Technological Waves and Local Growth

Enrico Berkes (The Ohio State University) Ruben Gaetani (University of Toronto) Martí Mestieri (Chicago Fed,¹ UPF-BSE-CREI)

August 24, 2022

¹The views expressed in this presentation are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of Chicago or the Federal Reserve System.

We Study Frictional Knowledge Diffusion as Determinant of Local Growth

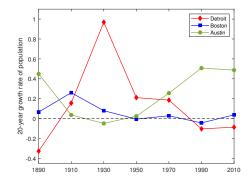
- Changes in the technological landscape often coincide with transformations in the economic geography.
- As new technological opportunities emerge, some cities grow and other decline.

We Study Frictional Knowledge Diffusion as Determinant of Local Growth

- Changes in the technological landscape often coincide with transformations in the economic geography.
- As new technological opportunities emerge, some cities grow and other decline.
- Our Hypothesis:

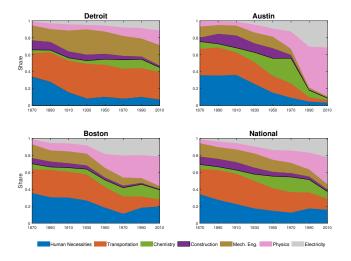
Frictions to knowledge diffusion make cities sensitive to "technological waves."

Cities alternate periods of growth and decline



Notes: Residuals of a regression of population growth on Census Division \times decade fixed effects

Cities differ in the composition of their patenting output



This paper: Frictions to knowledge diffusion make cities sensitive to "technological waves"

- Frictions to knowledge diffusion across cities and fields of knowledge \implies
 - A city's ability to embrace new technological opportunities ("technological waves") depends on local availability of complementary ideas

- Develop a theory combining elements from
 - Quantitative spatial equilibrium
 - Endogenous growth with innovation and idea diffusion

- Develop a theory combining elements from
 - Quantitative spatial equilibrium
 - Endogenous growth with innovation and idea diffusion
- Derive theoretical predictions on the link between technological waves and local population dynamics

- Develop a theory combining elements from
 - Quantitative spatial equilibrium
 - Endogenous growth with innovation and idea diffusion
- Derive theoretical predictions on the link between technological waves and local population dynamics
- Quantify the model using historical geo-located data on population and patents, 1870-present

- Develop a theory combining elements from
 - Quantitative spatial equilibrium
 - Endogenous growth with innovation and idea diffusion
- Derive theoretical predictions on the link between technological waves and local population dynamics
- Quantify the model using historical geo-located data on population and patents, 1870-present
- Assess the role of technological waves in city dynamics (historically and under plausible future scenarios)

Comprehensive Universe of US Patents (CUSP)

- Near-universe of US patents since 1836 (Berkes, 2018)
- Information on location (city) of inventors, technology class, filing and award date, assignee

UNITED STATES PATENT OFFICE.

MARTIN D. KLIN, OF CHICAGO, ILLINOIS.

GOLF-CLUB.

1,318,325.

Specification of Letters Patent. Patented Oct. 7, 1919.

Application filed January 3, 1919. Serial No. 269,395.

To all whom it may concern:

Be it known that I, MARTIN D. KLIN, a citizen of the United States, and a resident of the city of Chicago, in the county of Cook and State of Illinois, have invented certain new and useful Improvements in Golf-Clubs; and I do hereby declare that the following is a full, clear, and exact description

the stroke and the moment of impact, which interferes with accuracy of driving.

It is a further object of my invention to provide a weight which is adapted to be 60 varied in amount, to suit the requirements of the particular user, and without requiring a special construction in each particular case. Another object of my investigation is to approximately a second Local exposure to technological wave is correlated with city growth

• Shift-share measure of exposure to technological wave:

$$Exp_{n,t} = \sum_{s \in S} Share_{n,s,t-1} \times g_{-n,s,t}.$$

Local exposure to technological wave is correlated with city growth

• Shift-share measure of exposure to technological wave:

$$Exp_{n,t} = \sum_{s \in S} Share_{n,s,t-1} \times g_{-n,s,t}.$$

• Estimate relationship between 20-year population growth and exposure to the technological wave, 1910-2010:

$$\Delta \log(Pop_{n,t}) = \sum_{j=1,2} \delta_j \log(Pop_{n,t-j}) + \beta Exp_{n,t} + \gamma X_{n,t} + \mu_{d,t} + \epsilon_{n,t}$$

Local exposure to technological wave is correlated with city growth

	Growth rate of population			
	(1)	(2)	(3)	(4)
Exposure to tech. wave	0.424*** (0.082)	0.396*** (0.067)	0.367*** (0.071)	0.276*** (0.070)
Human capital (ranking)			0.082* (0.047)	0.035 (0.046)
Industry composition				0.657*** (0.116)
Log-population (lags 1 and 2) Fixed effects	Yes T	Yes CD×T	Yes CD×T	Yes CD×T
# Obs. R ²	2,238 0.393	2,238 0.507	2,238 0.509	2,228 0.528

Notes: CZ level regression, 1910-2010. Dependent variable defined as growth rate of population over 20 years. "T" denotes time fixed effects, and "CD \times T" denotes Census Division-time fixed effects. Standard errors clustered at the CZ level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.

Model Setting

- Consider an economy with N locations and S sectors.
- Newborn agents choose location (*n*) and sector (*s*) to maximize lifetime utility:

$$U_{n,s,i,t} = u_n x_{n,s,i} c_{n,s,i,t}$$

Model Setting

- Consider an economy with N locations and S sectors.
- Newborn agents choose location (*n*) and sector (*s*) to maximize lifetime utility:

$$U_{n,s,i,t} = u_n x_{n,s,i} c_{n,s,i,t}$$

• Agents are hand-to-mouth and consume their own production:

$$c_{n,s,i,t} = q_{n,s,i,t}$$

Model Setting

- Consider an economy with N locations and S sectors.
- Newborn agents choose location (*n*) and sector (*s*) to maximize lifetime utility:

$$U_{n,s,i,t} = u_n x_{n,s,i} c_{n,s,i,t}$$

• Agents are hand-to-mouth and consume their own production:

$$c_{n,s,i,t}=q_{n,s,i,t}$$

• Every location-sector (n, s) has distribution of productivity $F_{n,s,t}$

• After moving, each agent receives draws from local (1) and external (x) distributions of ideas:

$$\mathbf{z}_{n,s,i} = \left\{ z_{n,s,i}^{l}, \{ z_{m,r,i}^{\mathsf{x}} \}_{m,r \in \mathsf{N} \times \mathsf{S}} \right\}$$

• After moving, each agent receives draws from local (1) and external (x) distributions of ideas:

$$\mathbf{z}_{n,s,i} = \left\{ z_{n,s,i}^{l}, \{ z_{m,r,i}^{\mathsf{x}} \}_{m,r \in \mathsf{N} \times \mathsf{S}} \right\}$$

- Two options:
 - Keep the local draw, z^l_{n,s,i}, and use it in production (imitation):

$$q_{n,s,i,t} = z_{n,s,i}^{l}$$

$$q_{n,s,i,t} = \frac{\epsilon_{n,s,t}\alpha_{r,t}z_{m,r,i}^{x}}{d_{(m,r)\to(n,s)}}$$

• After moving, each agent receives draws from local (1) and external (x) distributions of ideas:

$$\mathbf{z}_{n,s,i} = \left\{ z_{n,s,i}^{l}, \{ z_{m,r,i}^{\mathsf{x}} \}_{m,r \in \mathsf{N} \times \mathsf{S}} \right\}$$

- Two options:
 - Keep the local draw, z^l_{n,s,i}, and use it in production (imitation):

$$q_{n,s,i,t} = z_{n,s,i}^{l}$$

$$q_{n,s,i,t} = \frac{\epsilon_{n,s,t}\alpha_{r,t} \mathbf{Z}_{m,r,i}^{\mathsf{X}}}{d_{(m,r)\to(n,s)}}$$

• After moving, each agent receives draws from local (1) and external (x) distributions of ideas:

$$\mathbf{z}_{n,s,i} = \left\{ z_{n,s,i}^{l}, \{ z_{m,r,i}^{\mathsf{x}} \}_{m,r \in \mathsf{N} \times \mathsf{S}} \right\}$$

- Two options:
 - Keep the local draw, z^l_{n,s,i}, and use it in production (imitation):

$$q_{n,s,i,t} = z_{n,s,i}^{l}$$

$$q_{n,s,i,t} = \frac{\epsilon_{n,s,t} \alpha_{r,t} Z_{m,r,i}^{x}}{d_{(m,r) \to (n,s)}}$$

• After moving, each agent receives draws from local (1) and external (x) distributions of ideas:

$$\mathbf{z}_{n,s,i} = \left\{ z_{n,s,i}^{l}, \{ z_{m,r,i}^{\mathsf{x}} \}_{m,r \in \mathsf{N} \times \mathsf{S}} \right\}$$

- Two options:
 - Keep the local draw, z^l_{n,s,i}, and use it in production (imitation):

$$q_{n,s,i,t} = z_{n,s,i}^{l}$$

$$q_{n,s,i,t} = \frac{\epsilon_{n,s,t}\alpha_{r,t}z_{m,r,i}^{\mathsf{x}}}{d_{(m,r)\to(n,s)}}$$

• After moving, each agent receives draws from local (1) and external (x) distributions of ideas:

$$\mathbf{z}_{n,s,i} = \left\{ z_{n,s,i}^{l}, \{ z_{m,r,i}^{\mathsf{x}} \}_{m,r \in \mathsf{N} \times \mathsf{S}} \right\}$$

- Two options:
 - Keep the local draw, z^l_{n,s,i}, and use it in production (imitation):

$$q_{n,s,i,t} = z_{n,s,i}^{l}$$

$$q_{n,s,i,t} = \frac{\epsilon_{n,s,t}\alpha_{r,t}z_{m,r,i}^{x}}{d_{(m,r)\to(n,s)}}$$

Knowledge diffusion

• Assumption A1: $F_{n,s,0}(q)$ is Fréchet-distributed with shape $\theta > 1$ and scale $\lambda_{n,s,0} > 0$ for all (n, s)

Knowledge diffusion

- Assumption A1: $F_{n,s,0}(q)$ is Fréchet-distributed with shape $\theta > 1$ and scale $\lambda_{n,s,0} > 0$ for all (n, s)
- Imitate-or-innovate decision implies:

$$q_{n,s,i,t} = \max\left\{z_{n,s,i}^{l}, \left\{\frac{\epsilon_{n,s,t} \alpha_{r,t} z_{m,r,i}^{x}}{d_{(m,r)\to(n,s)}}\right\}_{m,r\in N\times S}\right\}$$

Knowledge diffusion

- Assumption A1: $F_{n,s,0}(q)$ is Fréchet-distributed with shape $\theta > 1$ and scale $\lambda_{n,s,0} > 0$ for all (n, s)
- Imitate-or-innovate decision implies:

$$q_{n,s,i,t} = \max\left\{z_{n,s,i}^{l}, \left\{\frac{\epsilon_{n,s,t} \alpha_{r,t} z_{m,r,i}^{\times}}{d_{(m,r)\to(n,s)}}\right\}_{m,r\in N\times S}\right\}$$

F_{n,s,t} remains Fréchet for all *t* > 0. Scale λ_{n,s,t} ("productivity of (*n*, *s*)") has law of motion:

$$\lambda_{n,s,t} = \underbrace{\lambda_{n,s,t-1}}_{\text{Imitation}} + \underbrace{\sum_{m \in N} \sum_{r \in S} \lambda_{m,r,t-1} \left(\frac{\epsilon_{n,s,t} \alpha_{r,t}}{d_{(m,r) \to (n,s)}} \right)^{\theta}}_{\text{Innovation}}.$$

Unique Equilibrium and Balanced Growth Path

• For any set of initial conditions and path of exogenous variables, the model has a unique equilibrium that can be written in closed form

Unique Equilibrium and Balanced Growth Path

- For any set of initial conditions and path of exogenous variables, the model has a unique equilibrium that can be written in closed form
- Rewriting the law of motion for $\lambda_{n,s,t}$ in matrix form:

$$\vec{\lambda}_t = A_t \, \vec{\lambda}_{t-1}$$

Unique Equilibrium and Balanced Growth Path

- For any set of initial conditions and path of exogenous variables, the model has a unique equilibrium that can be written in closed form
- Rewriting the law of motion for $\lambda_{n,s,t}$ in matrix form:

$$\vec{\lambda}_t = A_t \, \vec{\lambda}_{t-1}$$

- Perron-Frobenius theorem guarantees A_t has a unique (up to scale) positive eigenvector $\vec{\lambda}^*$ and a unique corresponding eigenvalue $(1 + g_{\lambda}^*)$:
 - For any set of stable exogenous variables (A*), the model has a unique Balanced Growth Path (BGP)

• Vector of technological wave shocks $\{\hat{\alpha}_{r,t}\}_{r\in S}$

- Vector of technological wave shocks $\{\hat{\alpha}_{r,t}\}_{r\in S}$
- Dynamics of local productivity:

$$\hat{\lambda}_{n,s,t} \propto \sum_{r \in S} \eta^*_{r \to (n,s)} \hat{\alpha}_{r,t}$$

- Vector of technological wave shocks $\{\hat{\alpha}_{r,t}\}_{r\in S}$
- Dynamics of local productivity:

$$\hat{\lambda}_{n,s,t} \propto \sum_{r \in S} \eta^*_{r \to (n,s)} \hat{\alpha}_{r,t}$$

• Dynamics of local population:

$$\hat{\pi}_{n,t} \propto \sum_{s \in S} \left\{ (1 - \pi_n^*) \pi_{s|n}^* \hat{\lambda}_{n,s,t} - \sum_{m \neq n} \pi_{m,s}^* \hat{\lambda}_{m,s,t} \right\}$$

- Vector of technological wave shocks $\{\hat{\alpha}_{r,t}\}_{r\in S}$
- Dynamics of local productivity:

$$\hat{\lambda}_{n,s,t} \propto \sum_{r \in S} \eta^*_{r \to (n,s)} \hat{\alpha}_{r,t}$$

• Dynamics of local population:

$$\hat{\pi}_{n,t} \propto \sum_{s \in S} \left\{ (1 - \pi_n^*) \pi_{s|n}^* \hat{\lambda}_{n,s,t} - \sum_{m \neq n} \pi_{m,s}^* \hat{\lambda}_{m,s,t} \right\}$$

Technological wave shocks and local population dynamics

• Local population dynamics:

$$\hat{\pi}_{n,t} \propto \sum_{(r,s)\in S\times S} \left\{ (1-\pi_n^*)\pi_{s|n}^*\eta_{r\to(n,s)}^* - \sum_{m\neq n} \pi_{m,s}^*\eta_{r\to(m,s)}^* \right\} \hat{\alpha}_{r,t}$$

Technological wave shocks and local population dynamics

• Local population dynamics:

$$\hat{\pi}_{n,t} \propto \sum_{(r,s)\in S\times S} \left\{ (1-\pi_n^*)\pi_{s|n}^*\eta_{r\to(n,s)}^* - \sum_{m\neq n} \pi_{m,s}^*\eta_{r\to(m,s)}^* \right\} \hat{\alpha}_{r,t}$$

• Now, to gain intuition, decompose local population dynamics

Decomposing local population dynamics

- **1** Assume individual cities are negligible in size, i.e. $\pi_n^* \approx 0$
- 2 Assume knowledge flows across fields are negligible, i.e. $\eta^*_{s \to (n,s)} \approx 1$

- **1** Assume individual cities are negligible in size, i.e. $\pi_n^* \approx 0$
- 2 Assume knowledge flows across fields are negligible, i.e. $\eta^*_{s \to (n,s)} \approx 1$

$$\hat{\pi}_{n,t} \propto b_t + \sum_{s \in S} \pi^*_{s|n} \hat{\alpha}_{s,t}$$

- **1** Assume individual cities are negligible in size, i.e. $\pi_n^* \approx 0$
- 2 Assume knowledge flows across fields are negligible, i.e. $\eta^*_{s \to (n,s)} \approx 1$

$$\hat{\pi}_{n,t} \propto b_t + \sum_{s \in S} \pi^*_{s|n} \hat{\alpha}_{s,t}$$

- Because of frictions across fields, productivity growth is higher in expanding fields (â_{s,t} ↑)
- If expanding fields are more prevalent in the local economy, average local productivity and hence population grows faster ("Bartik" effect)

- **1** Assume individual cities are negligible in size, i.e. $\pi_n^* \approx 0$
- 2 Assume knowledge flows across fields are non-negligible, i.e. $\eta^*_{s \to (n,s)} < 1$

- **1** Assume individual cities are negligible in size, i.e. $\pi_n^* \approx 0$
- 2 Assume knowledge flows across fields are non-negligible, i.e. $\eta^*_{s \to (n,s)} < 1$

$$\hat{\pi}_{n,t} \propto b_t + \sum_{(r,s)\in S imes S} \pi^*_{s|n} \eta^*_{r o (n,s)} \hat{lpha}_{r,t}$$

- **1** Assume individual cities are negligible in size, i.e. $\pi_n^* \approx 0$
- 2 Assume knowledge flows across fields are non-negligible, i.e. $\eta^*_{s \to (n,s)} < 1$

$$\hat{\pi}_{n,t} \propto b_t + \sum_{(r,s)\in S imes S} \pi^*_{s|n} \eta^*_{r o (n,s)} \hat{lpha}_{r,t}$$

- Because of frictions across cities, $\eta^*_{r \to (n,s)}$ is higher in cities where r is more prevalent
- If expanding fields are more prevalent in the local economy, productivity in all sectors (and hence population) grows faster

- **1** Assume individual cities are **non**-negligible in size, i.e. $\pi_n^* > 0$

- **1** Assume individual cities are **non**-negligible in size, i.e. $\pi_n^* > 0$
- 2 Assume knowledge flows across fields are non-negligible, i.e. $\eta^*_{s \to (n,s)} < 1$

$$\hat{\pi}_{n,t} \propto \sum_{(r,s)\in S\times S} \left\{ (1-\pi_n^*)\pi_{s|n}^*\eta_{r\to(n,s)}^* - \sum_{m\neq n} \pi_{m,s}^*\eta_{r\to(m,s)}^* \right\} \hat{\alpha}_{r,t}$$

	Population growth		
	Data	Model	
	(1)	(2)	(3)
	1910-1950		
Exposure to tech. wave	.878***		
	(.201)		
		1970-2010	
Exposure to tech. wave	.397***		
	(.098)		
Idea flows across fields	_		
Structural residuals	-	Fixed at B	GP
# Obs.	373		

	Population growth		
	Data	Model	
	(1)	(2)	(3)
	1910-1950		
Exposure to tech. wave	.878***	.629***	
	(.201)	(.022)	
	1970-2010		
Exposure to tech. wave	.397***	.384***	
	(.098)	(.009)	
Idea flows across fields	_	Yes	
Structural residuals	-	Fixed at	BGP
# Obs.	373	373	

	Population growth		
	Data	Model	
	(1)	(2)	(3)
	1910-1950		
Exposure to tech. wave	.878***	.629***	.315***
	(.201)	(.022)	(.009)
		1970-2010	
Exposure to tech. wave	.397***	.384***	.222***
	(.098)	(.009)	(.006)
Idea flows across fields	-	Yes	No
Structural residuals	- Fixed at BGP		t BGP
# Obs.	373	373	373

	Population growth		
	Data	Model	
	(1)	(2)	(3)
		1910-1950	
Exposure to tech. wave	.878***	.629***	.315***
	(.201)	(.022)	(.009)
		1970-2010	
Exposure to tech. wave	.397***	.384***	.222***
	(.098)	(.009)	(.006)
Idea flows across fields	-	Yes	No
Structural residuals	-	Fixed at	t BGP
# Obs.	373	373	373

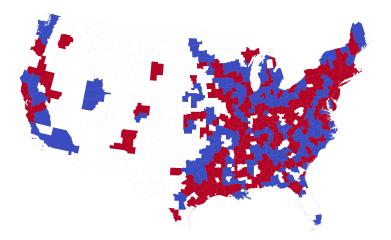
• One s.d. increase in Exposure leads to 0.16 (1910-1950) and 0.20 (1970-2010) s.d. increase in population growth

Additional quantitative results

- Local diversification makes growth trajectory less volatile:
 - Frictions across fields ⇒ Tech wave makes some sectors expand (or decline) more than others ⇒ Cities specialized in expanding (declining) sectors grow (shrink)
 - ② Frictions across cities ⇒ local productivity growth in all sectors is less volatile in more diversified cities
- Study the effects of future technological scenarios on the economic geography

Future Scenario: Autonomous vehicles

• Fall in diffusion frictions between (to and from) "Physics" -"Electricity" and "Transportation"



Blue: Net population gain. Red: Net population loss.

Conclusions and Discussion

- The growth and decline of cities over time is correlated with their exposure to technological waves
- Developed a tractable quantitative model of innovation with frictional knowledge diffusion across space and tech. fields:
 - Mechanism accounts for most of this correlation (~ 16% - 20% of total variation in city growth)
- Innovation via frictional knowledge diffusion implies heterogeneous geographical effects of possible future scenarios
- Implications for benefits from local diversification in fostering cities' resilience to technological waves

Comments or Questions?

ruben.gaetani@utoronto.ca

Thank you!