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We Study Frictional Knowledge Diffusion as Determinant
of Local Growth

• Changes in the technological landscape often coincide with
transformations in the economic geography.

• As new technological opportunities emerge, some cities grow
and other decline.

• Our Hypothesis:

Frictions to knowledge diffusion make cities sensitive to
“technological waves.”
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Cities alternate periods of growth and decline

1890 1910 1930 1950 1970 1990 2010

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2
0

-y
e

a
r 

g
ro

w
th

 r
a

te
 o

f 
p

o
p

u
la

ti
o

n

Detroit

Boston

Austin

Notes: Residuals of a regression of population growth on Census Division × decade fixed effects



Cities differ in the composition of their patenting output
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This paper: Frictions to knowledge diffusion make cities
sensitive to “technological waves”

• Frictions to knowledge diffusion across cities and fields of
knowledge =⇒

I A city’s ability to embrace new technological opportunities
(“technological waves”) depends on local availability of
complementary ideas



Combine spatial endogenous growth theory with new
historical data

• Develop a theory combining elements from

I Quantitative spatial equilibrium

I Endogenous growth with innovation and idea diffusion

• Derive theoretical predictions on the link between
technological waves and local population dynamics

• Quantify the model using historical geo-located data on
population and patents, 1870-present

• Assess the role of technological waves in city dynamics
(historically and under plausible future scenarios)
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Comprehensive Universe of US Patents (CUSP)

• Near-universe of US patents since 1836 (Berkes, 2018)

• Information on location (city) of inventors, technology class,
filing and award date, assignee



Local exposure to technological wave is correlated with city
growth

• Shift-share measure of exposure to technological wave:

Expn,t =
∑
s∈S

Sharen,s,t−1 × g−n,s,t .

• Estimate relationship between 20-year population growth and
exposure to the technological wave, 1910-2010:

∆ log(Popn,t) =
∑
j=1,2

δj log(Popn,t−j) + βExpn,t + γXn,t + µd,t + εn,t
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Local exposure to technological wave is correlated with city
growth

Growth rate of population

(1) (2) (3) (4)

Exposure to tech. wave 0.424*** 0.396*** 0.367*** 0.276***
(0.082) (0.067) (0.071) (0.070)

Human capital (ranking) 0.082* 0.035
(0.047) (0.046)

Industry composition 0.657***
(0.116)

Log-population (lags 1 and 2) Yes Yes Yes Yes
Fixed effects T CD×T CD×T CD×T

# Obs. 2,238 2,238 2,238 2,228

R2 0.393 0.507 0.509 0.528

Notes: CZ level regression, 1910-2010. Dependent variable defined as growth rate of population over 20 years. “T”
denotes time fixed effects, and “CD×T” denotes Census Division-time fixed effects. Standard errors clustered at
the CZ level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.



Model Setting

• Consider an economy with N locations and S sectors.

• Newborn agents choose location (n) and sector (s) to
maximize lifetime utility:

Un,s,i ,t = un xn,s,i cn,s,i ,t

• Agents are hand-to-mouth and consume their own production:

cn,s,i ,t = qn,s,i ,t

• Every location-sector (n, s) has distribution of productivity
Fn,s,t
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Productivity: An imitate or innovate decision

• After moving, each agent receives draws from local (l) and
external (x) distributions of ideas:

zn,s,i =
{
z ln,s,i , {zxm,r ,i}m,r∈N×S

}

• Two options:

I Keep the local draw, z ln,s,i , and use it in production
(imitation):

qn,s,i,t = z ln,s,i

I Convert one of the external draws, zxm,r ,i , into an innovation:

qn,s,i,t =
εn,s,tαr ,tz

x
m,r ,i

d(m,r)→(n,s)
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Knowledge diffusion

• Assumption A1: Fn,s,0(q) is Fréchet-distributed with shape
θ > 1 and scale λn,s,0 > 0 for all (n, s)

• Imitate-or-innovate decision implies:

qn,s,i ,t = max

{
z ln,s,i ,

{
εn,s,t αr ,t z

x
m,r ,i

d(m,r)→(n,s)

}
m,r∈N×S

}

• Fn,s,t remains Fréchet for all t > 0. Scale λn,s,t (“productivity
of (n, s)”) has law of motion:

λn,s,t = λn,s,t−1︸ ︷︷ ︸
Imitation

+
∑
m∈N

∑
r∈S

λm,r ,t−1

(
εn,s,tαr ,t

d(m,r)→(n,s)

)θ
︸ ︷︷ ︸

Innovation

.
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Unique Equilibrium and Balanced Growth Path

• For any set of initial conditions and path of exogenous
variables, the model has a unique equilibrium that can be
written in closed form

• Rewriting the law of motion for λn,s,t in matrix form:

~λt = At
~λt−1

• Perron-Frobenius theorem guarantees At has a unique (up to

scale) positive eigenvector ~λ∗ and a unique corresponding
eigenvalue (1 + g∗λ):

I For any set of stable exogenous variables (A∗), the model has
a unique Balanced Growth Path (BGP)
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Log-linearizing equilibrium around unique BGP

• Vector of technological wave shocks {α̂r ,t}r∈S

• Dynamics of local productivity:

λ̂n,s,t ∝
∑
r∈S

η∗r→(n,s)α̂r ,t

• Dynamics of local population:

π̂n,t ∝
∑
s∈S

(1− π∗n)π∗s|nλ̂n,s,t −
∑
m 6=n

π∗m,s λ̂m,s,t
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Technological wave shocks and local population dynamics

• Local population dynamics:

π̂n,t ∝
∑

(r ,s)∈S×S

(1− π∗n)π∗s|nη
∗
r→(n,s) −

∑
m 6=n

π∗m,sη
∗
r→(m,s)

 α̂r ,t

• Now, to gain intuition, decompose local population dynamics
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Decomposing local population dynamics

1 Assume individual cities are negligible in size, i.e. π∗n ≈ 0

2 Assume knowledge flows across fields are negligible, i.e.
η∗s→(n,s) ≈ 1

π̂n,t ∝ bt +
∑
s∈S

π∗s|nα̂s,t

• Because of frictions across fields, productivity growth is higher
in expanding fields (α̂s,t ↑)

• If expanding fields are more prevalent in the local economy,
average local productivity and hence population grows faster
(“Bartik” effect)
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where r is more prevalent

• If expanding fields are more prevalent in the local economy,
productivity in all sectors (and hence population) grows faster
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Decomposing local population dynamics

1 Assume individual cities are non-negligible in size, i.e. π∗n > 0
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City growth and technological waves: Data and Model

Population growth

Data Model
(1) (2) (3)

1910-1950

Exposure to tech. wave .878*** .629*** .315***
(.201) (.022) (.009)

1970-2010

Exposure to tech. wave .397*** .384*** .222***
(.098) (.009) (.006)

Idea flows across fields - Yes No
Structural residuals - Fixed at BGP
# Obs. 373 373 373
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City growth and technological waves: Data and Model

Population growth

Data Model
(1) (2) (3)

1910-1950

Exposure to tech. wave .878*** .629*** .315***
(.201) (.022) (.009)

1970-2010

Exposure to tech. wave .397*** .384*** .222***
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• One s.d. increase in Exposure leads to 0.16 (1910-1950) and 0.20
(1970-2010) s.d. increase in population growth



Additional quantitative results

• Local diversification makes growth trajectory less volatile:

1 Frictions across fields =⇒ Tech wave makes some sectors
expand (or decline) more than others =⇒ Cities specialized in
expanding (declining) sectors grow (shrink)

2 Frictions across cities =⇒ local productivity growth in all
sectors is less volatile in more diversified cities

• Study the effects of future technological scenarios on the
economic geography



Future Scenario: Autonomous vehicles

• Fall in diffusion frictions between (to and from) “Physics” -
“Electricity” and ”Transportation”

Blue: Net population gain. Red: Net population loss.



Conclusions and Discussion

• The growth and decline of cities over time is correlated with
their exposure to technological waves

• Developed a tractable quantitative model of innovation with
frictional knowledge diffusion across space and tech. fields:

I Mechanism accounts for most of this correlation
(∼ 16%− 20% of total variation in city growth)

• Innovation via frictional knowledge diffusion implies
heterogeneous geographical effects of possible future scenarios

• Implications for benefits from local diversification in fostering
cities’ resilience to technological waves



Comments or Questions?

ruben.gaetani@utoronto.ca

Thank you!


