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1 Introduction

Investors’ expectations exhibit experience effects documented by a growing empirical

literature, where one of the key findings is imperviousness to information that is not

experience-based (Malmendier, 2021). We integrate this experience effect into the the-

ory of what we call buy-and-resell overpricing relative to a buy-and-hold price under

heterogeneous expectations in the absence of short-selling studied in a variety of mod-

els since Harrison and Kreps (1978). The experience effects are new to this literature,

which has focused on three mechanisms of belief heterogeneity: overconfidence as in

Scheinkman and Xiong (2003), heterogeneous priors with correct updating as in Morris

(1996), and simply dogmatic Markov beliefs independent of past dividends as in Harri-

son and Kreps (1978). A more recent addition is coarse reasoning introduced by Steiner

and Stewart (2015), but they study a different kind of distortion—prices being the same

in any two states categorized together by investors—rather than overpricing. Regard-

less of the mechanism, Werner (2020) shows that a sufficient condition for overpricing

is that no investor be from some time onwards at least as optimistic about holding the

asset forever as everyone else. We identify an overlapping-generations analogue of this

sufficient condition and show that buy-and-resell overpricing is very sensitive to the new

mechanism—imperviousness of investors’ beliefs to information that is not experience-

based.

Apparently innocuous differences in histories which investors live through generate

large buy-and-resell premiums relative to buy-and-hold prices, meaning that investors
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retrade before reaching their terminal age. To keep differences in their histories to a

minimum, we develop a stripped-down overlapping-generations model with uncertainty

only about the terminal time, the only time the asset pays a dividend. This way,

most investors’ histories end before the asset pays the dividend and differ only in the

birth date. To keep room for belief heterogeneity to a minimum, the only experience

effect is that investors’ posterior beliefs come from updating some common beliefs from

birth only, which is a form of imperviousness to information that is not experience-

based. Coexisting investors’ expectations are still in general heterogeneous because

the only nondegenerate distribution invariant under conditioning on lapsed time (lack-

of-memory property in probability theory) is the exponential distribution (see, e.g.,

Billingsley, 1995).

Relative to the previous literature on what we call buy-and-resell overpricing initiated

by Harrison and Kreps (1978), our model retains the usual features: belief heterogeneity,

short-sales constraints, and also risk neutrality. Belief heterogeneity is always the critical

feature for asset overpricing, the particular form of short-sales constraints is unimportant

(Morris, 1996), while risk neutrality is convenient but not strictly necessary (Hong et

al., 2006; Morris, 1996). Alongside these usual ones, our model has three distinguishing

features discussed next.

The first is a particular, but represented in the real world, type of risky asset with

random, from investors’ perspective, maturity date. An example is a credit default swap

that pays out when the underlying bond defaults (for an empirical inquiry into this mar-

ket, see, e.g., Oehmke and Zawadowski, 2017). But our model is also relevant to shares

and can represent the prevalence of non-dividend-paying stocks during the real-world

episodes considered to be instances of speculative bubbles. For example, the dotcom

bubble happened at the time of disappearing dividends (Michaely and Moin, 2021). In

2021, the GameStop frenzy occurred even though the company stopped paying dividends
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in 2019 and as of 2021 was projected to report losses for two years (Jarvis, 2021; New-

burger, 2019). For modeling overpricing, therefore, our assumption of delayed dividends,

paid only at the terminal time as a liquidation value, is in general rather appealing but

features only in a few papers in the previous literature (Nutz and Scheinkman, 2020;

Allen et al., 1993).

The second is the overlapping-generations population of investors. It is natural but

may cause confusion between buy-and-resell overpricing and rational bubbles that for

a long time, before Santos and Woodford (1997), were exclusive to overlapping genera-

tions. Those are different things. Rational bubbles are deviations from the fundamental

theorem of asset pricing, whereas buy-and-resell overpricing is relative to buy-and-hold

prices. The former can occur either with or without overlapping generations (Santos and

Woodford, 1997). Buy-and-resell overpricing with finitely-lived investors also appears in

the models of Nutz and Scheinkman (2020), Berestycki et al. (2019), Allen et al. (1993),

and Allen and Gorton (1993), though they are not overlapping-generations models.

The third, and new to the literature on buy-and-resell overpricing initiated by Harri-

son and Kreps (1978), is of course imperviousness of investors’ beliefs to information that

is not experienced-based. Outside this literature, however, this experience effect has a

long research history from different perspectives. It falls under the realm of availability

bias in psychology-inspired literature—one of the key systematic biases identified in the

seminal paper by Tversky and Kahneman (1974). As Malmendier (2021) put it, from a

psychology perspective “people tend to overweight events that come to mind easily, that

is, are ‘available’ to them, and personal experiences are a catalyst for this availability”.

Furthermore, it has a neuroscience foundation, linked to experience effects in finance by

Malmendier (2021), in that more frequently used neurons are more connected and disuse

withers previously formed synapses in the brain. In our setting, the information flow is

simple enough to model this experience effect as information neglect in the sense that
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investors do not consider what happened before they were born. This simplification has

already proved insightful in modeling other aspects of asset pricing (Ehling et al., 2017;

Nakov and Nuño, 2015), while investors partially consider what happened before birth in

Malmendier et al. (2020), Collin-Dufresne et al. (2016), and Schraeder (2016). For mod-

eling overpricing, therefore, experience effects are also appealing, especially in light of the

overpricing literature’s transition from heterogeneous priors (Harrison and Kreps, 1978;

Morris, 1996) to embracing biased beliefs since Scheinkman and Xiong (2003).

Our model has five primitives: the terminal time; the remaining time, as perceived

at birth by every investor, in the form of a random variable; the terminal age; the

trade-frequency parameter; and the interest rate. The rest is further interpretation. We

have already mentioned the asset; it pays a one-shot dividend of $1 at the terminal

time. Before that, overlapping generations come and go: one investor is born each

time point and stays until the terminal age or the terminal time, whichever is sooner.

Time is continuous, backward infinite so that the age profile of coexisting investors is

time-invariant, and possibly forward infinite depending on the terminal-time parameter.

Trade, however, is discrete to avoid dealing with equilibria where the asset might change

hands continuously, but our overpricing results are asymptotic as the market tends to

opening continuously. Investors are risk-neutral and decide whether to buy/sell the asset

or not at an endogenous price every time the market opens for trade, but they cannot

sell the asset short.

An attractive feature of our model is that we can require the equilibrium price to

be time-invariant, because coexisting investors’ age profile is time-invariant and their

posteriors depend only on their age. In this context, summarizing the adapted equi-

librium criterion to overlapping generations from Harrison and Kreps (1978), where,

characteristically, only the most optimistic investors hold the asset, affords simple word-

ing. An equilibrium price is one that makes the most optimistic investor(s) break even,
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but who the most optimistic are depends on the sought equilibrium price via expected

resale proceeds corresponding to optimal holding durations. If, on the contrary, the

most optimistic investors did not break even, that would mean either excessive expected

discounted return for the most optimistic or expected loss for all. Equilibrium buy-

ers/holders at a particular time the market opens for trade can be any subset of the

most optimistic investors given the equilibrium price as a (provisional) resale price. Less

optimistic investors simply do not, for whatever reason by assumption, engage in short-

selling of the asset and do not create excess supply in this way. Investors do not have

budget constraints, but at the equilibrium price we find all of the asset can cost at most

$1, and thus we do not need the infinite-wealth assumption from the previous literature.

The benchmark buy-and-hold price is what an equilibrium price would be if buyers had

to meet a life-long no-retrade constraint and only then could resell at this sought price if

the dividend were still unpaid. In the previous literature with infinitely-lived investors

and without overlapping generations, the benchmark collapses to the highest estimate of

the expected discounted return of holding the asset forever among all investors. The few

existing finite-horizon models, without overlapping generations, replace holding forever

in the definition of benchmark price simply with holding to the terminal time (Nutz and

Scheinkman, 2020; Berestycki et al., 2019; Allen et al., 1993; Allen and Gorton, 1993).

For overlapping generations that can live forever, which we make a special case given that

in equilibrium only the most optimistic hold the asset, holding forever still makes sense.

But the finite-lifetime case of our overlapping-generations model creates a difficulty in

defining benchmark for studying buy-and-resell overpricing in this way, because holding

the asset forever becomes problematic. Our approach overcomes this difficulty.

Our overpricing results are asymptotic in the sense that we take these discrete-trade

equilibrium and buy-and-hold prices, which exist and are unique, to their continuous-

trade limits before comparing them. Mild assumptions on the investors’ common beliefs
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at birth, which are about how long is left until the terminal time, are in place for unique

discrete-trade equilibrium and buy-and-hold prices to exist and to converge. To give

our results on buy-and-resell overpricing in this continuous-trade limit, we need the

investors’ common beliefs at birth about the waiting time to have a density.

Buy-and-resell overpricing occurs if and only if the most senior investors are not

instantaneously the most optimistic, with instantaneous optimism being measured by

the hazard rate of the investors’ common beliefs at birth. The equilibrium price can

even hit the upper bound of $1 on any reasonable fundamental value as if the one-shot

dividend of $1 were imminent and there were no uncertainty about its timing. The

price is as high as this in the continuous-trade limit when newborn investors’ beliefs

are instantaneously sufficiently optimistic in the sense that the hazard rate, viewed as a

function of age, diverges to infinity at zero. At the same time, the buy-and-hold price

can be arbitrarily low, implying frequent retrading at an arbitrarily large buy-and-resell

premium in the equilibrium price. A simple example is to take for the investors’ common

beliefs at birth a gamma distribution with suitable parameters.

Our result that the equilibrium price can be as high as any reasonable fundamental

value is new to the literature on what we call buy-and-resell overpricing under heteroge-

neous expectations in the absence of short-selling initiated by Harrison and Kreps (1978).

Previous results on equilibrium prices as high as this come from models of (non-dividend-

paying) money (Tirole, 1985; Samuelson, 1958) or asymmetrically informed greater fools

(Allen et al., 1993; Barlevy, 2015; Liu and Conlon, 2018). One interpretation of our re-

sults is that retrading (before horizon) and overpricing can come from everyone being

equally fool but of different age as opposed to what happens in the greater-fool models.

The paper is organized as follows. Section 2 presents the model, including the equi-

librium concept defining equilibrium price. Buy-and-hold price is a benchmark defined

in Section 3. To compare them, Section 4 gives a necessary and sufficient condition
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for buy-and-resell overpricing in the limit as the market tends to opening continuously,

along the way addressing their existence, uniqueness, and convergence. In Section 5,

the equilibrium price’s continuous-trade limit hits the bound of what any reasonable

fundamental value could possibly be, while the buy-and-hold price is not just lower, but

arbitrarily so, in the limit, which are our final and main results.

2 Model

The model is stripped-down overlapping generations without short-selling and with an

adapted equilibrium concept to overlapping generations from the previous literature on

what we call buy-and-resell overpricing initiated by Harrison and Kreps (1978). A dis-

tinguishing feature of this equilibrium concept is that only the most optimistic investors,

given how they forecast dividends and equilibrium (resale) prices, hold the asset. We

make time continuous, backward infinite so that the age profile of coexisting investors

is time-invariant, and possibly forward infinite depending on the terminal-time parame-

ter. Risk-neutral investors decide whether to buy/sell the asset or not at an endogenous

steady-state price under uncertainty about the terminal time, the only time the asset

pays a dividend. After first going over the model’s primitives (Section 2.1), we take

on the equilibrium concept (Section 2.2) and then give the outlook (Section 2.3) of

smoothness and regularity assumptions made throughout the paper.

2.1 Primitives and Basics

In total, our model has five primitives:

(1) the terminal time τ ∈ (−∞,∞] at which an asset pays a one-time dividend of $1;

(2) the remaining time, as perceived at birth by every investor, in the form of a random
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variable1 W taking values in (0,∞];

(3) the terminal age T ∈ (0,∞];

(4) the trade-frequency parameter ∆ ∈ (0, T );

(5) the interest rate r ∈ (0,∞).

An asset pays a one-shot dividend of $1 at the possibly infinite terminal time τ , where

we think of the dividend at infinity as no dividend. Investors do not know (and are

uncertain about) the terminal time τ until it comes, but this true terminal time τ is

not random. Before it comes, one investor is born each time point and stays until the

terminal age T or the terminal time τ , whichever is sooner: at each t ∈ (−∞, τ), a new

one is born, and unless T = ∞ the time is up for the one born at time t− T . Investors

start out with the same beliefs at birth, namely that the time left is the random variable

W .

Investors’ beliefs exhibit imperviousness to information that is not experience-based

in that W is a primitive and does not come from updating some priors, though one

can put it in the standard language of heterogeneous priors over a larger space. As

Morris (1995) argues more generally, “it would be possible to interpret such systematic

biases as a consequence of different prior beliefs on some larger state spaces. Such an

interpretation would be misleading.” But key experience effects, such as imperviousness

to information that is not experienced-based, are not just systematic biases; they have

a neuroscience foundation (Malmendier, 2021). That is why investors’ beliefs at birth

represented by W are a primitive and do not come from updating some prior beliefs,

but they update after birth in the standard Bayesian way at every nonterminal time.

In other words, at each time s ∈ (−∞, τ), posterior expectations (if well-defined) of the

investor born at an arbitrary time t ∈ (−∞, s) of functions of the perceived remaining

1We consider extended-valued random variables defined on a probability space (Ω,F ,P). For a formal
definition with extended values, see Chung (2001). We use the convention e−∞ = 0.
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time W are expectations conditional on the event that W > s− t. The information flow

is so simple that the posterior depends only on the investor’s age s− t via conditioning

on survival up to this age, assumed to have a nonzero perceived probability at birth:

Assumption 1. Nonzero perceived probability at birth of survival up to the terminal

age T in the sense that all x ∈ [0, T ]\{∞} satisfy P (W > x) ̸= 0.

Investors can trade every ∆ time units at the time points

{0,∆,−∆, 2∆,−2∆, 3∆,−3∆, . . . } ∩ (−∞, τ) ,

which are when the market opens for trade. Finally, investors can borrow and lend at

the constant rate r, which will serve as a discount rate.

2.2 Equilibrium

The same story applies to every time the market opens for trade, because apart from

the uncertain terminal time our model is so stationary that we parameterize coexisting

investors by their age x ∈ [0, T ]\{∞} . Now since the investors’ posteriors depend only

on their age, we require the sought equilibrium price p ∈ [0, 1] to be time-invariant. In

turn, we also find equilibrium asset holders in terms of their age and intergenerational

transactions that can keep the asset in their hands. Our adapted equilibrium concept to

this context from Harrison and Kreps (1978) retains its characteristic feature, which is

that only the most optimistic investors hold the asset. In our context, the equilibrium

criterion boils down to essentially just an equation (1) in the price p, from which we can

directly find who can hold the asset and when as follows (existence conditions are later

on in Section 4.1).

In the steady-state equilibrium condition (1), the max picks up investors in terms of

their age x at which their posteriors are such that they perceive the best holding duration
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y ever, subject to lifetime and trade-frequency constraints. They ensure that the holding

duration y falls within the remaining lifetime T−x in the sense that y ≤ T−x and agrees

with how often the market opens for trade in the sense that y ∈ {∆, 2∆, 3∆, . . . ,∞}.

Investors can participate in the market only when the remaining lifetime T − x from

reaching the age of x is long enough for the market to reopen for trade at least once in

the sense that T − x ≥ ∆, hence overall the max is over

x ∈ [0, T −∆]\{∞} and y ∈ {∆, 2∆, 3∆, . . . ,∞} ∩ [∆, T − x] .

The expected payoff (to risk-neutral investors) at age x from holding duration y is the

(posterior) expected discounted return of either getting the dividend within y time units

or else selling the asset in y time units. The max in the equilibrium condition (1) is over

these payoffs and in case the price p∗∆ is the sought equilibrium price picks up equilibrium

asset holders in terms of their age x and their equilibrium trading strategies y. In this

sense, investors can in equilibrium hold the asset when they are the most optimistic in

life given the equilibrium price as a resale price (conditional on the dividend being still

unpaid). Trade at a particular time the market opens can in equilibrium be anything

that passes the asset to investors reaching any such age. The equilibrium condition (1)

simply requires the price to equal the maximum payoff, which itself depends on this price

via expected resale proceeds, over investors in terms of their age and trading strategies.

If the equilibrium price differed from the expected discounted return of the best trading

strategy across all investors when the (provisional) resale price is this equilibrium price,

there would be either shortage or excess supply. Implicitly, we have also made the

following assumptions:

(i) short-sales constraints (investors simply do not, for whatever reason, engage in

short-selling of the asset and do not drive the price down in this way);
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(ii) investors can afford to buy all of the asset (which can cost at most $1, though);

(iii) within a particular nonterminal time, first everyone learns that the asset does not

pay, then a new investor arrives, and then the market either opens for trade or

not.

The interpretation aside, we simply have:

Definition 1 (Equilibrium Price). We say that a price p∗∆ ∈ [0, 1] is an equilibrium

price if it equals the expected discounted return from the best holding duration y within

lifetime and trade-frequency constraints across all investors in terms of their age x in

the sense that

p∗∆ = max
x∈ [0,T−∆]\{∞}

y∈{∆,2∆,3∆,...,∞}∩[∆,T−x]

E
(
e−r(W−x)I{W≤x+y} + p∗∆e

−ryI{W>x+y}
∣∣W > x

)
(1)

and the maximum exists.

2.3 Outlook of Smoothness and Regularity Assumptions

We ensure the existence of an equilibrium price and other unknowns by several unsur-

prising smoothness and regularity assumptions, which we place so that only what comes

after an assumption may need that assumption. They require the perceived remaining

time W to have a density (Assumption 4) that is continuous (Assumption 5) and has

enough of a tail (Assumption 1) to, in particular, induce on (0, T ) a hazard rate assumed

to converge at the endpoints (Assumption 6). This is all we assume for the finite-lifetime

case T < ∞, because then Assumption 3 is redundant and from the combined list we can

omit continuity of the distribution (Assumption 2) strengthened later with the density

(Assumption 4). With the finite-lifetime buy-and-resell overpricing model at hand, an

extension to infinitely-lived investors is of less importance and just helps, in our view, see
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that things work analogously in the finite-lifetime case (in particular, note Proposition

1 in Section 3). For this reason, we are not concerned about the strong assumption of

eventual first-order stochastic dominance (Assumption 3) made to ensure the existence

of an equilibrium price when T = ∞, which involves noncompact maximization.

3 Buy-and-hold Price versus Equilibrium Price

Buy-and-hold price is the benchmark used in the previous literature on buy-and-resell

overpricing initiated by Harrison and Kreps (1978), but we need an extension to over-

lapping generations. The difficulty is that we need to consider resale values, because in

the finite-lifetime case we cannot define buy-and-hold price as the highest estimate of

the expected discounted return of holding the asset forever among all investors. Instead,

we define it as what an equilibrium price would be if buyers of the asset had to meet a

no-retrade constraint and only then could resell at this price if the dividend were still

unpaid (Definitions 2–3 followed by verbal explanations):

Definition 2 (No-retrade Constraint for Benchmark Equilibrium). The correspondence

from the participating investors’ age interval

Y∆ : [0, T −∆]\{∞} ↠ {∆, 2∆, 3∆, . . . ,∞}

13



defined by (longer no-retrade durations for younger investors)

Y∆ (x) =



{∆} if T − 2∆ < x ≤ T −∆,

{∆, 2∆} if T − 2∆ = x,

{2∆} if T − 3∆ < x < T − 2∆,

{2∆, 3∆} if T − 3∆ = x,

{3∆} if T − 4∆ < x < T − 3∆,

...

{∞} if T = ∞

is a no-retrade constraint.

In this constraint for the definition of benchmark buy-and-hold price, either infinite

lifetime T = ∞ is the case and the no-retrade duration is forever or else the no-retrade

duration depends on remaining lifetime as follows: one trading round at the top age

bracket, one or two at the threshold for the second top bracket (for some continuity of

the correspondence), two at the second top bracket itself, and so on to as many trading

rounds as possible within the finite lifetime T < ∞ at the lowest age bracket. Essentially,

to buy and hold means to hold the asset for the rest of the buyer’s investment horizon

and then resell at the sought buy-and-hold price as long as the dividend is still unpaid:

Definition 3 (Buy-and-hold Price). We say that a price p̄∆ ∈ [0, 1] is a buy-and-hold

price if it equals the most optimistic expected discounted return from restricted trading

under the no-retrade constraint (Definition 2) across all investors in terms of their age

x in the sense that

p̄∆ = max
x∈ [0,T−∆]\{∞}

y∈Y∆(x)

E
(
e−r(W−x)I{W≤x+y} + p̄∆e

−ryI{W>x+y}
∣∣W > x

)
(2)
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and the maximum exists.

A bridge from overlapping generations to the previous literature is the infinite-lifetime

case T = ∞, when the buy-and-hold price is simply the most optimistic expected dis-

counted return of holding the asset forever among all investors. Indeed, in the case

T = ∞, when the participating investors’ age interval always constitutes [0,∞), condi-

tion (2) becomes

p̄∆ = max
x∈[0,∞)

E
(
e−r(W−x)

∣∣W > x
)

(3)

(a buy-and-hold price exists if and only if the maximum exists, as addressed more

generally in Section 4.1). The reason the previous literature defines benchmark price

as the highest expected discounted value of future dividends among investors is that it

reflects the willingness to pay for the asset if obliged to hold it forever, without reselling.

Viewing this buy-and-hold price as this willingness to pay is key to the infinite-horizon

overpricing idea: if the price exceeds everyone’s expected discounted value of dividends,

whoever buys it will resell despite being infinitely-lived. Indeed, in the case T = τ = ∞

the buyer does not only plan to stop waiting for the dividend at some future time point,

but actually stops and resells. Proposition 1 below covers this and the general case to

show that things work analogously in the finite-lifetime case T < ∞ under our choice

of the no-retrade constraint and resale value for the definition of buy-and-hold price

(Definitions 2–3). If the buyer held the asset for the rest of the investment horizon, that

would include holding it for the final trading round in life, which would trivially satisfy

the no-retrade constraint and mean that the price is a buy-and-hold price. The argument

for the more familiar infinite-lifetime case T = ∞ is longer and involves recursion:

Proposition 1 (Reselling Early within Investment Horizon). An equilibrium price p∗∆

coincides with a buy-and-hold price if in this equilibrium it is optimal to meet the no-
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retrade constraint starting from some age x ∈ [0, T −∆]\{∞} , i.e., if for every w ∈

{0,∆, 2∆, 3∆, . . . } ∩ [0, T −∆− x] there is a y ∈ {∆, 2∆, 3∆, . . . ,∞} ∩ [∆, T − x− w]

such that (x+ w, y) is in the argmax in (1).

Proof. (T < ∞) At the age of x, the number of trading rounds within remaining lifetime

is maxY∆ (x), the final trading round in the investor’s life would be in w = maxY∆ (x)−

∆ time units, and by the hypothesis (x+ w,∆) is in the argmax in (1). This means that

the equilibrium price p∗∆ equals the expected discounted return of the investor of age

x+ w of holding the asset for the final trading round. But reselling at the end trivially

meets the no-retrade constraint in the sense that ∆ ∈ Y∆ (x+ w) and, thus, does not

bind in condition (2) when p̄∆ = p∗∆, which is indeed a buy-and-hold price then.

(T = ∞) The hypothesis implies the existence of a recursively defined sequence {yn} in

{∆, 2∆, 3∆, . . . } such that

p∗∆ =E

(
e−r(W−x−

∑n−1
i=1 yi)I{W≤x+

∑n
i=1 yi} + p∗∆e

−rynI{W>x+
∑n

i=1 yi}

∣∣∣∣∣W > x+
n−1∑
i=1

yi

)

=E

(
e−r(W−x−

∑n−1
i=1 yi)I{W≤x+

∑n
i=1 yi}

∣∣∣∣∣W > x+
n−1∑
i=1

yi

)

+ p∗∆e
−ryn

P (W > x+
∑n

i=1 yi)

P
(
W > x+

∑n−1
i=1 yi

) .
By induction, we have

p∗∆ =
n∑

i=1

E

(
e−r(W−x−

∑i−1
j=1 yj)I{W≤x+

∑i
j=1 yj}

∣∣∣∣∣W > x+
i−1∑
j=1

yj

)
P
(
W > x+

∑i−1
j=1 yj

)
er

∑i−1
j=1 yj P (W > x)

+ p∗∆e
−r

∑n
i=1 yi

P (W > x+
∑n

i=1 yi)

P (W > x)

for all indices n. By another induction, the first summation in this formula simplifies
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and turns it to

p∗∆ = E
(
e−r(W−x)I{W≤x+

∑n
i=1 yi}

∣∣∣W > x
)
+ p∗∆e

−r
∑n

i=1 yi
P (W > x+

∑n
i=1 yi)

P (W > x)
,

for all indices n. Passing to the limit shows that

p∗∆ = E
(
e−r(W−x)

∣∣W > x
)
,

hence the pair (x,∞) is a maximizer in (1), and hence x is a maximizer in (3), confirming

that p∗∆ is a buy-and-hold price.

4 Characterization of Buy-and-resell Overpricing

Belief heterogeneity is necessary but not sufficient for buy-and-resell overpricing, al-

though most models parameterize beliefs in such a way that without short-selling their

heterogeneity and overpricing are equivalent; exceptions are Morris (1996) and Werner

(2020). In our model, which integrates a documented experience effect—imperviousness

to information that is not experience-based (Malmendier, 2021)—into this theory, buy-

and-resell overpricing and belief heterogeneity also do not always co-occur. In this

section, we characterize buy-and-resell overpricing in terms of the hazard rate of the

perceived remaining time W , although our main result concerns the sensitivity to this

experience effect (Section 5). When viewed as a function of age, the hazard rate is a

measure of instantaneous optimism about the dividend (conditional on it remaining un-

paid). With this interpretation, our necessary and sufficient condition for buy-and-resell

overpricing is that the most senior investors are not instantaneously the most optimistic

(Section 4.2 and an example with an incomplete exponential distribution in Section 4.3).

Otherwise, the hazard rate can be, for instance, strictly increasing so that more senior
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investors’ beliefs are instantaneously more optimistic, but this belief heterogeneity does

not cause buy-and-resell overpricing. Here a simple example is that of a gamma distri-

bution with a suitable shape parameter (see Section 4.3 as well). Under the benchmark

exponential distribution, not only the hazard rate is constant so that our necessary and

sufficient condition fails and there is no overpricing, but there is also no belief hetero-

geneity (Section 4.3). Our characterization of buy-and-resell overpricing is asymptotic

in the sense that we take discrete-trade equilibrium and buy-and-hold prices, which exist

and are unique, to their continuous-trade limits (Section 4.1) before comparing them.

4.1 Existence and Continuous-trade Limit

Mild assumptions on the perceived remaining time W are in place for unique discrete-

trade equilibrium and buy-and-hold prices to exist and to converge. For the existence

and uniqueness in the discrete-trade case, we need the following assumptions and ter-

minology:

Definition 4 (Investors’ Conditional Distributions—Posteriors—on Reaching Their Age).

The function F (·|·) : R× [0, T ) → R defined by

F (w|x) = P (W − x ≤ w|W > x)

is in the first variable the posterior distribution function (of an extended-valued random

variable) given the second variable (age, x), and for every x ∈ [0, T ) we automatically

have

lim
w→∞

F (w|x) = P (W − x < ∞|W > x) .

For x = 0, we denote F (·|0) by F and its limit at infinity limw→∞ F (w) by F (∞).
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Definition 5 (Extended First-order Stochastic Dominance). For posteriors given sur-

vival up to any two x, x′ ∈ [0, T ), we say that F (·|x) first-order stochastically dominates

(FOSD) F (·|x′) if for every (weakly) increasing function u : (−∞,∞] → R we have

∫ ∞

−∞
u|R (w) dF (w|x) + u (∞)

(
1− lim

w→∞
F (w|x)

)
(4)

≥
∫ ∞

−∞
u|R (w) dF (w|x′) + u (∞)

(
1− lim

w→∞
F (w|x′)

)
.

Assumption 2. Continuity of F on [0, T ] \ {∞} .

Assumption 3. Either T < ∞ or eventual first-order stochastic dominance in the sense

that there exists an age threshold x̃ ∈ [0, T ) such that F (·|x) first-order stochastically

dominates F (·|x̃) for all x ∈ [x̃, T ).

Here the important scenario is that of finitely-lived investors (T < ∞), while the

infinite-lifetime case (T = ∞) is, from our perspective, for better compatibility with the

previous literature on buy-and-resell overpricing initiated by Harrison and Kreps (1978).

Only for this case’s sake we involve first-order stochastic dominance (for extended-valued

random variables), which we have defined analogously to that for finite-valued random

variables (see, e.g., Mas-Colell et al., 1995). Just as first-order stochastic dominance of

one money lottery over another means that expected utility of the first is at least as high

as that of the second if one values more over less, so do we order this kind of beliefs.

What Assumption 3 means in terms of the primitive objects is easy to state by replacing

the phrase “F (·|x) first-order stochastically dominates F (·|x̃)” with inequality (4), the

age x′ with x̃, and the posteriors with their definitions in terms of F :

F (w|x) = P (x < W ≤ w + x)

P (W > x)
=

F (w + x)− F (x)

1− F (x)

if w ∈ [0,∞).
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Example 1 (Stochastic Dominance under Incomplete Exponential Distribution). Sup-

pose that 0 < P (W = ∞) < 1 and conditionally on W < ∞ the distribution of W is

exponential, i.e., there is a λ ∈ (0,∞) such that all w ∈ [0,∞) satisfy

P (W ≤ w|W < ∞) = 1− e−λw

(an incomplete exponential distribution with parameters λ and q = P (W = ∞)). The

posterior given survival up to any age x ∈ [0, T ) remains incomplete exponential with

the same exponential part but different (updated) probabilities of infinite time left till

the terminal time, i.e.,

P (W − x = ∞|W > x) =
q

q + (1− q) e−λx
(5)

and all w ∈ [0,∞) satisfy

F (w|x) =
(
1− q

q + (1− q) e−λx

)(
1− e−λw

)
.

Relative to the zero age at birth, at the age of x the posterior F (·|x) scales down

everywhere according to this formula, because the posterior probability (5) of infinite

remaining time goes up. In other words, the probability shifts to infinite remaining time

from finite ones, hence, precisely as first-order stochastic dominance requires, expecta-

tions of increasing functions of the remaining time increase (Definition 5). This means

that relative to the zero age at birth at the age of x the posterior F (·|x) is first-order

stochastically dominant, and thus Assumption 3 holds simply with x̃ = 0.

We return to this and other examples in Section 4.3, where we put three examples

together in Table 1, Section 5 (Example 2), and Appendix A.1. Now we are ready

to prove the existence and uniqueness of (steady-state) equilibrium and buy-and-hold
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prices:

Proposition 2. There exist:

(i) a unique equilibrium price;

(ii) a unique buy-and-hold price.

Proof. We unify parts (i) and (ii) into one problem by considering a general form of

the constraint on holding durations. In both cases, this constraint has the form of a

correspondence Z∆ from the participating investors’ age interval [0, T −∆]\{∞} to the

holding durations {∆, 2∆, 3∆, . . . ,∞} defined by either

Z∆ (x) = Y∆ (x) , for part (ii),

or

Z∆ (x) = {∆, 2∆, 3∆, . . . ,∞} ∩ [∆, T − x] , for part (i).

Now the unified problem is to find a unique price p ∈ [0, 1] such that

p = max
x∈ [0,T−∆]\{∞}

y∈Z∆(x)

E
(
e−r(W−x)I{W≤x+y} + pe−ryI{W>x+y}

∣∣W > x
)

(6)

and the maximum exists. Such a price p is either an equilibrium price (part (i)) or a

buy-and-hold price (part (ii)) depending on the choice of Z∆, and thus it suffices to solve

the unified problem (6). It is a combination of a maximization problem (noncompact if

T = ∞) and a fixed-point problem. For the noncompact maximization to work we had

simply included and will use the assumption of eventual first-order stochastic dominance

(Assumption 3), and for the fixed point we will use the Contraction-mapping Theorem.

For solving the unified problem (6) as just outlined, it is first convenient to write the
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maximand expectation in (6) in terms of the distribution and in two different ways (7)

and (8):

E
(
e−r(W−x)I{W≤x+y} + pe−ryI{W>x+y}

∣∣W > x
)

= E
(
e−r(W−x)I{W−x≤y} + pe−ryI{W−x>y}

∣∣W > x
)

=

∫ y

−∞
e−rwdF (w|x) +

∫ ∞

y

pe−rydF (w|x) + pe−ry
(
1− lim

w→∞
F (w|x)

)
(7)

=
1

1− F (x)

(∫ x+y

x

e−r(w−x)dF (w) + pe−ry (1− F (x+ y))

)
, (8)

for each age x ∈ [0, T −∆]\{∞} and for each holding duration y ∈ Z∆ (x). By the

former formula (7) and Assumption 3, either T < ∞ and the maximization is over the

compact subset

{
(x, y) ∈ R2 : x ∈ [0, T −∆] , y ∈ Z∆ (x)

}
of R2 or else the maximum coincides (either both or neither exist) with the maximum

over the compact subset

[0, x̃]× Z∆ (0) (9)

of R times its one-point compactification (−∞,∞] (see, e.g., Aliprantis and Border, 2006).

From the latter formula (8) and Assumption 2, it is easy to see continuity of the objec-

tive function on these compact sets, implying the existence of the maximum, which we

denote by v∆ (p), for each price p ∈ [0, 1]. This reduces the whole problem (6) to finding

a unique fixed point p ∈ [0, 1] of this function v∆ : [0, 1] → [0, 1]. For this final step,

it suffices to show that this v∆ is a contraction, and thus it is enough to show that all
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prices p, p′ ∈ [0, 1] with p ≥ p′ satisfy

|v∆ (p)− v∆ (p′)| ≤ e−r∆ |p− p′| .

To verify this inequality, we use any maximizer (x, y) of the right-hand side of (6) when

the price is p and directly calculate that

|v∆ (p)− v∆ (p′)| = v∆ (p)− v∆ (p′)

=
1

1− F (x)

(∫ x+y

x

e−r(w−x)dF (w) + pe−ry (1− F (x+ y))

)
− v∆ (p′)

≤ 1

1− F (x)

(
pe−ry (1− F (x+ y))− p′e−ry (1− F (x+ y))

)
=

1− F (x+ y)

1− F (x)
e−ry (p− p′)

≤ e−ry (p− p′) ≤ e−r∆ (p− p′) = e−r∆ |p− p′| ,

completing the proof.

The remaining question of this subsection is when these discrete-trade equilibrium

and buy-and-hold prices have continuous-trade limits, in terms of which we characterize

buy-and-resell overpricing in Section 4.2. For this we need another set of assumptions

and terminology first.

Assumption 4. A density f : R → [0,∞) for F exists: f is integrable and all w,w′ ∈ R

with w < w′ satisfy

F (w′)− F (w) =

∫ w′

w

f (z) dz.

Assumption 5. Continuity of f on (0, T ).

Assumption 4 allows us to introduce two important functions for stating our over-

pricing results, proving them, and first obtaining the continuous-trade limits of the
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discrete-trade equilibrium and buy-and-hold prices in Proposition 3 below. These im-

portant functions are the hazard rate, as usual when uncertainty is about waiting time,

and what we can call the hazard weight:

Definition 6 (Hazard Rate and Hazard Weight). The hazard rate is the function h :

(0, T ) → [0,∞), on the interior of the coexisting investors’ age interval [0, T ]\{∞} ,

defined by

h (x) =
f (x)

1− F (x)

(standard definition apart from the restricted domain). The hazard weight is the function

h̃ : (0, T ) → [0, 1] defined by

h̃ (x) =
h (x)

h (x) + r
.

Indeed, the name hazard weight we chose for this function stands for the relative

weight of the hazard rate h and the interest rate r this function h̃ measures. Our

overpricing condition that is both necessary and sufficient (Section 4.2) is on the hazard

rate h, and so is our final Assumption 6 below, but they enter our proofs via the hazard

weight h̃.

Assumption 6. One-sided limits of h at the endpoints of its domain or else divergence

to infinity:

(i) h has a limit or tends to ∞ as x → 0+;

(ii) h has a limit or tends to ∞ as x → T−, where the convention is ∞− = ∞.

Assumption 6 just disciplines the distribution F of the perceived remaining time W

at the endpoints of the coexisting investors’ age interval [0, T ] \ {∞} in the sense of a

sufficiently well-behaved hazard rate h (which we can express in terms of F itself and
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its derivative). It makes the analysis of the continuous-trade limits of the discrete-trade

equilibrium and buy-and-hold prices less tedious:

Proposition 3 (Continuous-trade Limits). Consider (i) the equilibrium price p∗∆ and

(ii) buy-and-hold price p̄∆ found in Proposition 2 as (real) functions of the trade-frequency

parameter ∆ on (0, T ). They have (finite) right-hand limits at 0.

Proof. We continue here our unified treatment of the equilibrium price (part (i)) and

buy-and-hold price (part (ii)) set out in the proof of Proposition 2, viewing each of

them as the solution of the unified problem (6). In other words, we consider the unique

solution p∆ of problem (6) as a (real) function of the trade-frequency parameter ∆ on

(0, T ) and show that this function has a right-hand limit at 0. To structure this proof,

we first recall from the proof of Proposition 2 that what we are taking the limit of are the

fixed points p∆ of the maxima v∆ : [0, 1] → [0, 1]. The proof of this proposition builds

on that of Proposition 2 and goes in four steps: characterizing the fixed points of the

maxima as maxima of fixed points, extending these new maximands to continuous trade,

extending the constraints on holding durations to continuous trade, and then obtaining

the desired limit using the Berge Maximum Theorem.

Step 1 (Characterizations of Discrete-trade Solutions). We simplify the mathematical

structure of the definition of the solution p∆ of the unified discrete-trade problem (6) by

two characterizations (10) and (11) below. The second characterization is just a useful

improvement of the first.

First to characterize the discrete-trade solution p∆ by showing that

p∆ = max
x∈ [0,T−∆]\{∞}

y∈Z∆(x)

∫ x+y

x
e−r(w−x)dF (w)

1− F (x)− e−ry (1− F (x+ y))
(10)

and the maximum exists, where the maximand is the fixed point of the original price-

dependent maximand in the discrete-trade problem (6). This holds for the solution p∆
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because its definition (6) requires that all x ∈ [0, T −∆]\{∞} and all y ∈ Z∆ (x) satisfy

p∆ ≥ 1

1− F (x)

(∫ x+y

x

e−r(w−x)dF (w) + p∆e
−ry (1− F (x+ y))

)
,

hence

p∆ ≥
∫ x+y

x
e−r(w−x)dF (w)

1− F (x)− e−ry (1− F (x+ y))
,

but both inequalities become equalities when (x, y) is any of the original maximizers in

(6).

Now a useful improvement of this characterization (10) of the solution p∆ follows by

restricting the maximization there to a compact set in the infinite-lifetime case T = ∞

like in the earlier characterization, the one using (9). To write down this improved

characterization in a unified way for both the infinite- and finite-lifetime cases, we denote

the right endpoint of the age interval used by x∆: x∆ is x̃ from Assumption 3 or T −∆

according as T = ∞ or T < ∞. The useful fact we were after is that

p∆ = max
x∈[0,x∆]
y∈Z∆(x)

∫ x+y

x
e−r(w−x)dF (w)

1− F (x)− e−ry (1− F (x+ y))
(11)

and follows in the same way as the first version (10), except that in the discrete-trade

problem (6) we take a maximizer belonging to this smaller set using again the maxi-

mization over (9).

Step 2 (Continuous Extension of Maximand from Step 1). To take the desired limit

using the characterizations (10)–(11), we first show that the maximands there extend to

a continuous real function g on

{(x, y) ∈ R× (−∞,∞] : 0 ≤ x ≤ T, 0 ≤ y ≤ T − x} , (12)
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where (−∞,∞] is the one-point compactification of R (the unclear part is y = 0). For

this, we define g by

g (x, y) =



∫ x+y

x
e−r(w−x)dF (w)

/
(1− F (x)− e−ry (1− F (x+ y))) if y > 0,

h̃ (x) if y = 0 < x < T,

limw→T− h̃ (w) if y = 0 < x = T,

limw→0+ h̃ (w) if y = 0 = x,

so that it only remains to prove continuity of g, the crux of which is the L’Hôpital

Rule that works in some sense uniformly, but for which we do not have an off-the-shelf

statement and do our own proof. Namely, the key to continuity is to first prove that

uniformly on compact subsets of [0, T ] \ {∞} ⊂ R we have

lim
y→0+

g (x, y) = g (x, 0) , (13)

where allowed y’s depend on x, i.e., by (13) we mean that for every compact X ⊂

[0, T ] \ {∞} and for every ε ∈ (0,∞) there is a δ ∈ (0,∞) such that all x ∈ X and all

y ∈ [0, T − x] ∩ (0, δ) satisfy

|g (x, y)− g (x, 0)| < ε. (14)

Let us prove this key claim (13) and then return to continuity of g. Since in this claim

any δ ∈ (0,∞) works if x = T , we only need to find a δ ∈ (0,∞) that works for every

x ∈ X\{T} . We note that x < T and so for all y, y′ ∈ (0, T − x) with y > y′ the Cauchy

Mean-value Theorem, whose differentiability hypotheses follow from Assumption 5 by
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the Fundamental Theorem of Calculus, yields a z ∈ (y′, y) such that

∫ x+y

x
e−r(w−x)dF (w)−

∫ x+y′

x
e−r(w−x)dF (w)

1− F (x)− e−ry (1− F (x+ y))− (1− F (x)− e−ry′ (1− F (x+ y′)))

=
e−rzf (x+ z)

e−rz (1− F (x+ z)) r + e−rzf (x+ z)

=
f (x+ z)

f (x+ z) + (1− F (x+ z)) r

=
h (x+ z)

h (x+ z) + r

= h̃ (x+ z)

= g (x+ z, 0) .

Now since the function g (·, 0) on [0, T ] \ {∞} is continuous considering continuity of

the density f as per Assumption 5, this very g (·, 0) is uniformly continuous on compact

subsets of [0, T ] \ {∞} . This means that either T < ∞ and g (·, 0) is uniformly contin-

uous or else T = ∞ and g (·, 0) is uniformly continuous on X + [0, 1]. In both cases,

uniform continuity yields a δ ∈ (0,∞) independent of x such that

y ∈ (0, δ) =⇒

|g (x+ z, 0)− g (x, 0)| < ε

2
=⇒∣∣∣∣∣

∫ x+y

x
e−r(w−x)dF (w)−

∫ x+y′

x
e−r(w−x)dF (w)

1− F (x)− e−ry (1− F (x+ y))− (1− F (x)− e−ry′ (1− F (x+ y′)))
− g (x, 0)

∣∣∣∣∣ < ε

2
.

Passing to the limit as y′ → 0+ shows that

|g (x, y)− g (x, 0)| ≤ ε

2
.

Since here y was an arbitrary element of (0, T − x)∩(0, δ), this desired inequality readily

extends to all y ∈ [0, T − x] ∩ (0, δ). Since here x was an arbitrary element of X\{T} ,
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we have proved the desired uniform convergence stated in (13).

It remains to verify continuity of g now that we have its convergence (13), as y → 0+,

uniformly on compact subsets of [0, T ] \ {∞} in the sense of (14). For continuity, it is

convenient to use the sequential criterion, but we only look at sequences {(xn, yn)} in the

domain (12) of g converging to (x, y) in its domain with y = 0, as the rest are rudimental.

It is precisely the former cases where knowing the uniform-convergence property (13)

helps, because {(xn, yn)} → (x, 0) means that the set {x, x1, x2, . . . } is a compact subset

of [0, T ] \ {∞} and we have that uniform convergence. Now to complete this step, note

that by this property for every ε ∈ (0,∞) there is a δ2 ∈ (0,∞) such that all indices n

satisfy

yn ∈ (0, δ2) =⇒ |g (xn, yn)− g (xn, 0)| <
ε

2

and (recall continuity of g (·, 0) from the previous paragraph) there is a δ1 ∈ (0,∞) such

that all n satisfy

|xn − x| < δ1 =⇒ |g (xn, 0)− g (x, 0)| < ε

2
,

hence eventually

|g (xn, yn)− g (x, 0)| < ε,

as desired.

Step 3 (Continuous-trade Holding Constraints). To furnish a candidate for the desired

limit of the discrete-trade solution based on its characterizations (10)–(11) from Step

1, we also take their constraint on holding durations and extend it to continuous trade.

Our new constraint is the correspondence Z0 from the coexisting investors’ age interval
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[0, T ] \ {∞} to the holding durations [0,∞] defined by either

Z0 (x) = {T − x} , for part (ii), (15)

or

Z0 (x) = [0, T − x] , for part (i). (16)

In its domain, define x0 to be x̃ from Assumption 3 or T according as T = ∞ or T < ∞.

Step 4 (Convergence of Discrete-trade Solutions). The final step is to see from Steps

1–3 that the desired limits are (in unified form for both part (i) and (ii) by means of

notation (15)–(16) for the constraint on holding durations)

lim
∆→0+

p∆ = max
x∈[0,x0]
y∈Z0(x)

g (x, y) . (17)

Here we only note that what we are taking the limit of are themselves maxima (11) and

they converge to this maximum by a version of the Berge Maximum Theorem that only

assumes continuity of the correspondence at a single point (see Moore, 2010).

An example in Appendix A.1 shows that in this proposition the continuous-trade limit

of the discrete-trade equilibrium price need not be a monotone limit. The relationship

between buy-and-resell overpricing and trading frequency is complicated by the fact that

the latter affects both the equilibrium and buy-and-hold prices via holding durations.

We focus on buy-and-resell overpricing under frequent trade and compare the equilib-

rium and benchmark buy-and-hold prices in this continuous-trade limit in the following

subsection.
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4.2 Necessary and Sufficient Condition for Overpricing

Our conditions do not only help relate buy-and-resell overpricing to imperviousness of

beliefs to information that is not experienced-based (Section 5), but also shed light

on overpricing-neutral belief heterogeneity, complementing Morris (1996) and Werner

(2020). In their models, buy-and-resell overpricing and belief heterogeneity also do not

always co-occur: sometimes only the latter occurs and does not cause overpricing. The

former author characterizes overpricing in a special case of Harrison and Kreps (1978)

in terms of investors’ prior beliefs about the probability θ ∈ [0, 1] that the asset pays in

any one period a $1 dividend as opposed to no dividend. Representing these prior beliefs

by densities over the parameter θ, his necessary and sufficient condition for overpricing

is that there be no investor with monotone-likelihood-ratio dominant prior beliefs. This

condition remains sufficient for buy-and-resell overpricing under an arbitrary dividend

process studied by Werner (2020). Although he considers other mechanism of belief

heterogeneity as well, he does not cover overlapping generations and imperviousness of

investors’ beliefs to information that is not experience-based, which we focus on. We

obtain a different characterization of buy-and-resell overpricing, in terms of the hazard

rate h of the perceived remaining time W . First we give two sufficient conditions for

buy-and-resell overpricing (Sections 4.2.1 and 4.2.2) in the continuous-trade limit of our

discrete-trade model and then the necessity of the second one (Section 4.2.3).

4.2.1 1st Sufficient Condition for Overpricing

To characterize buy-and-resell overpricing later in Sections 4.2.2–4.2.3, we first need to

recover in our model a standard sufficient condition that is robust to the mechanism of

belief heterogeneity (unlike the likelihood-ratio condition). In the infinite-lifetime mod-

els of both Morris (1996) and Werner (2020), the general condition is that no investor

be from some time onwards at least as optimistic about holding the asset forever as ev-
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eryone else. The term used for this sufficient condition is, naturally, perpetual valuation

switching, in which case, as Scheinkman and Xiong (2003) put it, investors’ “funda-

mental beliefs cross”. It works under an arbitrary dividend process (Werner, 2020)

with overconfidence (Scheinkman and Xiong, 2003), heterogeneous priors with correct

updating (Morris, 1996), and dogmatic Markov beliefs independent of past dividends

(Harrison and Kreps, 1978). Building on this idea, we identify an analogue of this suffi-

cient condition for overlapping generations and use it to prove the sufficiency of our main

condition (Section 4.2.2), which is also necessary (Section 4.2.3). The former condition

is in terms of personalized fundamental values, which in the benchmark infinite-lifetime

case T = ∞ collapse to the expected discounted returns of holding the asset forever.

We extend them to the expected discounted returns of holding for the rest of life and

then actually reselling as long as the dividend is unpaid, but at the buy-and-hold price’s

continuous-trade limit as the resale price, which we take from Proposition 3 and denote

by

p̄0 = lim
∆→0+

p̄∆.

In our model, the resulting personalized fundamental values (conditional on the divi-

dend remaining unpaid) are a function of age, which we call by the shorter name of a

fundamental valuation:

Definition 7 (Fundamental Valuation). The fundamental valuation is the function of

age V : [0, T ] \ {∞} → R defined by

V (x) = E
(
e−r(W−x)I{W≤T} + p̄0e

−r(T−x)I{W>T}
∣∣W > x

)
=

1

1− F (x)

(∫ T

x

e−r(w−x)dF (w) + p̄0e
−r(T−x) (1− F (T ))

)
.

In the benchmark infinite-lifetime case T = ∞, we can recover the buy-and-hold price
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from this fundamental valuation V by taking the maximum. Indeed, in the case T = ∞

all the discrete-trade buy-and-hold prices (3) together with their continuous-trade limit

p̄0 are the same thing as the most optimistic fundamental valuation:

p̄0 = max
x∈[0,∞)

V (x) , (18)

which in the infinite-lifetime literature is used as definition. In the finite-lifetime case T <

∞, the fundamental valuation, so defined, remains valid for both purposes: representing

the buy-and-hold price (Proposition 4) and giving a sufficient condition for overpricing.

In representing the buy-and-hold price, the difference from the standard case is that the

most optimistic fundamental valuation itself depends on the continuous-trade limit p̄0:

Proposition 4. The buy-and-hold price’s continuous-trade limit p̄0 equals the most op-

timistic fundamental valuation:

p̄0 = max
x∈ [0,T ]\{∞}

V (x)

and the maximum exists.

Proof. The argument for the finite-lifetime case T < ∞ is slightly longer. For this

scenario, we carry over from the proof of Proposition 3 formula (17) and note that it

requires at every age x ∈ [0, T ) that

p̄0 ≥ g (x, T − x) =

∫ T

x
e−r(w−x)dF (w)

1− F (x)− e−r(T−x) (1− F (T ))
, (19)

hence

p̄0 ≥
1

1− F (x)

(∫ T

x

e−r(w−x)dF (w) + p̄0e
−r(T−x) (1− F (T ))

)
= V (x) , (20)

but p̄0 = V (T ), completing the proof.
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We are ready to extend to overlapping generations the idea of perpetual valuation

switching from the infinite-lifetime models of Morris (1996) and Werner (2020), who

find it to be sufficient for buy-and-resell overpricing. The requirement becomes that no

investor assess from some age for the rest of life the fundamental value to be at least as

high, conditional on the dividend remaining unpaid, as everyone else:

Definition 8 (Valuation-switching Condition). The fundamental valuation V exhibits

switching if some (relatively young) age x̂ ∈ [0, T ) is a maximizer of V but another

(older) age x̆ ∈ (x̂, T ) is not.

In other words, here investors switch from belonging to the group with the most

optimistic fundamental valuation when they are of age x̂ to a less optimistic group when

they reach the age of x̆, as long as the dividend is unpaid. As a result, buy-and-resell

overpricing occurs in the continuous-trade limit as the discrete-trade equilibrium prices

tend to the limit found in Proposition 3 and denoted by

p∗0 = lim
∆→0+

p∗∆,

that is:

Proposition 5 (Buy-and-resell Overpricing 1). If the fundamental valuation V exhibits

switching, then p∗0 > p̄0.

Proof. First we take x̂, x̆ from Definition 8 and, without loss of generality, x̂ ∈ [0, x̃] if

T = ∞ (maximizers of (8), where p drops out, over (9) for the case of fundamental value

(part (ii)), where ∆ drops out, give us maximizers of V that belong to [0, x̃]). Now the

proof goes by taking the function g from (17) and showing two inequalities

p∗0 ≥ g (x̂, x̆− x̂) > p̄0, (21)
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but the first of these inequalities is immediate from (17):

p∗0 = lim
∆→0+

p∗∆ = max
x∈[0,x0]

y∈[0,T−x]

g (x, y) ≥ g (x̂, x̆− x̂) .

For the remaining inequality (the strict one in (21)), first note that V (x̂) = p̄0 by

Proposition 4, but also

V (x̂) =

∫ x̆

x̂
e−r(w−x̂)dF (w) + p̄0e

−r(x̆−x̂) (1− F (x̆))

1− F (x̂)
+

1− F (x̆)

1− F (x̂)
e−r(x̆−x̂) (V (x̆)− p̄0)

by a direct calculation. It follows from these two conditions that

∫ x̆

x̂
e−r(w−x̂)dF (w) + p̄0e

−r(x̆−x̂) (1− F (x̆))

1− F (x̂)
= V (x̂) +

1− F (x̆)

1− F (x̂)
e−r(x̆−x̂) (p̄0 − V (x̆))

= p̄0 +
1− F (x̆)

1− F (x̂)
e−r(x̆−x̂) (V (x̂)− V (x̆)) .

Now the time is ripe for applying valuation switching, by which here V (x̂)− V (x̆) > 0,

to conclude that

1

1− F (x̂)

(∫ x̆

x̂

e−r(w−x̂)dF (w) + p̄0e
−r(x̆−x̂) (1− F (x̆))

)
> p̄0,

and thus that

p̄0 <

∫ x̆

x̂
e−r(w−x̂)dF (w)

1− F (x̂)− e−r(x̆−x̂) (1− F (x̆))
= g (x̂, x̆− x̂) ,

as desired.

4.2.2 2nd Sufficient Condition for Overpricing

Whereas the first sufficient condition (Definition 8) for buy-and-resell overpricing is

not directly on primitives of the model, our main condition, given here, is, but there
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is a striking similarity with the first condition. Our main condition requires some-

thing like valuation switching in the first condition, extended from Morris (1996) and

Werner (2020), but requires it of the hazard rate instead of the fundamental valuation.

Here is the main condition:

Definition 9 (End-of-life Hazard Switching). The hazard rate h exhibits end-of-life

switching if

lim
x→T−

h (x) < sup
x∈(0,T )

h (x) .

In other words, eventually, with age, the hazard rate h of the perceived remaining time

W has to switch to and stay at lower levels relative to the highest ones, whereas the

first condition did not require the fundamental valuation V to stay lower (Definition 8).

Interpreting the hazard rate h as instantaneous optimism about the dividend (conditional

on it remaining unpaid) as a function of age, the condition says that the most senior

investors are not instantaneously the most optimistic. It is also sufficient for buy-and-

resell overpricing:

Proposition 6 (Buy-and-resell Overpricing 2). If the hazard rate h exhibits end-of-life

switching, then p∗0 > p̄0.

Proof. Taking advantage of Proposition 5, we assume for this proof that the fundamental

valuation V does not exhibit switching. With this, the proof goes by showing two things

p∗0 > lim
x→T−

h̃ (x) = p̄0, (22)

but the inequality is almost immediate from end-of-life hazard switching, by which there

exists an x̂ ∈ (0, T ) such that

lim
x→T−

h (x) < h (x̂) ,
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and the fact that p∗0 is the limit in (17) of the discrete-trade equilibrium prices with

representation (10):

p∗0 = lim
∆→0+

p∗∆ ≥ lim
∆→0+

g (x̂,∆) (∆ ∈ (0, T − x̂))

= g (x̂, 0)

= h̃ (x̂)

=
h (x̂)

h (x̂) + r

>
limx→T− h (x)

r + limx→T− h (x)

= lim
x→T−

h̃ (x) .

For the remaining part of the proof (the equality in (22)), we use the fact that we could

assume that V does not exhibit switching and consider two cases:

Case 1 (T < ∞). By way of contradiction, suppose that limx→T− h̃ (x) ̸= p̄0. It follows

that

lim
x→T−

h̃ (x) = g (T, 0) < p̄0 = max
x∈[0,T ]

g (x, T − x)

from (17), and thus that here some x̂ ∈ [0, T ) is a maximizer but some x̆ ∈ (x̂, T ) is

not. The next step is to conclude that V (x̂) = p̄0 > V (x̆) by noting that in (19)–(20)

both inequalities become equalities or strict inequalities according as we plug x̂ or x̆.

Now x̂ maximizes V by Proposition 4 but x̆ does not, and thus V exhibits switching,

contradicting our assumption for this proof.

Case 2 (T = ∞). This goes by showing that V and h̃ are eventually constant at p̄0.

First for V , take any of its maximizers x̂, which exists with V (x̂) = p̄0 by Proposition

4, and note that now all x ∈ [x̂,∞) satisfy V (x) = V (x̂) = p̄0, because we assumed for
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this proof that V does not exhibit switching. Now for h̃, differentiate V on (x̂,∞) to

see that every x ∈ (x̂,∞) satisfies

0 = V ′ (x) = (h (x) + r)V (x)− h (x) = (h (x) + r) p̄0 − h (x) ,

hence

h̃ (x) =
h (x)

h (x) + r
= p̄0,

completing the proof.

4.2.3 Converse: Necessary Condition for Overpricing

The remaining part of our characterization of buy-and-resell overpricing is the necessity

of our last sufficient condition. The equilibrium price coincides with the buy-and-hold

price in the continuous-trade limit of our discrete-trade model if the sufficient condition—

end-of-life hazard switching—fails:

Proposition 7 (No Buy-and-resell Overpricing). If the hazard rate h does not exhibit

end-of-life switching, then p∗0 = p̄0.

Proof. First note that it suffices to show that p∗0 ≤ p̄0, because the reverse inequality

holds by (17):

p∗0 = max
x∈[0,x0]

y∈[0,T−x]

g (x, y) ≥ max
x∈[0,x0]
y∈{T−x}

g (x, y) = p̄0. (23)

Now the proof goes by taking any maximizer (x∗, y∗) on the left-hand side of this in-

equality and showing three more inequalities

p∗0 = g (x∗, y∗) ≤ g (x∗, 0) ≤ lim
x→T−

h̃ (x) ≤ p̄0. (24)
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Among these, the middle inequality follows from the absence of end-of-life hazard switch-

ing by noting that

lim
x→T−

h̃ (x) = lim
x→T−

h (x)

h (x) + r
≥ sup

x∈(0,T )

h (x)

h (x) + r
= sup

x∈(0,T )

g (x, 0) ≥ g (x∗, 0) ,

the last inequality, in (24), holds because either T < ∞ and

lim
x→T−

h̃ (x) = g (T, 0) ≤ max
x∈[0,T ]

g (x, T − x) = p̄0 (25)

again by (17) or else T = ∞ and

lim
x→∞

h̃ (x) = lim
x→∞

h (x)

h (x) + r
(26)

= lim
x→∞

∫∞
x

e−rwdF (w)

e−rx (1− F (x))
(by the L’Hôpital Rule)

= lim
x→∞

1

1− F (x)

∫ ∞

x

e−r(w−x)dF (w)

= lim
x→∞

V (x)

≤ max
x∈[0,∞)

V (x)

= p̄0 (by (18)),

and to prove the first inequality, in (24), consider three cases:

Case 1 (x∗ = 0). By way of contradiction, suppose that g (x∗, y∗) > g (x∗, 0). It follows

by definitions that

p∗0 > lim
x→0+

h̃ (x) . (27)

Now it must be that limx→0+ h̃ (x) < 1, because p∗0 = lim∆→0+ p∗∆ ≤ 1. It then follows
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that limx→0+ h (x) < ∞. Furthermore, f has the same limit

lim
x→0+

f (x) = lim
x→0+

h (x) < ∞, (28)

which is to say limx→0+ f (x) < ∞. Next as a density for F also define f0 : R → [0,∞)

by

f0 (w) =


limx→0+ f (x) if w = 0,

f (w) if w ̸= 0.

This way, f0 is continuous on [0, T ) by Assumption 5. Now the Fundamental Theorem

of Calculus allows us to differentiate v : [0, y∗) → R defined by

v (x) = g (x, y∗ − x) =

∫ y∗

x
e−r(w−x)dF (w)

1− F (x)− e−r(y∗−x) (1− F (y∗))
(29)

to see that its derivative at every x ∈ [0, y∗) is

v′ (x) =
(f0 (x) + r (1− F (x))) v (x)− f0 (x)

1− F (x)− e−r(y∗−x) (1− F (y∗))
.

Furthermore, we have

v′ (0) =
(limx→0+ h (x) + r) p∗0 − limx→0+ h (x)

1− e−ry∗ (1− F (y∗))
> 0,

because (27) and (28) show that

p∗0 > lim
x→0+

h̃ (x) =
limx→0+ h (x)

r + limx→0+ h (x)
.

It follows that some x̂ ∈ (0, y∗) satisfies v (x̂) > v (0) = p∗0. Finally, for the contradiction,

let ∆ be y∗ − x̂ or 1 according as y∗ < ∞ or y∗ = ∞, let p∗∆ be the corresponding
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(discrete-trade) equilibrium price found in Proposition 2, and observe, using (10) and

(11), that

p∗0 < v (x̂) = g (x̂, y∗ − x̂)

≤ max
x∈ [0,T−∆]\{∞}

y∈{∆,2∆,3∆,...,∞}∩[∆,T−x]

g (x, y) = p∗∆ = max
x∈[0,x∆]

y∈{∆,2∆,3∆,...,∞}∩[∆,T−x]

g (x, y) (30)

≤ max
x∈[0,x0]

y∈[0,T−x]

g (x, y) ,

contradicting the formula (used in (23)) for p∗0.

Case 2 (0 < x∗ < T ). It goes either trivially if y∗ = 0 or by taking a first-order necessary

condition for an interior maximum in the following way if y∗ > 0. First of all, as an

objective function it is convenient to consider v : (0, x∗ + y∗) → R defined by

v (x) = g (x, x∗ + y∗ − x) =

∫ x∗+y∗

x
e−r(w−x)dF (w)

1− F (x)− e−r(x∗+y∗−x) (1− F (x∗ + y∗))
(31)

similarly to (29). Now we show that x∗ maximizes v by adjusting (30): let x′ ∈

(0, x∗ + y∗), let ∆ be x∗ + y∗ − x′ or 1 according as y∗ < ∞ or y∗ = ∞, let p∗∆ be the

corresponding (discrete-trade) equilibrium price found in Proposition 2, and observe,

using (10) and (11), that

v (x′) = g (x′, x∗ + y∗ − x′)

≤ max
x∈ [0,T−∆]\{∞}

y∈{∆,2∆,3∆,...,∞}∩[∆,T−x]

g (x, y) = p∗∆ = max
x∈[0,x∆]

y∈{∆,2∆,3∆,...,∞}∩[∆,T−x]

g (x, y)

≤ max
x∈[0,x0]

y∈[0,T−x]

g (x, y) = g (x∗, y∗) = g (x∗, x∗ + y∗ − x∗)

= v (x∗) .
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Next differentiate v at x∗ to see that

0 = v′ (x∗) =
(f (x∗) + r (1− F (x∗))) g (x∗, y∗)− f (x∗)

1− F (x∗)− e−ry∗ (1− F (x∗ + y∗))
,

hence

g (x∗, y∗) =
f (x∗)

f (x∗) + r (1− F (x∗))
=

h (x∗)

h (x∗) + r
= h̃ (x∗) = g (x∗, 0) ,

proving the first inequality in (24), as desired, for this case.

Case 3 (x∗ = T ). It is immediate from (23) because y∗ = 0 by the constraints, com-

pleting the proof.

Being the converse of Proposition 6, this result confirms that buy-and-resell over-

pricing occurs if and only if the most senior investors are not instantaneously the most

optimistic, with instantaneous optimism being measured by the hazard rate h. Instanta-

neous optimism characterizes buy-and-resell overpricing even though the equilibrium and

benchmark buy-and-hold prices can equal some long-term expected discounted returns

of holding the asset. The latter reflect optimism more generally, over different holding

durations, or trading strategies, which we speak of in interpreting the equilibrium price

(Section 2), the buy-and-hold price (Section 3), and the first sufficient condition (Section

4.2.1).

4.3 Examples

We give three examples where our necessary and sufficient condition either fails so that

Proposition 7 applies or holds so that Proposition 6 does. For convenience, we summarize

them in Table 1, where, in particular, we indicate whether buy-and-resell overpricing

and belief heterogeneity co-occur or only the latter occurs and does not cause overpricing
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(the last column). The possibility of such overpricing-neutral belief heterogeneity, when

our necessary and sufficient condition for overpricing of course fails, shows that the

condition—end-of-life hazard switching—is stronger than belief heterogeneity.

First of all, an example where our necessary and sufficient condition fails so that

Proposition 7 applies is to let the perceived remaining time W be finite-valued with

an exponential distribution and everything else be arbitrary (see Table 1). Indeed, in

this case the hazard rate h is constant and consequently does not exhibit end-of-life

switching, as desired.

To give an example where our necessary and sufficient condition holds so that Propo-

sition 6 applies, let the perceived remaining time W have an incomplete exponential

distribution, as in Example 1, and everything else be arbitrary (see Table 1). Indeed, in

this case the hazard rate h is strictly decreasing and thus exhibits end-of-life switching,

as required.

Finally, to see that our necessary and sufficient condition is indeed stronger than belief

heterogeneity, let W be finite-valued and gamma-distributed with the shape parameter

greater than one, T < ∞, and everything else be arbitrary (see Table 1). Indeed, in

this case the hazard rate h is strictly increasing, i.e., more senior investors’ beliefs are

instantaneously more optimistic, but overpricing does not occur (by Proposition 7).

5 Large Buy-and-resell Premiums

Overpricing is very sensitive to imperviousness of beliefs to information that is not

experienced-based in the sense of large buy-and-resell premiums even though histories

which most investors live through differ only in the birth date. In fact, the equilibrium

price can be very high not only relative to the buy-and-hold price; its continuous-trade

limit can hit an “upper bound [of $1] on any reasonable fundamental value” as under

asymmetric information in Allen et al. (1993). The upper bound of $1 comes from
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Table 1: Characterization of Overpricing Illustrated by Standard Distributions

Exponential Incomplete exponential Gamma(α, λ), α > 1

Parameters λ ∈ (0,∞) λ ∈ (0,∞), q ∈ (0, 1) λ ∈ (0,∞), α ∈ (1,∞)

F (w), w ≥ 0 1− e−λw (1− q)
(
1− e−λw

) λα

Γ (α)

∫ w

0

zα−1e−λzdz

f (w), w > 0 λe−λw (1− q)λe−λw λα

Γ (α)
wα−1e−λw

h (x),
0 < x < T

λ

(
1− q

q + (1− q) e−λx

)
λ

1∫∞
0

(
1 + w

x

)α−1
e−λwdw

Hazard-rate
shape

Constant Strictly decreasing Strictly increasing

End-of-life
hazard
switching

No Yes No

Buy-and-
resell
overpricing

No Yes No

F (w|x),
w ≥ 0,
0 < x < T

F (w)
F (w)h (x)

(1− q)λ

F (w + x)− F (x)

1− F (x)

∂
∂x
F (w|x),

w > 0,
0 < x < T

0
F (w)h′ (x)

(1− q)λ
< 0

(1− F (w|x))
× (h (w + x)− h (w))

> 0

Belief
heterogeneity
(across x)

No Yes Yes

F (·|x) FOSD
F (·|x′),
x, x′ ∈ [0, T )

F (·|x) = F (·|x′) Iff x ≥ x′ Iff x ≤ x′

Assumptions
throughout
paper

All hold All hold
All hold if T < ∞,
Assumption 3 fails if

T = ∞
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the fact that the only dividend is $1 at the uncertain terminal time. The equilibrium

price is as high as this in the continuous-trade limit when newborn investors’ beliefs are

instantaneously sufficiently optimistic in the sense that the hazard rate h diverges to

infinity:

Proposition 8 (Pricing at No Fundamental Value). If limx→0+ h (x) = ∞, then p∗0 = 1.

Proof. We again carry over from the proof of Proposition 3 formula (17) and have

1 ≥ lim
∆→0+

p∗∆ = p∗0 = max
x∈[0,x0]

y∈[0,T−x]

g (x, y) ≥ g (0, 0) = lim
x→0+

h̃ (x) =
limx→0+ h (x)

r + limx→0+ h (x)
= 1.

These inequalities readily complete the proof.

In this proposition, the equilibrium price’s continuous-trade limit hits the bound of

what one can get by taking expected discounted values of dividends for all possible

probabilities. The equilibrium price as high as this is as if the one-shot dividend of $1

were imminent and there were no uncertainty about its timing. This already shows that

apparently innocuous differences in histories which investors live through can push the

equilibrium price as high as any reasonable fundamental value could possibly be. Our

remaining question is how high the equilibrium price can be in the continuous-trade limit

relative to the buy-and-hold price, which is the most optimistic fundamental valuation

across coexisting investors within the model (Proposition 4). We can find the buy-and-

hold price if we know a maximizer of the fundamental valuation V and this maximizer

is not the terminal age T , which is always a maximizer in the finite-lifetime case T < ∞

by Definition 7 and Proposition 4. Additional maximizers, if any, are likely to be close

to where the hazard rate h is the highest, as the following proposition shows for the case

of h eventually decreasing:

Proposition 9 (Most Optimistic Fundamental Valuation at Early Age). If the haz-

ard rate h is (weakly) decreasing on (x′, T ) for some x′ ∈ (0, T ), then at least some
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maximizers of the fundamental valuation V belong to [0, x′].

Proof. First we take, again, the function g from (17), define v : [0, T ) → R by

v (x) = g (x, T − x) =

∫ T

x
e−r(w−x)dF (w)

1− F (x)− e−r(T−x) (1− F (T ))

similarly to (29) and (31), note that its derivative at every x ∈ (0, T ) is

v′ (x) =
(f (x) + r (1− F (x))) v (x)− f (x)

1− F (x)− e−r(T−x) (1− F (T ))
, (32)

and take the limit

lim
x→T−

v (x) = lim
x→T−

h̃ (x) (33)

already seen in (25) and (26). Next Step 1 shows that maximizers of v are also maxi-

mizers of V , Step 2 establishes that v is either decreasing on (x′, T ) or strictly increasing

on [x′′, T ) for some x′′ ∈ (x′, T ), and, finally, Step 3 eliminiates the latter alternative.

Step 1 (Reduction to v). If T = ∞, then V = v. If T < ∞ and some x∗ ∈ [0, T )

maximizes v, then x∗ maximizes V because (17), where g is continuous, implies that

∫ T

x∗ e
−r(w−x∗)dF (w)

1− F (x∗)− e−r(T−x∗) (1− F (T ))
= v (x∗) = max

x∈[0,T )
v (x) = max

x∈[0,T )
g (x, T − x)

= max
x∈[0,T ]

g (x, T − x) = p̄0,

hence in view of Proposition 4 we have

V (x∗) =
1

1− F (x∗)

(∫ T

x∗
e−r(w−x∗)dF (w) + p̄0e

−r(T−x∗) (1− F (T ))

)
= p̄0

= max
x∈[0,T ]

V (x) .
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Step 2 (Two Monotonicity Scenarios). By contradiction, suppose that v is neither de-

creasing on (x′, T ) nor strictly increasing on [x′′, T ) for any x′′ ∈ (x′, T ). This means, in

view of (32), that some x ∈ (x′, T ) satisfies v′ (x) > 0 and for some x′′ ∈ (x, T ) we have

v (x′′) ≤ 0, hence

v (x) >
f (x)

f (x) + r (1− F (x))
=

h (x)

h (x) + r
= h̃ (x) ≥ h̃ (x′′) ≥ v (x′′) . (34)

By the Intermediate-value Theorem, there exists at least one x∗ ∈ [x, x′′] with v (x∗) =

h̃ (x∗). Denote the smallest one by

x∗∗ = min
{
x∗ ∈ [x, x′′] : v (x∗) = h̃ (x∗)

}
.

By the first inequality in (34), every x∗ ∈ [x, x∗∗] satisfies v (x∗) ≥ h̃ (x∗), hence (32)

also yields v′ (x∗) ≥ 0, and hence

v (x∗∗) ≥ v (x) > h̃ (x) ≥ h̃ (x∗∗) ,

where the strict inequality is a contradiction.

Step 3 (Elimination of Undesired Scenario). By contradiction, suppose that v is strictly

increasing on [x′′, T ) for some x′′ ∈ (x′, T ). This means, again in view of (32), that

v′ (x′′) ≥ 0, hence

lim
x→T−

v (x) > v (x′′) ≥ h̃ (x′′) ≥ lim
x→T−

h̃ (x) ,

contradicting (33).

When, in particular, younger investors are instantaneously equally or more optimistic

than older ones in the sense that the hazard rate h is decreasing, newborn investors’
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fundamental valuation V (0) is at least as high as everyone else’s. An explicit expression

for the buy-and-hold price’s continuous-trade limit p̄0 now follows by the definition of

fundamental valuation (Definition 7):

Corollary 1 (Most Optimistic Fundamental Valuation at Birth). If the hazard rate h

is (weakly) decreasing, then the age of 0 is a maximizer of the fundamental valuation V

with

p̄0 = V (0) =

∫ T

0
e−rwdF (w)

1− e−rT (1− F (T ))
.

This corollary and Proposition 8 give conditions under which an explicit comparison

of the equilibrium and buy-and-hold prices in the continuous-trade limit is possible. An

example where both conditions hold is to let the perceived remaining time W be finite-

valued and gamma-distributed with the shape parameter less than one and everything

else be arbitrary:

Example 2 (Large Buy-and-resell Premiums under Gamma Distribution). Suppose

that W is finite-valued and W ∼ Gamma (α, λ) with α < 1, which does not change the

formulas for the distribution F , the density f , and the hazard rate h given in Table 1.

By Proposition 8, Corollary 1, and Proposition 6, we have

p∗0 = 1 >
λα

Γ (α)

∫ T

0
e−rwwα−1e−λwdw

1− e−rT (1− F (T ))
= p̄0. (35)

Consider the equilibrium and buy-and-hold prices’ continuous-trade limits p∗0 and p̄0 as

(real) functions of the scale parameter λ on (0,∞). While the former, on the left-hand

side of (35), is constant at $1, the latter becomes zero in the limit

lim
λ→0+

p̄0 (λ) = 0,

48



hence the buy-and-resell premium can be arbitrarily large in the sense that

lim
λ→0+

p∗0 (λ)− p̄0 (λ)

p̄0 (λ)
= ∞.

6 Conclusion

A documented experience effect—imperviousness to information that is not experience-

based—can in the absence of short-selling push the equilibrium price of the risky asset as

high as any reasonable fundamental value could possibly be. The buy-and-hold price—

the highest fundamental valuation among investors—can be arbitrarily low, implying

frequent retrading at an arbitrarily large premium in the equilibrium price.

Appendix

A.1 Example of Price Not Monotone in Trading Frequency

Consider the finite-lifetime case T < ∞ and suppose that the perceived remaining time

W is finite-valued with the distribution F and the density f defined by

F (w) = 1− e−
1
3(w−T

2 )
3
−T3

24 and f (w) =

(
w − T

2

)2

e−
1
3(w−T

2 )
3
−T3

24

if w ∈ [0,∞). We will show that the equilibrium price p∗∆ as a function of trading

frequency in the sense of Proposition 3 is not monotone.

It suffices to show that an increase in trading frequency can strictly decrease the

equilibrium price, because we can reuse the proof of Proposition 3 and see that in the
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continuous-trade limit the price is the highest by (17) and (10), which specializes to

p∗∆ = max
x∈[0,T−∆]

y∈{∆,2∆,3∆,...,∞}∩[∆,T−x]

g (x, y) . (36)

This also reduces the exercise to showing that a decrease in the trade-frequency param-

eter ∆ can make this maximum strictly smaller.

It is enough to find for the trade-frequency parameter a nonempty subinterval of

(T/2 , T ) on which the value function of the maximization problem in (36) has a strictly

positive derivative (with respect to that parameter). We chose the interval so that (36)

simplifies to

p∗∆ = max
x∈[0,T−∆]

g (x,∆) , (37)

for all ∆ ∈ (T/2 , T ). It is convenient to change a variable and to consider in place of

the maximand g the function k on

{
(x, x′) ∈ R2 : 0 ≤ x < x′ ≤ T

}
(38)

into R defined by

k (x, x′) = g (x, x′ − x) .

The advantage of expressing the maximand g in terms of k is that it has nice partial

derivatives on its domain (38) with the following formulas:

k (x, x′) =

∫ x′

x
e−r(w−x)dF (w)

1− F (x)− e−r(x′−x) (1− F (x′))
,
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∂1k (x, x
′) =

(f (x) + r (1− F (x))) k (x, x′)− f (x)

1− F (x)− e−r(x′−x) (1− F (x′))
, (39)

and

∂2k (x, x
′) = e−r(x′−x)f (x′)− (f (x′) + r (1− F (x′))) k (x, x′)

1− F (x)− e−r(x′−x) (1− F (x′))
. (40)

In turn, the Chain Rule yields nice formulas for the partial derivatives of the maximand

g on the interior (as a subset of R2) of its domain (12):

∂2g (x, y) = ∂2k (x, x+ y) ,

∂1g (x, y) = ∂1k (x, x+ y) + ∂2k (x, x+ y)

= rg (x, y) +
e−ryf (x+ y)− f (x)

1− F (x)− e−ry (1− F (x+ y))
(1− g (x, y)) ,

and

∂11g (x, y) =

(
r − e−ryf (x+ y)− f (x)

1− F (x)− e−ry (1− F (x+ y))

)
∂1g (x, y) + (1− g (x, y))

×

(
e−ryf ′ (x+ y)− f ′ (x)

1− F (x)− e−ry (1− F (x+ y))
−
(

e−ryf (x+ y)− f (x)

1− F (x)− e−ry (1− F (x+ y))

)2
)
.

We also need them at the boundary point (0, T ):

∂2g (0, T ) = lim
x→0+

y→T−

∂2g (x, y) = e−rT f (T )− (f (T ) + r (1− F (T ))) g (0, T )

1− e−rT (1− F (T ))
, (41)

∂1g (0, T ) = lim
x→0+

y→T−

∂1g (x, y) = rg (0, T ) +
e−rTf (T )− f (0)

1− e−rT (1− F (T ))
(1− g (0, T )) ,
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and

∂11g (0, T ) = lim
x→0+

y→T−

∂11g (x, y)

=

(
r − e−rTf (T )− f (0)

1− e−rT (1− F (T ))

)
∂1g (0, T )

+

(
e−rTf ′ (T )− f ′

+ (0)

1− e−rT (1− F (T ))
−
(

e−rTf (T )− f (0)

1− e−rT (1− F (T ))

)2
)
(1− g (0, T ))

=

(
r +

T 2

4

)
∂1g (0, T ) +

1 + e−rT−T3

12

1− e−rT−T3

12

T (1− g (0, T )) .

Two scenarios on their signs are possible: either ∂1g (0, T ) < 0 or else ∂11g (0, T ) > 0,

because

g (0, T ) =

∫ T

0
e−rwdF (w)

1− e−rT (1− F (T ))
< 1.

The implication for the maximization problem in (37) is that there exists a δ ∈ (0,∞)

such that any ∆ ∈ (T/2 , T ) ∩ (T − δ, T ) makes the maximand g (·,∆) on [0, T −∆]

either striclty decreasing or else strictly convex. In either scenario, interior maximizers

are absent, but there are two cases to consider according as 0 is a maximizer for all

sufficiently large ∆ ∈ (0, T ) or not (Cases 1 and 2 respectively):

Case 1 (p∗∆ = g (0,∆) eventually as ∆ → T−). It suffices to show, in view of (41), that

∂2g (0, T ) > 0, or, equivalently, that

g (0, T ) <
f (T )

f (T ) + r (1− F (T ))
. (42)

We save the proof, which overlaps with (the opposite) Case 2, for the end of this exercise.

Case 2 (p∗∆ ̸= g (0,∆) frequently as ∆ → T−). It means that for every ε ∈ (0, δ] there

exists a ∆ ∈ (T/2 , T ) ∩ (T − ε, T ) such that p∗∆ ̸= g (0,∆). The only possibility
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left is that for every ε ∈ (0, δ] there exists a ∆ ∈ (T/2 , T ) ∩ (T − ε, T ) such that

p∗∆ = g (T −∆,∆) > g (0,∆). In fact, this inequality ensures that for every ε ∈ (0, δ]

there exist y, y′ ∈ (T/2 , T ) ∩ (T − ε, T ) with y < y′ such that all ∆ ∈ [y, y′] satisfy

p∗∆ = g (T −∆,∆) = k (T −∆, T ) .

Since ε ∈ (0, δ] was arbitrary, it suffices to show, in view of (39), that ∂1k (0, T ) < 0, or,

equivalently, that

k (0, T ) <
f (0)

f (0) + r (1− F (0))
.

It turns out simply by definitions that this inequality and (42) in Case 1 are equivalent,

and thus it suffices to prove (42), which goes by showing that the reverse inequality

g (0, T ) ≥ f (T )

f (T ) + r (1− F (T ))
, (43)

or, equivalently, ∂2g (0, T ) ≤ 0, is a contradiction. First of all, the right-hand side of the

former inequality equals g (T, 0), as all points x ∈ [0, T ] satisfy

g (x, 0) =
f (x)

f (x) + r (1− F (x))
=

(
x− T

2

)2(
x− T

2

)2
+ r

, (44)

hence it also follows that ∂2g (0, T ) − ∂1g (T, 0) < 0. These observations together with

inequality (43) yields a δ ∈ (0,∞) such that all x′ ∈ [0, T ] ∩ (T − δ, T ) satisfy

g (0, x′) >
f (x′)

f (x′) + r (1− F (x′))
. (45)

As a next step, this inequality extends to all x′ ∈ (0, T ), since otherwise there are
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x′ ∈ (0, T ) with

g (0, x′) ≤ f (x′)

f (x′) + r (1− F (x′))
,

they have a maximum x ≤ T − δ, all x′ ∈ (x, T ) satisfy the reverse inequality (45), in

view of (40) we have ∂2k (0, x
′) < 0, hence in view of (43) and (44) have the absurd

g (0, x) = k (0, x) > k (0, T ) = g (0, T ) ≥ g (T, 0) > g (x, 0) =
f (x)

f (x) + r (1− F (x))
.

All x′ ∈ (0, T ) must satisfy (45) and, as in this argument, ∂2k (0, x
′) < 0, which, together

with (44), implies that

g (T, 0) = g (0, 0) > g (0, T ) ,

contradicting the inequality in (43) and completing the calculations for this example.
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