, however, has received less attention in the econometric literature.

There is a long of studies addressing the role of influential observations and outliers in
regression models in the statistical literature(see Belsley et al., 1980, for instance). It is
well known that single influential observations may hold considerable sway over regression
results (Cook, 1979). Sensitivity checks based on the exclusion of such observations
can provide important insights, and there are many approaches to identify them and
account for their impacts (see e.g. Chatterjee and Hadi, 1986). This is not the case for
influential sets of observations, both theoretically and empirically. Analyzing influential
sets exactly is extremely expensive in terms of computation, while approximations must
address masking, a phenomenon where certain observations obscure the influence of others
(Chatterjee and Hadi, 1986). For these reasons, the literature has mostly sidestepped
influential sets, for instance via robust estimators or resampling methods (see e.g. Hampel
et al., 2005; Efron and Tibshirani, 1994).

In this paper, we investigate the sensitivity of regression-based inferential results to
influential sets of observations. We evaluate three algorithmic approaches for assessing
the sensitivity of regression statistics to influential sets. These algorithms are aimed at
identifying maximally influential sets, and combine exact computation and approximate
heuristics to avoid the costs of an exhaustive search. To illustrate our approach and guide
applied researchers, we revisit several empirical studies in the field of economic develop-
ment. We consider the number of observations that need to be excluded to overturn a
particular result as a summary statistic, and find that some established results may be
less robust than initially thought. In particular, the long-run impacts of bad geography
in Africa may not be mediated by the slave trades (as proposed by Nunn and Puga,
2012), and their impacts on interpersonal trust are more heterogeneous than previously
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assumed (Nunn and Wantchekon, 2011). We find that masking issues consistently appear
in practice, posing a challenge for credible sensitivity checks.

The remainder of the paper is structured as follows. In Section 2, we establish the
theoretical framework and connect it to the relevant literature in statistics and economet-
rics. The algorithmic approaches are presented and illustrated in Section 3. In Section 4,
we investigate the sensitivity to influential sets of previous studies on the development
impacts of slave trade, microcredit, and migration, in order to illustrate our approaches.
We discuss our findings and conclude in Section 5.

2 Influential sets in linear regression models
Consider the linear regression model

y = Xβ + ε, (1)

where y is an N × 1 vector containing observations of the dependent variable, X is an
N × P matrix with the explanatory variables, β is a P × 1 vector of coefficients to be
estimated, and ε is an N × 1 vector of independent error terms with zero mean and
unknown variance σ2. We denote the ith rows of y and X as yi and xi. The deletion of
the rows indexed by a set I is indicated by a bracketed subscript (I), i.e. y(I) denotes
the vector of observations of the dependent variable without the elements identified by
the set I. A set of observations, S, is defined as a subset of the set of all observations
S̃ = {s|s ∈ Z ∩ [1, N ]}. We denote the cardinality of a set using |Sα| = Nα = ⌈Nα⌉,
where α ∈ [0, 1]. The empty set is denoted by ∅ and the set of all sets of cardinality Nα

is referred to as [S]α.
Our main focus lies on the sensitivity of some quantity of interest, λ, to removing

influential sets from the sample. This quantity could be a coefficient value or standard
error. We define influential sets following Belsley et al. (1980), as sets whose omission
has a large impact on λ, when compared to the omission of most other sets of equal
size. We measure the impacts of removing such sets with a generalized influence function
(Hampel et al., 2005) that accommodates sets of observations. If we are interested in the
sensitivity of the full sample, ordinary least squares (OLS) estimate of β in Equation 1
to dropping a set of observations S, we compare λ(∅) and λ(S). For this, we consider the
following particular definition of λ as a function of the removed set

λ(S) = λ(S) =
(
X′

(S)X(S)
)−1

X′
(S)y(S), (2)
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where we suppress the dependence on the data in order to simplify notation. To assess
the sensitivity of λ, we consider the minimal influential set, i.e. the smallest set whose
omission achieves a target impact on λ. We formalize this set by defining the maximally
influential set S∗

α, which achieves the maximal influence for a given number of omitted
observations, as

S∗
α = argmax

S∈[S]α
∆(λ,S, T ), (3)

where the influence function ∆ measures the impact difference on λ, when removing a set
S compared to a set T . To ease notation, we will suppress the dependence on λ, and on
T , as long as T = ∅. One example for ∆ is the squared deviations from the full sample
OLS estimator (see Equation 2), ∆(S) = (λ(∅) − λ(S))

′(λ(∅) − λ(S)).
The minimal influential set S∗∗ can then be defined as the set

S∗∗ = S∗
argminα

s.t. ∆(S∗
α) ≥ ∆∗, (4)

where ∆∗ is a target value of choice. An example is the minimal influential set achieving
a sign switch of a coefficient. This can be achieved by setting ∆∗ = 0 and using ∆(S) =
− sign(λ(∅))λ(S). After obtaining a minimal influential set, we may be interested in its
size (both in absolute terms and relative to the full sample size) and potentially the
characteristics of its members.

Identifying a minimal influential set using full enumeration is computationally pro-
hibitive, and we must rely on approximations for all but the most trivial examples. In
order to assess approximate approaches, we require some additional concepts related to
the estimates and potential sources of error. First, observations that are truly mem-
bers of a maximally influential set S∗

α may not be identified in the estimated set Ŝ∗
α, a

phenomenon we call masking. These observations are masked by other, seemingly more
influential, observations. Masked observations are given by the set difference S∗

α − Ŝ∗
α.

The severity of masking can be quantified using the number or share of masked obser-
vations, or by the difference in influence between the true and estimated sets. Second,
the estimated impact of removing a set may not reflect the true value due to a poor
approximation of ∆(S).

Both issues are tightly related to the concept of jointly influential sets. To analyze
jointly influential sets, it helps to consider the partial influence of a set S on a scalar λ,
given by the influence function ∆(S) = λ(∅) − λ(S). We use the shorthand δi = δi|∅ =

∆({i},∅) for the effect of removing a single observation from the full sample. A jointly
influential set is one that satisfies |δi|j| ≫ |δi|∅| for all i, j ∈ S, that is, the impact of
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removing i after j has been removed is much larger than removing i from the full sample.
In other words, the impact of removing any member j from a jointly influential set greatly
increases the impact of removing any other member i. A corollary of this definition is
that the influence of a jointly influential set exceeds the sum of influences of its individual
members, i.e. ∆(S) >

∑
i∈S δi.

2.1 Influential observations

The statistics literature is rich in methods for the identification of single influential ob-
servations, i.e. influential sets with cardinality Nα = 1 (see e.g. Chatterjee and Hadi,
1986; Hampel et al., 2005; Maronna et al., 2019). Measures of influence are central to
this pursuit, and there is a wide variety of interrelated statistics used for the purpose
of measuring the impact of the removal of an observation (Chatterjee and Hadi, 1986).
The residuals, e = y −Xβ̂, and the leverage (the diagonal elements of the ”hat matrix”
H = X (X′X)−1X′) are pivotal elements of such influence measures. In the linear regres-
sion setting, an observation is considered influential if it exhibits both a large residual and
high leverage. A group of influence measures builds on the influence function of Hampel
et al. (2005). These include Cook’s distance (Cook, 1979), the Welsch-Kuh distance (Bel-
sley et al., 1980), and modifications thereof. The notion of a confidence ellipsoid is used
in other approaches for quantifying influence, including the likelihood distance (Cook
and Weisberg, 1982), and robust estimation methods (Hampel et al., 2005; Huber, 1964;
Lewis et al., 2021). In addition, a number of Bayesian approaches for assessing sensitivity
to influential observations have been proposed (Box and Tiao, 1968; Kass et al., 1989;
Pettit and Young, 1990; Verdinelli and Wasserman, 1991).

Most of these approaches consider holistic notions of sensitivity. However, in applied
econometrics we tend to care about the sensitivity of a specific inferential quantity, such
as the sign and significance of a coefficient. Assessing the sensitivity of these two to
influential observations thus appears as a natural robustness check. The literature has
produced a number of relevant results for assessing this type of sensitivity to influential
observations. A prominent example considers the sensitivity of elements of the vector of
OLS estimates. The influence of a single observation in this setting is given by

δi = λ(∅) − λ({i}) =
(X′X)−1 x′

iei
1− hi

, (5)

where hi = Hii is the leverage of observation i. This statistic, termed DFBETAi by
Belsley et al. (1980), is a well known and widely available measure of influence for single
observations on individual coefficient estimates. Similar results for σ2 or the standard
errors of coefficient estimates are also available. Belsley et al. (1980) use these quantities
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to build holistic measures of influence such as scaled versions of Equation 5 and the
‘difference in fits’ statistic, i.e. the change in predicted value of an observation if that
observation is dropped. The partial effects of the removal of individual observations are
directly available for many interesting quantities and settings, but may be expensive to
compute in some cases. One example are the standard errors for parameter estimates,
which rely on (X′

(i)X(i))
−1. Updating formulas for matrix factorizations are helpful in such

cases, but not always available or applicable — e.g. for the coefficients using instrumental
variable estimation (as derived by Phillips, 1977).

2.2 Identifying influential sets

The identification of maximally influential sets is considerably more challenging than in
the single observation case. Exactly determining a maximally influential set by enumera-
tion requires a total of

(
N
Nα

)
calculations of the influence measure. This is computationally

infeasible for all but the simplest problems. Despite the availability of closed-form re-
sults and fast approximations, solutions are generally intractable for Nα > 1, even when
influence measures can be calculated near instantly.1 To make the analysis tractable,
maximally influential sets need to be approximated, for instance using observations with
large individual impacts (see e.g. Broderick et al., 2020). Importantly, there is a trade-off
between the accuracy of the identified set and computational speed. Approximations may
run into severe masking problems, especially in the presence of particularly influential
observations or jointly influential sets.

The literature largely circumvents influential sets, inter alia focusing on robust statis-
tics. Robust estimators, like M- and S-estimators, allow for inference that is resistant to
outliers and influential observations (see, e.g., Hampel et al., 2005; Huber, 1964; Maronna
et al., 2019). Overall, these robust methods are rarely used in applied work (Stigler, 2010).
Riani et al. (2014) posit that this is due to (1) the number of decisions that need to be
made (for instance regarding the breakdown point (the number of ‘incorrect’ observations
an estimator can handle before producing an ‘incorrect’ result, see Maronna et al., 2019),
(2) prohibitive computational cost, and (3) loss of information. Stigler (2010) notes
that the concept of ‘robustness’ itself is elusive, and argues for using more investigative
approaches.

Quantifying the sensitivity of inference to the particular (sub)sample employed can
yield valuable insights into the data and issue under investigation. Examples include

1Consider a total number of observations of N = 1, 000 and all potential sets of size Nα = 10.
Assume that every calculation of λ needs one microsecond — very roughly the time needed to compute
the cross-product of a four-by-four matrix in R. Enumeration would still require about 8.35 billion years,
or 1.8 times the age of the earth, which is safely out-of-scope for non-tenured researchers.
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resampling methods such as the jackknife and the bootstrap, or model selection methods
(Efron and Stein, 1981; Efron and Tibshirani, 1994; Hoeting et al., 1996). These yield
holistic measures of sensitivity, which are generally approximate due to their daunting
computational complexity.2 Another important example are methods for the detection
of outliers. Outliers have no precise definition, and detection is generally an unsuper-
vised task, without a precisely defined objective function. For their detection, clustering
methods are popular tools (Hautamaki et al., 2004; Kaufman and Rousseeuw, 2009; Kim
and Krzanowski, 2007; Shotwell and Slate, 2011), but these approaches are also expensive
computationally, motivating the use of sequential approximations (see e.g. Swallow and
Kianifard, 1996).

An important strand of the literature focuses on the detection of influential sets or
outliers based on the influence of single observations (Belsley et al., 1980; Broderick et al.,
2020; Cook and Weisberg, 1982), on decomposition of the influence matrix (Peña and
Yohai, 1995), or on deviance (see e.g. Atkinson and Riani, 2000; Atkinson et al., 2004).
Simple heuristics and ad-hoc checks that are straightforward to compute and interpret
are commonly used in practice (see e.g. Broderick et al., 2020; Nunn and Puga, 2012;
Young, 2020), while more complicated procedures have received little attention. This is
problematic, since there is a considerable risk of false negatives, particularly in settings
where influential sets or jointly influential sets are present.

3 Algorithms to identify influential sets
In this section, we formalize three algorithms for identifying minimal influential sets.
They differ in their trade-off between accuracy and speed, and variants or special cases of
them have been used and theorized about in the literature. We start with an algorithm
that is extremely cheap to compute, but prone to masking problems, and proceed with two
algorithms that are able to address masking issues, at slightly increased computational
cost. We discuss the use of approximate methods within these algorithms and illustrate
their sensitivity to influential sets and their performance using a simple example.

3.1 Algorithm 0: Initial approximation

The first algorithm (Algorithm 0) builds on influence estimates for single observations,
computed for the full sample. Maximally influential sets are built by ordering observations
based on their initial, full-sample influence. The influence of sets of observations is then

2For instance, Young (2020) finds the delete-2 Jackknife to be infeasible to compute.
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approximated by accumulating individual influence estimates. Algorithm 0 is extremely
cheap to compute, but is prone to false negatives.

Algorithm 0: Initial approximation.
Result: Ŝ∗∗, an estimate of the minimal influential set.
choose the functions λ and ∆, target threshold ∆∗, and maximal size U ;
compute δi = ∆({i}) for all i ∈ S̃;
let S ← argmaxi δi;
while ∆(S) < ∆∗ do

let S ← S ∪ argmaxj δj, for j ̸∈ S;
let ∆(S)←

∑
k∈S δk;

if |S| ≥ U then return unsuccessful;
end
return S;

The algorithm works as follows. Given an influence function, target value, and a
maximum size for the minimal influential set, we compute δi for each i. This computation
is trivial in many interesting cases; otherwise, approximate methods could be used. The
approach used by Broderick et al. (2020), for instance, is a special case of this algorithm,
where δi is computed using a linear approximation.3 The first iterated step is the proposal
of a maximally influential set, based on the union of the observations with the largest
partial influence. The influence of the set is estimated by summing the partial influence
of observations in the set. These two steps are repeated until the specified threshold of
the target function or the maximum size is reached. The result is an estimate of the
minimal influential set and of its influence.

The method embodied in Algorithm 0 can yield useful insights, as demonstrated by
the striking findings of Broderick et al. (2020). However, the low computational cost
comes at the price of accuracy. First, proposing maximally influential sets based on
initial, full-sample influence make the algorithm prone to problems related to masking of
influential observations. The influence measure is not updated after the iterated removal
of observations, and particularly influential observations may mask others. This means
that the algorithm fails to account for jointly influential sets. Second, the influence
approximation suffers from a downward bias (see the results in the Appendix) that is
made considerably worse by the presence of jointly influential sets. Results obtained
using Algorithm 0 are thus prone to convey a false sense of robustness to influential sets
of observations.

3See the Appendix for a discussion of the performance of the approach in Broderick et al. (2020).
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3.2 Algorithm 1: Initial binary search

The second algorithm considered, Algorithm 1, rectifies some critical issues of Algo-
rithm 0, while retaining high computational efficiency. Like Algorithm 0, it builds maxi-
mally influential sets based on the ordering of the initial, full-sample influence. The influ-
ence of the proposed sets, however, is calculated exactly instead of being approximated
by their cumulative partial influence. To minimize computational cost, the algorithm
follows a binary search pattern to determine the minimal influential set. Algorithm 1 is
thus designed to yield more precise results with minimal computational overhead.

Algorithm 1: Initial search.
Result: Ŝ∗∗, an estimate of the minimal influential set.
choose the functions λ and ∆, threshold ∆∗, and maximal size U , let L← 0;
compute δi = ∆({i}) for all i ∈ S̃;
while L ≤ U do

let M ← ⌊(L+ U)/2⌋;
let S be the union of the indices of the M largest δi;
calculate ∆(S);
if ∆(S) < ∆∗ then let L←M + 1;
if ∆(S) ≥ ∆∗ then let U ←M − 1;

end
return S;

Instead of sequentially increasing the size of proposed sets, Algorithm 1 sets the size
of proposed sets, M , by iteratively halving the search interval [L,U ]. In each step, the
influence of the proposed set is computed exactly, and the bounds are updated depending
on the result. If the target is reached, the upper bound is decreased to M − 1, otherwise
the lower bound is increased to M + 1. If an approximate minimal influential set exists
in the interval, it is found after O(logU) steps. The initial upper bound can be set
exogenously or using Algorithm 0 as a first approximation. The complexity of O(logU)

adds negligible overhead over Algorithm 0, making it this divide-and-conquer approach
a practical choice for large scale problems.

Algorithm 1 performs considerably better than Algorithm 0, but its accuracy is not
guaranteed. The identification of influential sets still relies on initial, full-sample influ-
ence estimates for individual observations, meaning that minimal influential sets may
remain hidden due to masking. This is particularly problematic if jointly influential sets
are present in the sample. Fortunately, masking does not directly affect the quality of
influence estimates, only that of proposed sets. The algorithm relies on the (previously
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implicit) assumption that the influence of estimated maximally influential sets increases
steadily. With the next algorithm, we present a simple approach that discards this as-
sumption and is designed to address jointly influential sets more effectively.

3.3 Algorithm 2: Adaptive approximation

The third algorithm proposed, Algorithm 2, uses a simple adaptive procedure for iden-
tifying the minimal influential set. Maximally influential sets are identified iteratively,
facilitating the discovery of potentially masked observations. Measures of influence are
precise, since they are calculated exactly. In addition, the adaptive nature of the algo-
rithm improves the accuracy of proposed maximally influential sets.

Algorithm 2: Adaptive approximation.
Result: Ŝ∗∗, an estimate of the minimal influential set.
choose the functions λ and ∆, target ∆∗, and maximal size U , let S ← ∅;
while ∆(S) < ∆∗ do

compute ∆(S ∪ j), for all j ∈ S̃ − S;
let S ← S ∪ argmaxj ∆(S ∪ j);
if |S| ≥ U then return unsuccessful;

end
return S;

Algorithm 2 starts by computing the influence of all individual observations in the
sample. Candidate maximally influential sets are built adaptively, by forming the union
of the previous set (starting with the empty set) and the observation with the highest
influence. In each step, the exact influence of the new set is computed. These steps are
repeated until a minimal influential set is found, or the maximal size is reached. The
complexity scales linearly with the cardinality of the set, so computational demand is
rarely prohibitive and falls well short of, e.g., a jackknife approach. By adapting after
every removal, this approach reduces the risk of masking problems, and allows us to
investigate sensitivity to the presence of jointly influential sets in a more reliable manner.

3.4 Approximations and computational concerns

The computational complexity of determining minimal influential sets is daunting, mo-
tivating approximate procedures such as the ones presented above. Optimization steps
aimed at improving the calculation of influence measure are crucial to improve the effi-
ciency of these algorithms. An important and conceptually straightforward aspect is the
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efficient execution of the underlying linear algebra operations.4 For many influence mea-
sures, updating formulas for inverse matrices, cross-products, and matrix factorizations
(see e.g. Sherman and Morrison, 1950; Reichel and Gragg, 1990; Hammarling and Lucas,
2008) can improve computation considerably (for example in the case of standard errors
or significance-based measures).

Further improvements are possible with approximate methods. When the number of
covariates is large (e.g. in panel data regression models with cross-sectional fixed effects),
it can be helpful to marginalize out nuisance covariates using the Frisch-Waugh-Lovell
theorem before computing influence measures. The use of iterative solvers with suitable
stopping criteria can also aid rapid computation (see e.g. Trefethen and Bau, 1997). Fur-
ther speed gains are possible when accuracy is sacrificed. For instance, Broderick et al.
(2020), propose a linear approximation to the influence measure that can be computed us-
ing automatic differentiation. In the context of Equation 5, however, this approach skips
the effects of leverage, yielding δi ≈ (X′X)−1 x′

iei. Due to the implicitly fixed leverage,
the influence of all observations is biased downwards, with a particularly large bias for
influential observations (see the Appendix). Similarly to the drawbacks of Algorithm 0,
the linear approximation of Broderick et al. (2020) may yield appropriate results in the
absence of influential observations, but performs worse in other scenarios.

3.5 An illustration

We illustrate the characteristics of the proposed algorithms using a simple example. Con-
sider fitting a simple regression line to the data depicted in Figure 1. The three obser-
vations in the top-right of the scatter plot, marked (a), are influential on the estimated
positive slope. This circumstance is reflected in standard diagnostics, and, unsurprisingly,
all three proposed algorithms correctly identify this set of observations as influential. The
identification of subsequent observations, however, is no longer consistent. The high in-
fluence of the three observations in the center-right of the scatter plot, marked (b), is
masked by the first three observations. Neither Algorithm 0, nor Algorithm 1 unveil their
influence. The adaptive nature of Algorithm 2 allows it to identify their influence, and
correctly adds them to maximally influential sets of size four or above.

Figure 2 depicts the maximally influential sets identified at increasing size, as well as
slopes after removing sets of size three and seven. Masking affects the identification of
influential sets: Algorithms 0 and 1 (in the left panel) identify relatively inconsequential
observations after the first three removals. This is reflected in the slope of the estimated

4Gains from optimized computation of linear algebra operations can be large in practice. When
writing this paper, we were able to improve the speed of the influence functionality in the ivreg R
package three-fold by optimizing its linear algebra operations.
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-2.7 0.0 8.0

-2.1

0.0

3.5 Masking
a

b

Figure 1: Regression line for a dataset
with two influential sets of size three (N =

50). The set labeled (a) masks the influ-
ence of the set labeled (b). The solid gray
line indicates the least-squares slope; the
dashed line indicates the slope after remov-
ing both sets.

regression lines, which reaches a relative peak after three removals. Moreover, the ap-
proximation in Algorithm 0 even fails to account for the full influence of the first three
observations, considerably underestimating the slope after the first removal. Algorithm 2
does not suffer from these problems; the estimated regression lines are accurate, and
masking issues are avoided. For three removals, the implied regression line mirrors the
one of Algorithm 1; there are no masking issues and associated downward bias for further
removals. Speed-wise, all three algorithms can be effectively implemented instantaneously
(under 0.1 seconds).

4 Empirical applications
In this section, we investigate the sensitivity to influential sets in different econometric
models, which form the basis of recent empirical results in the context of development
economics. We target influence on t values and consider the sign and significance of the
main coefficient as thresholds of interest. For the applications considered, we report the
number of observation removals needed to (1) lose significance of the parameter of interest
(at a given level), (2) flip its sign, and (3) obtain a significant estimate of the opposite
sign. For clarity, we focus on comparing the results obtained using Algorithms 0 and 2.5

5An application of all three algorithms to the empirical assessment of poverty convergence (following
Ravallion, 2012; Crespo Cuaresma et al., 2022) is provided as an additional empirical illustration in the
Appendix.
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Algorithms  & 0 1

0

1

Algorithm 2

3 removed

7 removed

⟶ set order ⟶

Figure 2: Influential set identification with Algorithms 0 and 1 (left panel, identical sets) and
Algorithm 2 (right panel). Removed observations are color-coded and indicated by a cross (×,
first three) and a crosshair (+, next four). Dotted and dashed lines are regression lines after
removing three and seven observations, respectively; lines for Algorithm 0 are in purple, for
Algorithm 1 in green, and for Algorithm 2 in teal.

4.1 Robustness of the effects of slave trades on development

The lackluster economic performance of many Sub-Saharan African nations over the
last decades can partly be explained by historical factors, including colonial experiences
(Acemoglu et al., 2001) and the slave trades (Nunn, 2008). The slave trades ravaged the
African continent until (at least) the emergence of abolitionist movements in the 19th
century and can be divided into the Trans-Saharan, the East African, and the Atlantic
slave trade. Two recent studies investigate the causality, scale, and pathways of the
long-term development impacts of the slave trades. Nunn and Puga (2012) presents
evidence that more rugged terrain hinders development in the rest of the world, but not
in Africa. They attribute this to the history of the slave trades. Nunn and Wantchekon
(2011) argue that interpersonal trust is one of the mediators of the long-term development
impacts of the Atlantic and East African slave trades.

In this section, we assess the robustness of these results to influential sets. We find
that, despite their use of best-practice sensitivity checks, the results in Nunn and Puga
(2012) are heavily reliant on a single influential set, and that the effect found in Nunn
and Wantchekon (2011) is likely to be heterogeneous, and only applicable to the Atlantic
slave trade.
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Figure 3: Two nations drive the blessing of bad geography

Algorithm (2) 

Algorithm (0)

-2.20
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removals t value

3

2

1
0 2.53SYC
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RWA
SWZ
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ZAF
MAR
CPV
MUS
MRT
BDI
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TJK
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SEN
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SWZ

20° East

0°3. Rwanda

5. Comoros

4. Eswatini

2. Lesotho

1. Seychelles

Note: Seychelles and Comoros not to scale.

RRuggedness
low

high

highest
2nd
3rd
4th
5th

Influence

Panel A: Influential nations and ruggedness Panel B: Influence estimates

Panel A shows ruggedness, the explanatory variable of interest in Nunn and Puga (2012), and highlights the five most
influential observations. The three countries with darker borders in the top-right of Panel A are Ghana, Benin, and Nigeria,
which, together with the 20° East meridian, are relevant to the results in Nunn and Wantchekon (2011). Panel B shows the
reduction of t values (from 2.53 at the top) as observations (indicated with their ISO codes) are removed using Algorithms 2
(left) and 0 (right).

Geography, development, and unobservables

Nunn and Puga (2012) use a linear regression model with interaction terms to assess
the differential effects of terrain ruggedness on income for African nations. They regress
logged real GDP per capita in 2000 on a ruggedness measure and various controls. They
find a significantly negative coefficient estimate for the ruggedness variable for the global
sample, and a significantly positive one for ruggedness in Africa, implying that the effects
of ruggedness in Africa are significantly different from those in the rest of the world.6 The
results are robust to the inclusion of a number of potential confounders, to alternative
measures of income and ruggedness, and to influential observations, which the authors
investigate explicitly. Specifically, they check the robustness to omitting observations
that exceed a threshold of |DFBETAi| > 2/N (following Belsley et al., 1980), as well as
the ten smallest (in terms of land area) and most rugged observations.

We focus on the robustness of the differential effect estimate found for Africa in their
baseline specification with added controls. In Figure 3, Panel A, we show the five most

6Note that the effects of ruggedness in Africa are not significantly positive, as could be inferred from
the title (‘The blessing of bad geography in Africa’). Instead, there is no significant effect of ruggedness
in Africa (also see Table 1).
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influential observations identified by Algorithm 2. Using this algorithm, the influence of
the five most influential observations increases after the first one is removed, indicating
a jointly influential set. The removal of the two most influential observations overturns
the differential effect of Africa; removing all five observations leads to a sign-flip, which
becomes significant after eleven removals (see Panel B in Figure 3).

The results presented in Panel B of Figure 3, which shows the influence of removing
observations on the t value of the interacted ruggedness, reveal that masking problems
are present in the data. The observation for the Seychelles masks the identification
of subsequent influential observations, like Lesotho, and the initial approximation only
identifies two out of the top five and three out of the top ten most influential observations
revealed by Algorithm 2. The influence estimates of Algorithm 0 (right bar) are therefore
underestimated considerably due to masking. Since the influence approximation peaks
before a significant sign-flip is attained, only two thresholds (for removing significance
and an insignificant sign-flip) are found, at two and twenty removals. With Algorithm 2
(left bar), we can discern the pattern of a jointly influential set: while the Seychelles are
the most influential observation individually, its removal increases the influence of other
set members.

Algorithm 2 reveals that the effect of interest is sensitive to influential sets. To gain
further insights, we investigate the characteristics of the elements of the influential set.
First, the large influence of the Seychelles casts doubts on the interpretation of the results
presented in Nunn and Puga (2012). The Seychelles were only settled in the 1770s and
were arguably not impacted by the slave trades (Fauvel, 1909). Second, the influential set
contains five small (in terms of land area and population) countries. This may indicate
some survivorship bias, where the survival of countries (and thus their appearance in the
data) is partially determined by characteristics such as land area, ruggedness, population
size, and economic success.7 As can be seen in Table 1, specifications that account for
the past population size and land area do not yield significant results.

Slave trades and the origins of mistrust

Nunn and Wantchekon (2011) analyze the role of the Atlantic and East African slave
trades as determinants of trust. They regress trust of relatives and trust of neighbors on
a measure based on the number of slaves taken from a given ethnic group during the slave
trade, controlling for a number of individual- and district-level variables. Additionally,
they use country-fixed effects and cluster standard errors along ethnicities and districts.
The design matrix contains over 20,000 observations across sub-Saharan Africa, and a

7Moreover, past population sizes are likely related to other, confounding, geographical features, and
play an important role in mediating potential impacts of the slave trades.
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Table 1: Sensitivity of the differential effect of ruggedness in Africa

Baseline Plain Pop Area Sep

Ruggedness, Africa† 0.321 0.302 0.190 0.215 0.089
(2.53) (2.32) (1.66) (1.63) (0.87)

Ruggedness -0.231 -0.193 -0.231 -0.238 -0.231
(-2.99) (-2.38) (-2.94) (-3.08) (0.08)

Coast distance Yes Yes Yes Yes Yes
Population in 1400 – – Yes – –
Land area – – – Yes –
Other controls Yes – Yes Yes Yes

Thresholds† 2[5]{11} 2[7]{16} –[3]{6} –[4]{8} –[1]{6}
Observations 170 170 168 170 49
R2 0.537 0.421 0.571 0.554 0.317

Dependent variable is (log) GDP per capita in 2000. ‘Thresholds’ reports the number of observation necessary to remove
significance (at the 5% level, if applicable), [flip the sign], and {significantly flip the sign} of the effect of ruggedness in
Africa on GDP per capita. ‘Baseline’ and ‘Plain’ reproduce the results of Nunn and Puga (2012) (see columns 5 and 6
of Table 1 in the paper). ‘Pop’ presents the results from a specification that adds as a new covariate the population level
in the year 1400. In ‘Area’, the land area of the country (in logs) is added as a control. ‘Sep’ reports the estimates of
the model estimated exclusively using the sample of African economies. The reported t values are based on HC1 robust
standard errors and presented in parentheses.

total of 78 regressors. Nunn and Wantchekon (2011) find statistically and economically
significant effects of the slave trades on interpersonal trust. These results are robust to
dropping Kenya and Mali, which were also affected by the Trans-Saharan slave trade, the
use of different proxies for the slave trades, additional controls, and the use of instrumental
variables.

We focus on the robustness of the impacts of slave trade on trust of relatives and
neighbors, which we reproduce in Table 2. This setup can be considered computationally
prohibitive for our purpose — in particular due to the use of two-way clustered standard
errors, for which there is no updating formula. To facilitate computation, we only cluster
standard errors after the removal of each observation, and not for proposed removals.
Using this approach, we find that 105 removals (0.5% of the sample) lead to a loss of
significance of the slave trade variable (exports/area in the table), and 380 removals (1.9%
of the sample) lead to a sign-flip that becomes significant after 656 removals (3.3% of
the sample) for the trust of relatives, with similar results for the trust of neighbors. We
investigate the issue further by examining the members of the identified influential sets.
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Table 2: The origins of mistrust

Trust of relatives ∼ Trust of neighbors ∼
Pooled West|East Pooled West|East

Exports/area† -0.133 -0.145 -0.159 -0.168
(-3.68) (-3.84) (-4.67) (-4.48)

Exports/area, East 0.053 0.023
(0.96) (0.32)

Individual controls Yes Yes Yes Yes
District controls Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes

Thresholds† 105[380]{656} 78[301]{532} 161[425]{768} 133[323]{527}
Observations 20,062 7,549 | 12,513 20,027 7,523 | 12,504
Ethnicity clusters 185 62 | 123 185 62 | 123
District clusters 1,257 628 | 651 1,257 628 | 651
R2 0.133 0.199 | 0.097 0.156 0.228 | 0.117

The row named ‘Thresholds’ gives the numbers of observation necessary to remove significance (at the 1% level), [flip the
sign], and {significantly flip the sign} of the effects of the slave trade on trust. The columns labeled ‘Pooled’ reproduce
the results of Nunn and Wantchekon (2011), which can be seen in columns (1) and (2) in Table 2 of their paper. The
columns labeled with ‘West|East’ estimate separate models for observations West and East of the 20° meridian; thresholds
refer to the coefficient for the Western subsets. Coefficient estimates are reported with t values based on two-way clustered
standard errors in parentheses.

In Table 3, we see that 536 of the 600 most influential observations (89.3%) stem
from three West African nations: Benin, Nigeria, and Ghana (marked with black borders
in Figure 3). These countries were major centers of the Atlantic slave trade (Nunn,
2008), and their influence may suggest differences in impacts between the Atlantic and
East-African slave trades. As can be seen in the columns labeled ‘West|East’ in Table 2,
the trust of both relatives and neighbors is only significantly affected by the slave trade in
Western regions, which were affected by the Atlantic slave trade.8 When considering trust
of relatives, overturning these effect estimates for this specification requires the removal
of 78 (1.0%), 301 (4.0%), and 532 (7.0%) observations; these results are more robust than
the full sample estimates. The finding that the Atlantic slave trade considerably drives
trust impacts of the slave trades are in line with earlier results of Nunn (2008).

8We divided the dataset into two samples, to the West and to the East of the 20° Eastern meridian,
which is marked in Figure 3.
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Table 3: National split of the top 600 influential observations on trust in relatives

Benin Nigeria Ghana Other

Top 100 54 12 19 15
Top 101–200 85 6 5 4
Top 201–300 80 12 7 1
Top 301–400 52 27 14 7
Top 401-500 3 67 6 24
Top 501–600 3 69 15 13

Top 600 277 193 66 64

Summary of origin countries of the 600 most influential observations’ on the effects of slave trade on the trust of relatives
(see the first column of Table 2).

4.2 Microfinance, development, and influential observations

Microfinance is a tool for alleviating poverty and facilitating economic development in
developing countries. Recently, many large-scale studies with experimental designs set
out to quantify its impacts and evaluate its efficacy. In the context of an external validity
assessment, Meager (2019) discusses and summarizes seven of these studies , which cor-
respond to randomized control trials in Bosnia and Herzegovina (Augsburg et al., 2015),
Mongolia (Attanasio et al., 2015), Ethiopia (Tarozzi et al., 2015), Mexico (Angelucci
et al., 2015), Morocco (Crépon et al., 2015), the Philippines (Karlan and Zinman, 2011),
and India (Banerjee et al., 2015). Broderick et al. (2020) assess the robustness of the
average treatment effect to the removal of observations using an approximate variant of
Algorithm 0. The model is a simple treatment effect model with a randomized treatment
dummy; datasets are relatively large, ranging from 1,000 to 16,000 observations. Brod-
erick et al. (2020) find that the effects of microcredit on household level business profits
are not particularly robust, and that the size of estimates is usually driven by very few
observations.

Table 4 presents the results of applying Algorithms 0 and 2 to the data of these seven
studies. Few observations, both in relative and absolute terms, drive the full-sample
estimates of the average treatment effect. In the studies corresponding to Ethiopia and
Mexico, a single removal induces a sign-switch, which becomes significant after a few
more removals. Results using Algorithm 0 are similar to the ones obtained by Broderick
et al. (2020).9 In fact, standard diagnostic indicators like DFBETAi or assessments of the

9In principle, this is to be expected, since their approximation disregards leverage (see the Appendix),
which is constrained in the context of a binary treatment.
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Table 4: Sensitivity of the average treatment effect of microcredits

Study region BIH MON ETH MEX MOR PHI IND
Algorithm (0) (2) (0) (2) (0) (2) (0) (2) (0) (2) (0) (2) (0) (2)

Sign-switch 14 13 16 15 1 1 1 1 11 11 9 9 6 6
Significance 49 39 43 37 117 13 20 12 35 33 74 54 41 35

Observations 1,195 961 3,113 16,560 5,498 1,113 6,863

The reported values are the number of removals needed to induce a sign-switch of the average treatment effect, and have this
sign-flipped coefficient become significant (at the 1% level) using Algorithm 0 and 2. Algorithm 2 outperforms consistently,
but very few observations are needed to overturn results in all cases.

residuals, already indicate sensitivity, and — at a first glance — Algorithm 2 only seems
to offer small improvements when more removals are necessary. However, Algorithm 2
avoids crucial issues with false negatives, which are troublesome for any sensitivity check.
In the case of Ethiopia, Algorithm 2 suggests that the number of removals needed to
induce a significant sign-switch is 13 (0.4%) instead of 117 (3.6%), since particularly
influential observations mask the influence of subsequent removals.

The exceptional lack of robustness of the effects found using microcredit randomized
control trials is striking. These results indicate a lack of power of the studies, implying
that aggregation of many studies may be necessary for robust evidence (as done in Meager,
2019). Further, the results suggest that the effects of the interventions are zero for most of
the population, and potentially large for few individuals. This is investigated further using
aggregated distributional treatment effect analysis in Meager (2022), which concludes that
the effects are usually concentrated at the top segment of the living standard distribution.

4.3 Migration, growth, and instruments

Migration reshapes global populations and, as a result, economic and cultural structures
(see e.g. Tabellini, 2020). Droller (2018) investigates the long-term impacts of skilled,
European migration to Argentina in the late 19th and early 20th century. The effect
of migration is estimated using a shift-share instrument for identification, leveraging the
arguable exogeneity of initial migrant shares and the conquest of new counties. The
analysis is carried out using observations for 136 counties in the provinces of Buenos
Aires, Santa Fe, Córdoba, and Entre Rios. Droller (2018) finds considerable impacts of
migration on GDP per capita, education, and skilled labor. These results are robust to a
number of checks, although the sensitivity of the results to sets or influential observations
is not assessed in the original publication.
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Table 5: Sensitivity of long-term migration impacts on development

Baseline Plain
logGDP/capita ∼ 1st stage 2SLS 1st stage 2SLS

European share† 5.778 6.35
(3.40) (4.31)

Instrument† 0.251 0.281
(6.01) (4.84)

Geographic controls Yes Yes Yes Yes
Socioeconomic controls Yes Yes – –
Province fixed effects Yes Yes Yes Yes

Thresholds† 10[18]{26} 5[11]{27} 10[18]{31} 6[11]{32}
Observations 136 136 136 136
R2 0.816 0.622 0.688 0.591

The row named ‘Thresholds’ gives the numbers of observation necessary to remove significance (at the 5% level, if applica-
ble), [flip the sign], and {significantly flip the sign} of either the shift-share instrument (in columns labelled ‘1st stage’), or
the effects of the share of European migrants (as reflected by 2SLS estimates). The columns labelled ‘Baseline’ reproduce
the ‘Specification 2’ in Table 4 of Droller (2018), the ones labelled ‘Plain’ reproduce ‘Specification 1’. Coefficients are
reported with t values based on HC0 robust standard errors in parentheses.

We reproduce the results of the study and present them in Table 5, computing sample
size thresholds for influential sets for the first stage, and for the full two-stage least
squares estimates (2SLS, implemented using the updating formulas by Phillips, 1977).
Notably, leverage is exacerbated in 2SLS estimation, and influence approximations suffer
particularly from the existence of high-leverage observations in this setting. We find
that first stage results are relatively robust to influential sets. For the full results, we
find that the removal of five observations overturns significance; eleven removals induce a
sign-switch for the estimated effect of European migration on GDP per capita. The nature
of influential sets and the covariate structure may indicate the existence of heterogeneous
effects for Buenos Aires, where most late conquests occurred. While these estimates are
not particularly sensitive, we cannot conclusively diagnose robustness.

In the wider context of assessing the sensitivity in inferential quantities for 2SLS
estimation, a number of issues need to be considered. First, the numerical stability of
estimates can be problematic, and is likely to deteriorate with removals, in particular in
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the presence of weak instruments.10. Second, the robust standard errors used by Droller
(2018) are known to be considerably biased, and their finite sample behavior is primarily
driven by the presence of high-leverage observations (Cribari-Neto et al., 2007).11 Finally,
the instrument is based on initial population shares (accounting for newly conquered
counties), shifted with total migrant flows, a strategy that relies on the exogeneity of
either the shares, or the shifts (Borusyak et al., 2022; Goldsmith-Pinkham et al., 2020).

5 Conclusions
In this paper, we investigated the sensitivity of inferential quantities to influential sets
in linear regression models. We discussed three alternative algorithms aimed at the
identification of influential sets, and quantifying the sensitivity to them. We showed
how masking, where certain influential observations obscure the identification of others,
complicates robustness checks by inducing false negatives, and discussed accuracy–speed
trade-offs to address this issue. The practical relevance of sensitivity to influential sets
was investigated by means of four empirical applications in the context of development
economics. Our analysis suggested that sensitivity to influential sets plays an important
role in applied studies, and its assessment can be very useful to address potential short-
comings of regression models. Masking issues are likely to be common in practice, and
can be efficiently addressed using our approach.

Our notion of sensitivity builds on minimal influential sets, i.e. the smallest set of
observations that changes a result of interest when it is removed. With this approach,
sensitive results are not generally a conclusive indicator for a lack of validity; results
that unveil sensitivity to influential sets must be interpreted with care. A great deal of
interesting phenomena are exceedingly rare, and important insights may hinge on few
observations. Examples include rare diseases, economic crises, and policy interventions
that only affect a small part of the population. In settings where the phenomena assessed
are not rare, however, pronounced sensitivity to influential sets may indicate a lack of
internal validity. The analysis of influential sets can provide insights into possible short-
comings of the model, or potentially fruitful extensions of the analysis. The empirical
studies analyzed in this piece provide good examples of the added value of assessing the
composition of influential sets.

10In the study, collinearity is high due to the large number of geographical controls (which may address
persistence issues noted by Kelly, 2020), and about 15 targeted removals can produce estimates that are
numerically unstable.

11Results with more appropriate HC4 or HC5 standard errors are qualitatively similar, lowering t values
of the baseline specification to 2.94 and 3.17, respectively.
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In practice, the sensitivity to influential sets (or observations) is rarely assessed sys-
tematically in econometric applications. We argue that it should be understood as a
standard part of regression diagnostics. For this purpose, summaries of minimal influ-
ential sets that overturn a result are useful diagnostic measures. Two important im-
provements upon related measures, such as Cook’s distance, are their interpretability
and salience, since summaries are directly tied to a result of interest, and influential
sets can be analyzed in detail. Exact minimal influential sets are essentially unobtain-
able, but approximate algorithms can unveil a lack of robustness that would otherwise
remain hidden in plain sight. However, for sensitivity checks, computational concerns
must arguably take a backseat in the face of false negatives. Of the proposed algorithms,
Algorithm 0 and Algorithm 1 sacrifice a great deal of accuracy for speed, and should be
seen as interactive tools for quick sensitivity checks. Algorithm 2 offers a good baseline
for a diagnostic tool, yielding more accurate results at reasonable computational costs.

There are several pathways for future work on the topic of influential sets in regression
models. Further improvements in terms of computational efficiency and accuracy are
conceivable, for instance via sampling-based approaches. In addition, a combination of
the approach presented here with methods in the spirit of Peña and Yohai (1999) or
Riani et al. (2014) may prove to be an interesting avenue of further research on the topic.
The development of comprehensive measures that accessibly summarize sensitivity to
influential sets can also be useful, in particular for practitioners. Lastly, the approach
presented here opens the door for further replication studies and robustness checks of
documented empirical phenomena, which may deliver valuable insights for researchers
and policymakers.
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Appendix

Influential sets vs. single outliers: The case of the sample mean

Consider the model y = 1θ + ε, where we are interested in the effect of potentially
influential observations on the mean of the variable y, given by the estimate of θ. The
N > 3 observations of y are contained in the vector y. We show for this simple model
and the influence function ∆(S) = θ̂(∅)− θ̂(S) that the influence of a influential set of two
observations exceeds the sum of influences of its individual members.

Without loss of generality, assume that all observations are ordered by size and that
the influential set is given by the largest observations, y1 and y2, so that we need to show
that δ1 + δ2 < ∆({1, 2}). For the influence function chosen, this is equivalent to showing
that

θ̂ − θ̂(1) + θ̂ − θ̂(2) < θ̂ − θ̂(1,2), (A1)

that is, ∑
i yi
N

+

∑
i ̸=1,2 yi

N − 2
−
∑

i ̸=1 yi +
∑

i ̸=2 yi

N − 1
< 0. (A2)

Noting that
∑

i ̸=1 yi +
∑

i ̸=2 yi =
∑

i yi +
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i ̸=1,2 yi, Equation A2 can be written as(
1
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− 1

N − 1

)∑
i

yi +

(
1

N − 2
− 1

N − 1

)∑
i ̸=1,2

yi < 0. (A3)

Since (y1 + y2)/2 >
∑

i ̸=1,2 yi/(N − 2), it follows that∑
i

yi = y1 + y2 +
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i ̸=1,2

yi >
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yi + 2
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yi/(N − 2), (A4)

which implies that(
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)
+

(
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yi = 0. (A5)

This completes the proof.

Assessing linear approximations of influence

We use a simple Monte Carlo simulation exercise to study the precision of the linear
approximation of the influence of sets of observations used by Broderick et al. (2020) and
Giordano et al. (2022). We consider a simple setting based on regression with a single
explanatory variable,

y = xβ + ε, (A6)
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Table A1: Summary statistics of the six indicators for approximation performance

measure mean min max 1st dec median 9th dec

(1) top error, absolute 0.002 0.000 0.091 0.000 0.001 0.005
(2) top error (%) 0.054 0.003 0.685 0.017 0.042 0.105
(3) most influential missed (%) 0.040 0.000 1.000 0.000 0.000 0.000
(4) top five influential missed (%) 0.103 0.000 1.000 0.000 0.000 0.400
(5) mean bias (%) 0.990 0.990 0.990 0.990 0.990 0.990
(6) top bias (%) 0.888 0.315 0.967 0.830 0.901 0.932

where we simulate with β = 1, draw the errors from a standard normal distribution,
and the observations of x from a t(8) distribution, thus allowing for high leverage in the
explanatory variable. We create samples of size N = 100 and compare influence estimates
following Broderick et al. (2020) to the exact influence, repeating the exercise 100,000
times.

The results of our simulation exercise are presented in Table A1. We present six
indicators to evaluate the performance of the approximation: (1) the absolute approxi-
mation error of the most influential observation, (2) the approximation error of the most
influential observations relative to its influence, (3) the share of replications where the
most influential observation is identified correctly, (4) the number of observations among
the five most influential ones which are identified in the correct order, (5) the mean of
the approximated influences relative to the true ones, and (6) as the maximum of the
approximated influences relative to the true ones. Influence estimates of the most influ-
ential observation are smaller than the true value by 5.42% on average, which constitutes
a relatively sizeable discrepancy. In the worst case, the largest influence was underesti-
mated by 68.52%. The most influential observation was not identified in 3.97% of cases,
and the top five most influential observations were not identified correctly in 10.28% of
cases. At the 9th decile, three of the top five observations were identified in the correct
order. The mean bias stems directly from the effect of leverage and can in principle be
corrected. However, the worst case results, summarized in the maximum of the influence
estimates relative to the true ones, shows that the approximation can be heavily biased
in the presence of high leverage observations, with an average underestimation of 89%.

Figure A1 depicts the results of the simulation graphically for 10,000 replications.
It shows the errors of the linear approximation compared to influence (absolute and
scaled with respect to the mean influence and to the individual influence), leverage, and
residuals. Errors appear large in comparison to the mean influence and biased downwards.
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Figure A1: Errors of the linear approximation by Broderick et al. (2020) compared to influence
(absolute and scaled with respect to the mean influence on the left, relative to the influence on
the right), leverage (absolute and scaled), and residuals (absolute and scaled). Figures based
on 10,000 Monte Carlo simulations.

The top right panel of Figure A1 shows that even relative errors display slight increases
with the magnitude of the influence measure. This stems from the estimator’s disregard
for leverage, which is highlighted in the bottom left, where we see errors increasing with
the leverage.

Influential sets in poverty convergence equations

Many empirical studies assess the patterns of cross-country convergence in living stan-
dards, as measured by GDP per capita (see e.g. Barro and Sala-i Martin, 1992; Johnson
and Papageorgiou, 2020). Convergence in absolute poverty rates, however, has been ex-
amined less often. Ravallion (2012) addresses this question in a theoretical framework
that is given by the combination of two stylized facts: higher average incomes tend to lead
to lower poverty rates (Bourguignon, 2003), and mean incomes tend to converge across
countries. Taken together, these concepts predict convergence in poverty rates. However,
Ravallion (2012) does not detect poverty convergence in a sample of 89 countries, with
the following model
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T−1
i (lnHit − lnHit−1) = α + β lnHit−1 + εit, (A7)

where Hit denotes the poverty headcount ratio in country i and time period t, Ti is the
country-specific observation period in years, and εit is an error term assumed to fulfill
the standard assumptions of the linear regression model. This specification relates the
annualized growth rate of the poverty headcount ratio to the log of the initial poverty
headcount index. Ravallion (2012) obtains a positive, statistically insignificant estimate
of β, i.e. effect of initial poverty on the subsequent growth of poverty rates.

Crespo Cuaresma et al. (2016, 2022) point out that the original, non-significant esti-
mate of the convergence coefficient is likely due to a number of Eastern European coun-
tries exhibiting low initial poverty headcount ratios. The log-transformation in Equa-
tion A7 implies that small absolute changes translate into large growth rates in poverty
headcount ratios for these economies. This makes the experience of these countries in-
fluential on the parameter estimates in Equation A7. When explicitly controlling for the
poverty trajectories of Eastern European countries, there is indeed empirical evidence for
cross-country convergence in poverty rates.

0.16 4.59

-0.33

0.00

0.17

Belarus
Latvia

Ukraine Poland

Figure A2: Data and regression line for
Ravallion (2012) before (solid line) and
after (dashed line) removing the influen-
tial set Ŝ∗4 (highlighted via color and first
crosses, then crosshairs). The horizontal
axis represents the logarithm of the ini-
tial poverty headcount index; the vertical
axis is annualized log differences of poverty
headcount ratios.

We first revisit the problem using the same data set as used in both Ravallion (2012)
and Crespo Cuaresma et al. (2016). Figure A2 presents the convergence scatter plot,
where observations are colored according to their influence, as identified by Algorithm 2.
In order to achieve statistically significant poverty convergence (a negative and signif-
icant estimate of β), we only need to remove a set of four countries from the dataset.
Algorithm 0, however, only finds a threshold of sixteen removals in this relatively simple
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setting. The four influential countries are Belarus, Latvia, Ukraine, and Poland; sub-
sequent removals would be the Russian Federation, Lithuania, Estonia, and Macedonia.
This result stresses the need to take into account the different experience of Eastern
European countries when analyzing cross-country poverty dynamics.

In an additional exercise, we investigate an alternative specification suggested in Cre-
spo Cuaresma et al. (2016), which takes the form

T−1
i (Hit −Hit−1) = α + βHit−1 + εit (A8)

where variable definitions are the same as in Equation A7. This regression specification
is based on the concept of a semi-elastic relationship between poverty reduction and eco-
nomic growth (see Klasen and Misselhorn, 2008). It relates changes in poverty headcount
ratios to the initial level of poverty, instead of growth rates in poverty headcount ratios
to the initial log level of poverty. Using this alternative specification, Crespo Cuaresma
et al. (2016) find clear empirical evidence for poverty convergence in the original data by
Ravallion (2012).

To assess how robust this finding is to influential sets of observations, we re-estimate
the specification given by Equation A8 using an updated dataset sourced from PovCal-
Net.12 Starting with the full sample of poverty headcount observations (using a poverty
line of $2 a day), we apply a number of data quality filters. First, observations that
are not based on household surveys are excluded. Second, countries where the longest
observation period is below ten years are excluded. Finally, when both income and con-
sumption based poverty rates are available, consumption based data are preferred. This
procedure leaves us with a sample of 124 countries. For each country, the longest time
span available is used to compute annualized changes in poverty rates.

The full sample estimate of β̂ is −0.019, with a standard error of 0.002. This implies
significant poverty convergence. This result is relatively robust to the removal of influ-
ential sets. Algorithm 2 indicates thresholds at 26 (insignificance), 32 (sign-flip), and 42
(significant sign-flip) removals out of 124 observations. Algorithm 0 only reports a loss
of significance after 79 removals. Interestingly, this issue is not only due to the influence
approximation, but also due to masking, which leads to the identification of the encircled
observations at the top left of the top panel in Figure A3. Algorithm 1 indicates a loss of
significance only after 56 removals. As a result of this exercise, we conclude that poverty
convergence appears to be a relatively robust empirical regularity.

12PovCalNet data can be obtained from http://iresearch.worldbank.org/PovcalNet/home.aspx.

32

http://iresearch.worldbank.org/PovcalNet/home.aspx


Influential Sets in Linear Regression

0.00 0.86

-0.04

0.00
0.01

Algorithm (1)

0.00 0.86

-0.04

0.00
0.01

Algorithm (2)

Figure A3: Data and regression line, following Crespo Cuaresma et al. (2016), before (solid
line) and after (dashed line) removing the influential set Ŝ∗26 (highlighted via color, and first
crosses, then crosshairs). The top panel uses Algorithm 1, the bottom panel uses Algorithm 2.

33


	Introduction
	Influential sets in linear regression models
	Influential observations
	Identifying influential sets

	Algorithms to identify influential sets
	Algorithm 0: Initial approximation
	Algorithm 1: Initial binary search
	Algorithm 2: Adaptive approximation
	Approximations and computational concerns
	An illustration

	Empirical applications
	Robustness of the effects of slave trades on development
	Microfinance, development, and influential observations
	Migration, growth, and instruments

	Conclusions

