Quality Misallocation, Trade, and Regulations

Luca Macedoni

Aarhus University Imacedoni@econ.au.dk Ariel Weinberger

George Washington University aweinberger@gwu.edu

August 2022

 $\textbf{ Irade Policy Cooperation} \rightarrow \textbf{Avoid Beggar-Thy-Neighbor}$

- Trade Policy Cooperation → Avoid Beggar-Thy-Neighbor
- **②** Modern trade agreement \rightarrow **Regulations & Standards**
 - Legitimate reasons for domestic use: health, safety, etc...

2/18

- Trade Policy Cooperation → Avoid Beggar-Thy-Neighbor
- $@ Modern trade agreement \rightarrow \textbf{Regulations \& Standards}$
 - Legitimate reasons for domestic use: health, safety, etc...
- $\textbf{O} Cooperation on Regulations} \rightarrow \textbf{Avoid Beggar-Thy-Neighbor}$
 - Delocation (Grossman et al 2021) & Protectionism (Baldwin et al 2000)

2/18

- Trade Policy Cooperation → Avoid Beggar-Thy-Neighbor
- $@ Modern trade agreement \rightarrow \textbf{Regulations \& Standards}$
 - Legitimate reasons for domestic use: health, safety, etc...
- $\textbf{O} Cooperation on Regulations} \rightarrow \textbf{Avoid Beggar-Thy-Neighbor}$
 - Delocation (Grossman et al 2021) & Protectionism (Baldwin et al 2000)
- **Solution** Non-discriminatory regulations \rightarrow low-quality firms from any country
 - Reallocation from low-quality to high-quality firms

- Trade Policy Cooperation → Avoid Beggar-Thy-Neighbor
- $@ Modern trade agreement \rightarrow \textbf{Regulations \& Standards}$
 - Legitimate reasons for domestic use: health, safety, etc...
- $\textbf{O} Cooperation on Regulations} \rightarrow \textbf{Avoid Beggar-Thy-Neighbor}$
 - Delocation (Grossman et al 2021) & Protectionism (Baldwin et al 2000)
- § Non-discriminatory regulations \rightarrow low-quality firms from any country
 - Reallocation from low-quality to high-quality firms
- Solution New reason for cooperation in setting regulations

This Paper: Overview

Evidence: effects of regulations on exports (Not Today)

- Standards $\uparrow \rightarrow \#$ of Exporters \downarrow
- More restrictive standards in larger, richer, or less open economies

This Paper: Overview

Evidence: effects of regulations on exports (Not Today)

- Standards $\uparrow \rightarrow \#$ of Exporters \downarrow
- More restrictive standards in larger, richer, or less open economies

Omega Model: governments choose regulations and tariffs

- Regulation = fixed cost of compliance paid by all firms selling to a country
- Regulations improve welfare \rightarrow Allocative Efficiency \uparrow
- Misallocation = low-quality firms over-produce

This Paper: Overview

Evidence: effects of regulations on exports (Not Today)

- Standards $\uparrow \rightarrow \#$ of Exporters \downarrow
- More restrictive standards in larger, richer, or less open economies

Omega Model: governments choose regulations and tariffs

- Regulation = fixed cost of compliance paid by all firms selling to a country
- Regulations improve welfare \rightarrow Allocative Efficiency \uparrow
- Misallocation = low-quality firms over-produce

Stimation of the model

- What are the welfare effects regulations?
- How beneficial is cooperation?

- Regulations improve welfare of trade partners
 - Entry of high-quality firms + higher relative income

- Entry of high-quality firms + higher relative income
- Cooperation on the basis of positive externality

- Entry of high-quality firms + higher relative income
- Cooperation on the basis of positive externality
- Optimal Regulation differs across countries
 - \blacktriangleright Tariffs and Trade Costs $\downarrow \rightarrow$ Restrictiveness \downarrow

- Entry of high-quality firms + higher relative income
- Cooperation on the basis of positive externality
- Optimal Regulation differs across countries
 - \blacktriangleright Tariffs and Trade Costs $\downarrow \rightarrow$ Restrictiveness \downarrow
 - Country size / Per capita income $\uparrow \rightarrow \mathsf{Restrictiveness} \uparrow$

- Entry of high-quality firms + higher relative income
- Cooperation on the basis of positive externality
- Optimal Regulation differs across countries
 - \blacktriangleright Tariffs and Trade Costs $\downarrow \rightarrow$ Restrictiveness \downarrow
 - Country size / Per capita income $\uparrow \rightarrow \mathsf{Restrictiveness} \uparrow$
- Stimation of the model
 - Large externality effects

- Entry of high-quality firms + higher relative income
- Cooperation on the basis of positive externality
- Optimal Regulation differs across countries
 - \blacktriangleright Tariffs and Trade Costs $\downarrow \rightarrow$ Restrictiveness \downarrow
 - Country size / Per capita income $\uparrow \rightarrow \mathsf{Restrictiveness} \uparrow$
- Stimation of the model
 - Large externality effects
 - Cooperation between two countries: stricter regulations but heterogeneous

Closely Related Literature

- Rationale for Regulations
 - Donnenfeld et al. (1985, JIE); Fisher & Serra (1999, JIE); Baldwin and Evenett (2009, VoxEU); Gaigné & Larue (2016, JAgrEc); Parenti & Vannoorenberghe (2019); Grossman et al (2021, ECMA); Macedoni (2022, RoIE); Mei (2021); Macedoni and Weinberger (2022, JIE)
 - This Paper: reduction of misallocation + extension to externality
 - ▶ This Paper: role for cooperation + interaction between trade and regulations
- 2 Empirical studies of regulations
 - Fontagné et al. (2015, JIE), Ferro et al. (2015, FoodPolicy), Schmidt and Steingress (2018); Asprilla et al. (2019, IER), Fernandes et al. (2019, WBER); Disdier et al. (2020); Iodice (2020), Augier et al. (2021); Macedoni and Weinberger (2022, JIE)
 - This Paper: heterogeneous effects across countries
- Solution Allocative Efficiency + Trade Policy with Heterogeneous Firms
 - Edmond et al. (2015, AER), Dhingra and Morrow (2016, JPE), Campolmi et al. (2014, JIE; 2020) Lashkaripour and Lugovskyy (2021); Demidova (2017, JIE); Demidova and Rodriguez-Clare (2009, JIE); Felbermayr et al. (2013, JIE); Bagwell and Lee (2020, JIE); Costinot et al. (2020, ECMA)
 - This Paper: effects of fixed costs

• Building on Macedoni and Weinberger (2022, JIE)

- Building on Macedoni and Weinberger (2022, JIE)
- Consumer preferences: Indirectly Additive (Bertoletti and Etro 2020)

$$p_{ij}(\omega) = y_j \left[az(\omega) - (\xi_j q(\omega))^{\frac{1}{\gamma}} \right]$$

- Building on Macedoni and Weinberger (2022, JIE)
- Consumer preferences: Indirectly Additive (Bertoletti and Etro 2020)

$$p_{ij}(\omega) = y_j \left[az(\omega) - (\xi_j q(\omega))^{\frac{1}{\gamma}} \right]$$

• *Firms*: Melitz, but draw **quality** from Pareto distribution (shape κ)

- Building on Macedoni and Weinberger (2022, JIE)
- Consumer preferences: Indirectly Additive (Bertoletti and Etro 2020)

$$p_{ij}(\omega) = y_j \left[az(\omega) - (\xi_j q(\omega))^{\frac{1}{\gamma}} \right]$$

- Firms: Melitz, but draw quality from Pareto distribution (shape κ)
- $\bullet~\mbox{Quality} \rightarrow \mbox{Size} + \mbox{market power increases in size}$
 - High-quality firms \rightarrow under-produce
 - Low-quality firms \rightarrow over-produce

- Building on Macedoni and Weinberger (2022, JIE)
- Consumer preferences: Indirectly Additive (Bertoletti and Etro 2020)

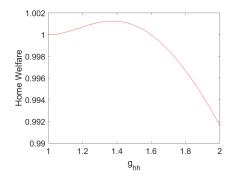
$$p_{ij}(\omega) = y_j \left[az(\omega) - (\xi_j q(\omega))^{\frac{1}{\gamma}} \right]$$

- Firms: Melitz, but draw quality from Pareto distribution (shape κ)
- $\bullet~\mbox{Quality} \rightarrow \mbox{Size} + \mbox{market power increases in size}$
 - High-quality firms \rightarrow under-produce
 - Low-quality firms \rightarrow over-produce
- Government: tariff and regulations

6/18

Regulations as a Fixed Cost

- $z_{ii}^* =$ Cutoff firm without regulation
- **2** \bar{z}_{ij} = Cutoff firm with regulation



Regulations as a Fixed Cost

- $z_{ii}^* =$ Cutoff firm without regulation
- **2** \bar{z}_{ij} = Cutoff firm with regulation

• $g_{ij} = rac{z_{ij}}{z_{ij}^*} \in [1,\infty) =$ measure of restrictiveness of the regulation

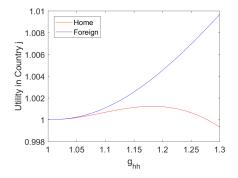
• Hump-shaped rel. between regulation and welfare

- Allocative Efficiency
 - Exit of low-quality, over-producing firms...

- Allocative Efficiency
 - Exit of low-quality, over-producing firms...
 - ... and reallocation of production towards high-quality, under-producing firms

- Allocative Efficiency
 - Exit of low-quality, over-producing firms...
 - > ... and reallocation of production towards high-quality, under-producing firms
 - Positive effect: Allocative efficiency improves

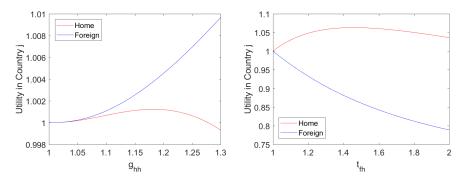
- Allocative Efficiency
 - Exit of low-quality, over-producing firms...
 - > ... and reallocation of production towards high-quality, under-producing firms
 - Positive effect: Allocative efficiency improves
 - ▶ Negative effect: # of Varieties \downarrow + payment of fixed costs


- Allocative Efficiency
 - Exit of low-quality, over-producing firms...
 - > ... and reallocation of production towards high-quality, under-producing firms
 - Positive effect: Allocative efficiency improves
 - ▶ Negative effect: # of Varieties $\downarrow +$ payment of fixed costs
- Perms of Trade Effect
 - ▶ Regulation $\uparrow \rightarrow$ more workers in compliance tasks \rightarrow wages \downarrow

- Allocative Efficiency
 - Exit of low-quality, over-producing firms...
 - > ... and reallocation of production towards high-quality, under-producing firms
 - Positive effect: Allocative efficiency improves
 - ▶ Negative effect: # of Varieties $\downarrow +$ payment of fixed costs
- ② Terms of Trade Effect
 - ▶ Regulation $\uparrow \rightarrow$ more workers in compliance tasks \rightarrow wages \downarrow
- More firms pay fixed cost of entry
 - Average profits of surviving firms ↑
 - Entry from any country ↑

- - Exit of low-quality, over-producing firms...
 - ... and reallocation of production towards high-quality, under-producing firms
 - Positive effect: Allocative efficiency improves
 - Negative effect: # of Varieties $\downarrow +$ payment of fixed costs
- **②** Terms of Trade Effect → **Externality**
 - ▶ Regulation $\uparrow \rightarrow$ more workers in compliance tasks \rightarrow wages \downarrow
- - Average profits of surviving firms ↑
 - Entry from any country ↑

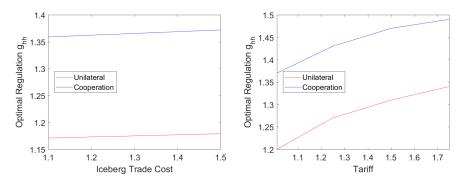
Welfare Effects of Trade Policies


(a) Home Regulation

Welfare Effects of Trade Policies

(a) Home Regulation

(b) Home Tariff



Optimal Regulation under Cooperation

Figure 2: Optimal Regulation under Cooperation

(a) Varying Trade Costs

(b) Varying Tariffs

Size and Technology

Ingredients for Counterfactual

Goal: Quantify welfare effects of regulations.

Ingredients for Counterfactual

Goal: Quantify welfare effects of regulations.

- Standard hat-algebra applies (ACR, 2012 AER) ► Equilibrium ► Hat Changes
- **2** Trade Flows: trade shares λ_{ij} (Data)
- Sountry sizes (L_i) , wages (w_i) , and tariffs (t_{ij}) (Data & Calibration)
- Demand curvature γ (Estimation)
- Shape par. of Pareto distribution of appeal κ (Estimation)
 - ▶ Follow Macedoni & Weinberger (2022, *JIE*) using Chilean domestic sales data ($\kappa = 3.96, \gamma = 1.88$)
- Iceberg Trade Costs τ_{ij} (Estimation/Gravity)

Ingredients for Counterfactual

Goal: Quantify welfare effects of regulations.

- Standard hat-algebra applies (ACR, 2012 AER) ► Equilibrium ► Hat Changes
- **2** Trade Flows: trade shares λ_{ij} (Data)
- Sountry sizes (L_i) , wages (w_i) , and tariffs (t_{ij}) (Data & Calibration)
- Demand curvature γ (Estimation)
- Shape par. of Pareto distribution of appeal κ (Estimation)
 - Follow Macedoni & Weinberger (2022, *JIE*) using Chilean domestic sales data (κ = 3.96, γ = 1.88)
- Iceberg Trade Costs τ_{ij} (Estimation/Gravity)
- Restrictiveness of regulation g_{ij} (Estimation)

Estimating the Restrictiveness of Regulations

- Simulated Method of Moments
- Simulate export sales distribution for country pair ij
- **③** Moments: distribution of export sales from i to j
 - 25th, 50th, and 75th percentiles of sales normalized by average sales, and export share of top 1%, 5%, and 25% of exporters
 - Source: Exporter Dynamics Database
- Returns g_{ij} for each country pair
- Solution Apply model to back out g_{ij} with estimated g_{ij} , τ_{ij} , and w_j

• Welfare effects of optimal regulation (16 countries + ROW)

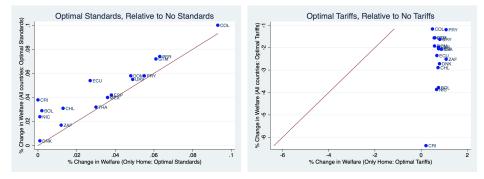
• Welfare effects of optimal regulation (16 countries + ROW)

• Compare welfare from $g_{jj} = 1$ to optimal g_{jj}

• Welfare effects of optimal regulation (16 countries + ROW)

- Compare welfare from $g_{jj} = 1$ to optimal g_{jj}
- e How large is the externality?
 - Unilateral VS All countries impose optimal regulation

Welfare Gains of Optimal Regulation: Unilateral Policies


- X-axis: Only one country at a time imposes optimal regulations.
- Y-axis: All countries impose optimal regulations.
- Gains on Y-axis 3 times larger on average

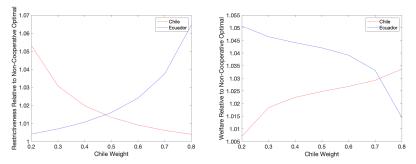
Welfare Gains of Optimal Regulation: Unilateral Policies

- X-axis: Only one country at a time imposes optimal regulations.
- Y-axis: All countries impose optimal regulations.
- Gains on Y-axis 3 times larger on average

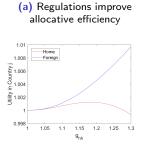
- X-axis: Only one country at a time imposes optimal tariff.
- Y-axis: All countries impose optimal tariff.
- Gains on Y-axis negative and large

No Tariff or Optimal Regulation?

• Welfare effects of optimal regulation (16 countries + ROW)


- Compare welfare from $g_{jj} = 1$ to optimal g_{jj}
- e How large is the externality?
 - Unilateral VS All countries impose optimal regulation
- I How large are the benefits from cooperation?
 - Choose optimal regulation for Chile and Equador

• Welfare effects of optimal regulation (16 countries + ROW)


- Compare welfare from g_{jj} = 1 to optimal g_{jj}
- e How large is the externality?
 - Unilateral VS All countries impose optimal regulation
- I How large are the benefits from cooperation?
 - Choose optimal regulation for Chile and Equador
 - Tradeoff: stricter regulations VS country heterogeneity

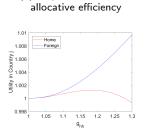
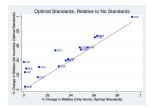
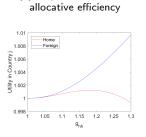
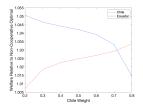

Welfare Gains of Optimal Regulation: Cooperative Policies

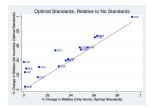
Figure 3: The Role for Cooperation: Optimal Restrictiveness and Welfare relative to Non-Cooperation in 2-country Case (for varying weights on Chile).

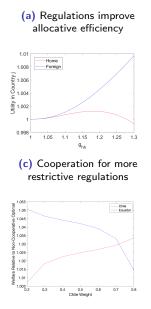

The figures display the relative restrictiveness and welfare gains when countries cooperate in a 2-way agreement, relative to each country setting its own optimal rate. We assume a 2 country world where Chile and Ecuador enter into a trade agreement that sets the level of domestic restrictiveness in each country. We calculate the non-cooperative optimal restrictiveness for each country in this 2-country scenario, then we compare that to the case where they maximize joint welfare, while waying the weights for each country. In both figures, the x-axis is a range of weights given to Chile's welfare in the agreement (with Ecuador's welfare qual to one minus Chile's). In the left figure, the y-axis is the ratio of the domestic restrictiveness in each country relative to their non-cooperative optimal. In the right figure, the y-axis is the welfare in each when they maximize joint welfare relative to when both countries impose their optimal. In the right we standard.



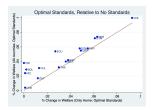
(a) Regulations improve


(b) Regulations have positive externality

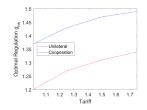



(a) Regulations improve

(c) Cooperation for more restrictive regulations



(b) Regulations have positive externality



(b) Regulations have positive externality

(d) Lower trade costs \rightarrow less restrictive regulations

Quality Misallocation, Trade, and Regulations

Luca Macedoni

Aarhus University Imacedoni@econ.au.dk Ariel Weinberger

George Washington University aweinberger@gwu.edu

August 2022

Trade Margins and Regulations: IV Specification • Back

- Sollow Kee and Nicita (2016) and Schmidt and Steingress (2018)
- IV for TM: TMs of related countries
 - Average number of regulations imposed in the same sectors by countries that either share a border or a common language. As a further check, we use regulations of countries with a common legal origin as instruments.

	Log Number of Exporters				Log Value per Exporter
	(Border)	(Language)	(Legal)	(OverID)	(Border)
TM Prevalence (log)	-0.157***	-0.254**	-0.953***	-0.154***	-0.145
/	(0.042)	(0.103)	(0.284)	(0.044)	(0.109)
F-stat (first stage)	1210.17	195.24	41.45	346.30	1210.17
Fixed Effects	i-j,i-hs2	i-j,i-hs2	i-j,i-hs2	i-j,i-hs2	i-j,i-hs2
Controls	Tariffs	Tariffs	Tariffs	Tariffs	Tariffs
# Observations	27101	23229	28602	21901	27101

We instrument the number regulations in each destination in two ways: i) the average number of regulations in the same sector, for countries that either share a border or have a common language with the instrumented country, ii) the average number of regulations in the same sector, for countries that have a common legal system as the instrumented country. The first-stage F-statistic is reported. *** $\rho < 0.01$, ** $\rho < 0.05$, * $\rho < 0.1$.

• Gravity Equation

$$\lambda_{ij} = \frac{t_{ij}R_{ij}}{\sum_{v} t_{vj}R_{vj}} = \frac{(t_{ij}\tau_{ij}c_{i}w_{i})^{-\kappa+\gamma+1}J_{i}b_{i}^{\kappa}g_{ij}^{-\kappa}G_{2}(g_{ij})}{\sum_{v}(t_{ij}\tau_{vj}c_{v}w_{v})^{-\kappa+\gamma+1}J_{v}b_{v}^{\kappa}g_{vj}^{-\kappa}G_{2}(g_{vj})}$$
(1)

- J_i = mass of firms that pay the fixed cost in i
- $G_2(g_{vj}) =$ function of g_{vj}
- Market clearing

$$\sum_{j} \lambda_{ij} y_j L_j = y_i L_i \quad \forall i = 1, ..., I$$
⁽²⁾

• Zero expected profits + Market clearing

$$J_{i} = \frac{1}{w_{i}f_{E}}\sum_{j}\frac{\lambda_{ij}}{t_{ij}}y_{j}L_{j}\frac{\tilde{G}_{1}(g_{ij})}{\tilde{G}_{2}(g_{ij})} \quad \forall i = 1,...,l$$
(3)

• Per Capita Income

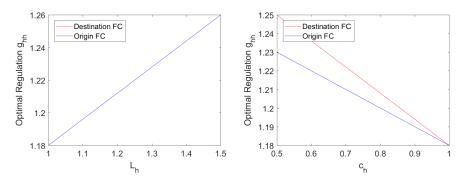

$$y_j = w_j + y_j \sum_{i} \left(\frac{t_{ij} - 1}{t_{ij}}\right) \lambda_{ij} \quad \forall j = 1, ..., I$$
(4)

Hat Changes Back

$$\begin{aligned} \hat{\lambda}_{ij} &= \frac{\hat{J}_{i} \hat{w}_{i}^{-\kappa+\gamma+1} \hat{t}_{ij}^{-\kappa+\gamma+1} \hat{\tilde{G}}_{2}(g_{ij})}{\sum_{\nu} \lambda_{\nu j} \hat{J}_{\nu} \hat{w}_{\nu}^{-\kappa+\gamma+1} \hat{t}_{\nu j}^{-\kappa+\gamma+1} \hat{\tilde{G}}_{2}(g_{\nu j})} & \forall i, j = 1, ..., I \quad (5) \\ \hat{y}_{i} &= \frac{\sum_{j} \lambda_{ij} y_{j} L_{j} \hat{\lambda}_{ij} \hat{y}_{j}}{\sum_{j} \lambda_{ij} y_{j} L_{j}} & \forall i = 1, ..., I \quad (6) \\ \hat{J}_{i} &= \frac{1}{\hat{w}_{i}} \frac{\sum_{j} \frac{\lambda_{ij}}{t_{ij}} y_{j} L_{j} \frac{\tilde{G}_{1}(g_{ij})}{\tilde{G}_{2}(g_{ij})} \frac{\hat{\lambda}_{ij}}{\tilde{t}_{ij}} \hat{y}_{j} (\frac{\tilde{G}_{1}(g_{ij})}{\tilde{G}_{2}(g_{ij})})}{\sum_{j} \frac{\lambda_{ij}}{t_{ij}} y_{j} L_{j} \frac{\tilde{G}_{1}(g_{ij})}{\tilde{G}_{2}(g_{ij})}} & \forall i = 1, ..., I \quad (7) \\ \hat{y}_{j} &= \frac{w_{j}}{y_{j}} \hat{w}_{j} + \sum_{j} \left(\frac{\hat{t}_{ij} - 1}{t_{ij}} \right) \hat{\lambda}_{ij} \hat{y}_{j} \left(\frac{t_{ij} - 1}{t_{ij}} \right) \hat{\lambda}_{ij} \end{pmatrix} & \forall j = 1, ..., I \quad (8) \end{aligned}$$

No Tariff or Optimal Regulations?

Optimal Standards and No Tariffs relative to Current Policy: All Countries set Policy vs One at a Time


We compare the welfare gain of moving from the current policy (currently estimated standards/measured tariffs) to either optimal standards (y-axis) or no tariffs (x-axis). Notice that the new standard policy can reduce welfare in this case as a country's trade partners now might reduce their standards to their own optimal level.

Optimal Regulation in Rich and Bigger Countries • Back

Figure 5: Optimal Regulation, Size, and Costs

(a) Home Size

(b) Home Unit Costs

