Indirect Energy Costs and Comparative Advantage

H. Ron Chan¹ Edward Manderson¹ Fan Zhang²

¹University of Manchester ²World Bank

EEA ESEM 2022 25 August 2022

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation

- The motivation for trade or comparative advantage is that countries have a lower 'cost' in producing certain goods. For example:
 - Property rights / contract intensity (Nunn, 2007)
 - Water endowment / intensity (Debaere, 2014)
 - Interpersonal trust (Cingano and Pinotti, 2016)
- The same logic should also imply costs of intermediates would also affect exports or competitiveness for industries
- Yet limited empirical evidence on whether indirect input costs can act as a source of comparative advantage

Motivation

The case for energy

Substantial amount of energy embedded in the supply chain

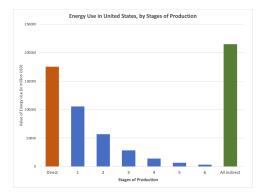
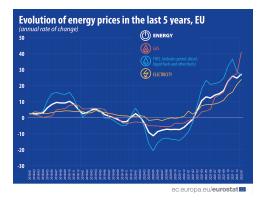



Figure: Energy use in US manufacturing, by stages of production, 2002

Motivation

The case for Europe

- Both electricity and natural gas prices have increased substantially in most European countries from 2000
- Integrated EU markets may lead to substantial indirect energy costs

This paper

- In this paper, we test if indirect energy costs are a source of comparative advantage. Specifically we ask:
 - 1 How do energy price differences across countries directly *and* indirectly affect their pattern of exports?
 - 2 Do industries structure their supply chains to mitigate indirect energy costs?
- Methodology based on Rajan-Zingales difference-in-differences where we compare a cross-section of countries and industries
- We illustrate the impact of direct and indirect energy costs by simulating the increase in energy prices in the EU in 2010

<日

<</p>

Contributions to existing literature

 Sources of comparative advantage (e.g., Romalis, 2004; Nunn, 2007; Manova, 2008; Cunat and Melitz, 2012; Manova, 2013; Debaere, 2014; Cingano and Pinotti, 2016; Cai and Stoyanov, 2016)

 \Rightarrow we show how indirect costs $per\ se$ can be a source of comparative advantage

 Global value chains (e.g., Miroudot et al., 2009; Johnson and Noguera, 2012; Baldwin, 2013) and intra-firm trade (e.g., Antrás and Chor, 2013; Alfaro et al., 2019)

 \Rightarrow we demonstrate how the cost of producing intermediate goods can act as a source of comparative advantage in the trade of downstream goods

Energy costs and trade (e.g., Aldy and Pizer, 2015; Arezki et al., 2017)
 ⇒ we highlight the role of intermediate goods in shaping trade composition

(日)

Data

Bilateral trade data: COMTRADE
 Benchmark year: 2012

Energy prices

- Energy price index: Sato et al. (2019)
- Electricity and natural gas prices: IEA
- Factor intensities: US BEA input-output table
 Implicitly assumed no factor intensity reversals
- Aggregate (and indirect costs) calculated by

$$\overrightarrow{AggCost} = (1 - \mathbf{A})^{-1} \overrightarrow{Cost}$$
(1)

where matrix \mathbf{A} is the industry-by-industry total requirement matrix

Indirect costs = Aggregate costs - direct costs

Empirical methodology

Direct and indirect energy price differences

- Rajan-Zingales diff-in-diff: compares the propensity to export manufacturing goods in countries with high or low energy prices, and in energy-intensive industries or non-energy-intensive industries
 - cross-sectional variation across countries in the pattern of specialization
- Explicitly:

$$og(Exports)_{ik} = \beta_1(EnergyPriceIndex)_i \times (EnergyIntensity)_k + \lambda X_{ik} + \alpha_i + \alpha_k + v_{ik}$$
(2)

where α_i is an exporter fixed effect and α_k is an industry fixed effect

X_{ik} includes physical and human capital interactions; robust to including more sources of comparative advantage

Main results

Dep. var.: log of aggregate exports _{ik}	(1)	(2)	(3)	(4)
Energy price $index_i \times Direct energy intensity_k$	-0.767*** (0.136)		-0.613*** (0.150)	-0.707*** (0.154)
Energy price $index_i \times Indirect$ energy $intensity_k$			-0.360*** (0.134)	-0.232** (0.112)
Energy price $index_i \times Aggregate energy intensity_k$		-0.813*** (0.136)		
Skill abundance _i × Skill intensity _k	0.393*** (0.055)	0.400*** (0.055)	0.396*** (0.055)	0.348*** (0.076)
Capital abundance, \times Capital intensity _k	0.559*** (0.166)	0.587*** (0.166)	0.607*** (0.166)	0.271 (0.179)
Observations Adjusted R ²	7915 0.719	7915 0.719	7915 0.719	7908 0.781
Exporter Fixed Effects	Yes	Yes	Yes	No
Industry Fixed Effects	Yes	Yes	Yes	Yes
Exporter-by-Sector Fixed Effects	No	No	No	Yes

3

<ロト <問ト < 目ト < 目ト

Empirical methodology

Restructure the supply chain in response to energy price

- To study if industries reorganize their global supply chain to minimize indirect energy costs, we use the World Input-Output Database (WIOD) across 43 countries
- We employ a similar Rajan-Zingales formulation as above:

$$log(Imports)_{ijkl} = \delta_1(EnergyPriceIndex)_j \times EnergyIntensity_l + \gamma X_{ijkl} + \alpha_{ij} + \alpha_{kl} + \mu_{ijkl}$$
(3)

where $Imports_{ijkl}$ is defined as the value of intermediate goods imported by industry k in country i, from industry l in country j

We also test if cost difference matters by replacing EnergyPriceIndex with EnergyPriceDiff_{ij} = EnergyPriceIndex_i - EnergyPriceIndex_j

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results for intermediate goods

Dep. var.: log of intermediates imports _{ijkl}	(1)	(2)	(3)	(4)
Energy price $index_j \times Energy intensity_l$	-1.371*** (0.067)	-1.403*** (0.067)		
Capital abundance $_j \times$ Capital intensity $_l$		0.088** (0.039)		
Skill abundance _j \times Skill intensity _l		0.452*** (0.025)		
Energy price index differential_{ij} \times Energy intensity_l			0.080*** (0.009)	0.082*** (0.011)
Capital abundance differential_{ij} \times Capital intensity_I				-0.012 (0.015)
Skill abundance differential_{ij} \times Skill intensity_				-0.177*** (0.022)
Observations Adjusted <i>R</i> ²	404028 0.634	404028 0.638	263088 0.587	263088 0.589
Exporter-Importer Fixed Effects Industry Pair Fixed Effects	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Chan, Manderson and Zhang

25 August 2022 11 / 15

▶ < ∃ >

• • • • • • • • • •

э

Robustness and other results

Electricity and natural gas prices instead of energy price index

- Similar in magnitudes, results stronger for the difference in natural gas prices
- Other sources of comparative advantages
 - Examples: TFP growth, labor market flexibility, financial development
 - Results on both direct and indirect energy costs are robust
- Robustness across years
 - Effect on indirect energy costs is getting more economically significant over years

Simulations

Methodology

- We simulate the impact of the increase in energy prices observed in the EU from 2004 to 2012 on the equilibrium trade patterns using the two results presented
- Three sets of results:
 - Direct impact of energy prices: assume zero impact of intermediates / indirect energy costs
 - 2 Short-run aggregate impact of energy prices: incorporate the estimated impact of indirect costs
 - **3** Long-run aggregate impact of energy prices: account for the predicted changes in intermediate goods imports

・ 同 ト ・ ヨ ト ・ ヨ ト

Simulations

Impact of an increase in energy prices in EU - energy price index

Country	Direct	Aggregate SR	Aggregate LR
Belgium	9.48%	21.54%	16.86%
Croatia	6.25%	14.08%	12.34%
Czech Republic	4.46%	9.24%	8.51%
Denmark	5.12%	11.79%	10.39%
Finland	11.84%	25.36%	16.68%
France	5.90%	12.09%	9.76%
Germany	5.23%	10.68%	8.92%
Greece	13.71%	36.83%	18.43%
Hungary	4.47%	10.05%	8.69%
Italy	6.27%	12.85%	9.86%
Netherlands	10.99%	28.77%	17.11%
Poland	5.83%	11.65%	10.45%
Portugal	6.71%	13.77%	11.35%
Romania	5.39%	10.65%	9.41%
Slovakia	6.06%	13.57%	12.78%
Sweden	8.48%	19.16%	17.26%
United Kingdom	7.32%	17.01%	12.14%
EU Total	6.77%	14.99%	11.46%

Chan, Manderson and Zhang

25 August 2022 14 / 15

э

A D N A B N A B N A B N

Conclusions

- We show that both direct and indirect energy costs can explain trade pattern
- The indirect energy channel has a smaller impact but still sizeable compared to physical and human capital
- Energy price differences also explain how countries optimize their intermediate goods
- Our simulation results show that by incorporating the indirect energy cost channel, the predicted impact of energy price change on manufacturing exports can almost double

▲ □ ▶ ▲ □ ▶ ▲ □ ▶