## Heterogeneous Passthrough from TFP to Wages

Mons Chan<br>Queen's University<br>Aarhus University

Sergio Salgado<br>The Wharton School<br>University of Pennsylvania

Ming Xu<br>Queen's University<br>Aarhus University

## EEA-ESEM

August 2022

## Introduction: Motivation

Why and how do firm-level shocks affect worker's wages?

- Crucial for research in income inequality and labor income risk.
- Not clear theoretically what we should expect to find empirically.
- Under canonical perfectly competitive model, individual wages should not depend on idiosyncratic firm shocks.
- Departures from competitive benchmark may drive links between firm shocks and wages.
- Labor adjustment costs, market power, financial constraints, etc.


## Introduction: This Project

1. Measure passthrough elasticity from firms' productivity shocks to wages.

- Object of interest: $\% \Delta$ in wage from $\% \Delta$ in $\operatorname{TFP}\left(\frac{\partial W_{\text {it }}}{\partial T F P_{j t}} \frac{T F P_{t t}}{W_{\text {it }}}\right)$


## Introduction: This Project

1. Measure passthrough elasticity from firms' productivity shocks to wages.

- Object of interest: $\% \Delta$ in wage from $\% \Delta$ in TFP $\left(\frac{\partial W_{j i t}}{\partial T F P_{j t}} \frac{T F P_{j t}}{W_{j i t}}\right)$

2. We develop general model of employment and wage setting which:

- Admits multiple dimensions of worker and firm heterogeneity.
- Nests various passthrough and wage-setting mechanisms.
- Requires few/weak assumptions on production, costs, and labor market structure.


## Introduction: This Project

1. Measure passthrough elasticity from firms' productivity shocks to wages.

- Object of interest: $\% \Delta$ in wage from $\% \Delta$ in TFP $\left(\frac{\partial W_{j i t}}{\partial T F P_{j t}} \frac{T F P_{j t}}{W_{j i t}}\right)$

2. We develop general model of employment and wage setting which:

- Admits multiple dimensions of worker and firm heterogeneity.
- Nests various passthrough and wage-setting mechanisms.
- Requires few/weak assumptions on production, costs, and labor market structure.

3. This framework allows us to

- Separately identify changes in firm shocks from endogenous responses.
- Obtain robust estimates of passthrough at firm and worker level.
- Evaluate different theories of passthrough.
- Decompose passthrough into passthrough to markdown and passthrough to MRPL


## General Setting

Economy with Firms $j \in J$ and Workers $i \in I$.

Firm $j$ produces output with capital $K_{j t}$, materials $M_{j t}$ and labor $L_{j t}$

$$
Y_{j t}=F\left(K_{j t}, L_{j t}, M_{j t}\right) e^{v_{j t}}
$$

- $v_{j t}=\omega_{j t}+\varepsilon_{j t}=\mathbb{E}\left[\omega_{j t} \mid \omega_{j t-1}\right]+\eta_{j t}+\varepsilon_{j t}$
- $\eta_{j t}$ is persistent shock to productivity.
- $\varepsilon_{j t}$ is transitory ex-post shock.


## General Setting

Economy with Firms $j \in J$ and Workers $i \in I$.

Firm $j$ produces output with capital $K_{j t}$, materials $M_{j t}$ and labor $L_{j t}$

$$
Y_{j t}=F\left(K_{j t}, L_{j t}, M_{j t}\right) e^{v_{j t}}
$$

- $v_{j t}=\omega_{j t}+\varepsilon_{j t}=\mathbb{E}\left[\omega_{j t} \mid \omega_{j t-1}\right]+\eta_{j t}+\varepsilon_{j t}$
- $\eta_{j t}$ is persistent shock to productivity.
- $\varepsilon_{j t}$ is transitory ex-post shock.

Worker $i$ characterized by time-varying productivity/ability $A_{i t}$

- $A_{i t}$ is function of innate ability, experience, education, etc.

Labor input $L_{j t}$ is the sum of ability-weighted hours of labor.

$$
L_{j t}=\sum_{i \in l_{j}} A_{i t} H_{i j t}
$$

## Wages

## Substitutability of labor conditional on ability implies:

- Firms pay single "ability price" $W_{j t}$ per hour of ability-adjusted labor.
- Worker hourly wage is $W_{i j t}=A_{i t} \times W_{j t}$


## Wages

## Substitutability of labor conditional on ability implies:

- Firms pay single "ability price" $W_{j t}$ per hour of ability-adjusted labor.
- Worker hourly wage is $W_{i j t}=A_{i t} \times W_{j t}$


## Timing and Wage Setting:

- Capital is predetermined: $K_{j t+1}=(1-\delta) K_{j t}+K_{j t}^{\prime}$.
- Firms observe $\mathcal{I}_{j t}=\left\{\eta_{j t}, \bar{Z}_{j t}, \tilde{Z}_{j t-1}, P_{t}, \mathcal{I}_{j t-1}\right\}$ and post expected wage $\bar{W}_{j t}$
- $\bar{Z}_{j t}$ are predetermined/exogenous state variables (including $K_{j t}$ ).
- $\tilde{Z}_{j t}$ are endogenous variables chosen in period t (including $L_{j t}, M_{j t}, K_{j t}^{\prime}$ ).
- After $\tilde{Z}_{j t}$ and $\bar{W}_{j t}$ chosen, firms observe $\varepsilon_{j t}$ and set $W_{j t}=\bar{W}_{j t} f^{c}\left(\varepsilon_{j t}\right)$.
- $f^{c}\left(\varepsilon_{j t}\right)$ represents ex-post wage adjustments (bonuses etc).


## Firm Problem

$$
\begin{aligned}
V_{j t}\left(\mathcal{I}_{j t}\right)=\max _{\tilde{z}_{j t}} \mathbb{E} & {\left[P_{t}^{Y} F\left(K_{j t}, L_{j t}, M_{j t}\right) e^{v_{j t}} \mid \mathcal{I}_{j t}\right]-\bar{W}_{j t} L_{j t}-\Phi_{j t} } \\
& -P_{t}^{\prime} K_{j t}^{\prime}-P_{t}^{M} M_{j t}+\beta \mathbb{E}\left[V_{j t+1}\left(\mathcal{I}_{j t+1}\right) \mid \mathcal{I}_{j t}\right]
\end{aligned}
$$

- Labor supply function $L_{j t}=g\left(\bar{W}_{j t}, \bar{Z}_{j t}, \tilde{Z}_{j t}\right)$
- Adjustment/employment cost function $\Phi_{j t}=\Phi\left(\bar{Z}_{j t}, \tilde{Z}_{j t}, \tilde{Z}_{j t-1}\right)$.


## Firm Problem

$$
\begin{aligned}
V_{j t}\left(\mathcal{I}_{j t}\right)=\max _{\tilde{Z}_{j t}} \mathbb{E} & {\left[P_{t}^{Y} F\left(K_{j t}, L_{j t}, M_{j t}\right) e^{v_{j t}} \mid \mathcal{I}_{j t}\right]-\bar{W}_{j t} L_{j t}-\Phi_{j t} } \\
& -P_{t}^{\prime} K_{j t}^{\prime}-P_{t}^{M} M_{j t}+\beta \mathbb{E}\left[V_{j t+1}\left(\mathcal{I}_{j t+1}\right) \mid I_{j t}\right]
\end{aligned}
$$

- Labor supply function $L_{j t}=g\left(\bar{W}_{j t}, \bar{Z}_{j t}, \tilde{Z}_{j t}\right)$
- Adjustment/employment cost function $\Phi_{j t}=\Phi\left(\bar{Z}_{j t}, \tilde{Z}_{j t}, \tilde{Z}_{j t-1}\right)$.

Firm's FOC provide optimal wage setting policy:

$$
\bar{W}_{j t}=\frac{\varepsilon_{\bar{W}_{j t}}^{L}}{1+\varepsilon_{\bar{W} j t}^{L}}\left(\overline{\mathrm{MRPL}}_{j t}-\frac{\partial \Phi_{j t}}{\partial L_{j t}}+\frac{\partial}{\partial L_{j t}} \beta \bar{V}_{j t+1}\right)
$$

- $\varepsilon_{j t}^{L}$ is labor supply elasticity.
- $\overline{\operatorname{MRPL}}_{j t} \equiv \mathbb{E}\left[\operatorname{MRPL}_{j t} \mid \mathcal{I}_{j t}\right]$, and $\bar{V}_{j t+1} \equiv \mathbb{E}\left[V_{j t+1}\left(\mathcal{I}_{j t+1}\right) \mid \mathcal{I}_{j t}\right]$.


## Recovering Joint Distribution of Ability, Wages, TFP

Ability: Assume $A_{i t}=A_{i} \times \Lambda_{t}\left(X_{i t}\right)$

- $A_{i}$ is unobserved time-invariant ability for individual $i$.
- $X_{i t}$ are time-varying worker characteristics (age, education, etc)
- $\Lambda_{t}$ allowed to be time varying (increasing returns to education).


## Recovering Joint Distribution of Ability, Wages, TFP

Ability: Assume $A_{i t}=A_{i} \times \Lambda_{t}\left(X_{i t}\right)$

- $A_{i}$ is unobserved time-invariant ability for individual $i$.
- $X_{i t}$ are time-varying worker characteristics (age, education, etc)
- $\Lambda_{t}$ allowed to be time varying (increasing returns to education).


## This provides two estimating equations:

(1) Use (log) wage equation to recover $A_{i t}$ controlling for firm variation.

$$
w_{i j t}=a_{i}+\lambda_{t}\left(X_{i t}\right)+w_{j t}
$$

(2) Use (log) production function to estimate $v_{j t}$ controlling for ability

$$
y_{j t}=f\left(k_{j t}, \ell_{j t}, m_{j t}\right)+v_{j t}
$$

Next: Explain how we take these to the data.

## Main Data Source

Matched employer-employee panel data from Statistics Denmark
Firm-level data: 0.8 million firm-year observations

- Majority of Danish firms from 1995 to 2010
- Annual revenues, capital stock, intermediate expenditure, employment, location, industry, etc.

Worker-level data: 7.3 million worker-year observations

- Hourly wages, occupation, within firm position, education, etc.
- Spousal linkages and information on these same variables

Wages set flexibly during this period. Little to no collective bargaining.

## Estimation: Ability and Firm-level Wage

Estimate worker-quality using two-way fixed effect model


- Worker ability includes unobserved and observed characteristics.
- Allows for time-varying firm ability price, $w_{j t}$.


## Estimation: Firm-Level TFP

Estimate firm productivity using non-parametric approach building on Gandhi et al. (2020)

$$
y_{j t}=f\left(k_{j t}, m_{j t}, \ell_{j t}\right)+\underbrace{\omega_{j t}+\epsilon_{j t}}_{v_{j t}}, \quad \omega_{j t}=\mathbb{E}\left[\omega_{j t} \mid \omega_{j t-1}\right]+\eta_{j t}
$$

- Allow arbitrary substitution patterns between inputs.
- Knowledge of $f$ and $\epsilon_{j t}$ provides distributions of MRPL $_{j t}$ and markdowns $\left(\mu_{j t}\right)$.


## Estimation: Firm-Level TFP

Estimate firm productivity using non-parametric approach building on Gandhi et al. (2020)

$$
y_{j t}=f\left(k_{j t}, m_{j t}, \ell_{j t}\right)+\underbrace{\omega_{j t}+\epsilon_{j t}}_{v_{j t}}, \quad \omega_{j t}=\mathbb{E}\left[\omega_{j t} \mid \omega_{j t-1}\right]+\eta_{j t}
$$

- Allow arbitrary substitution patterns between inputs.
- Knowledge of $f$ and $\epsilon_{j t}$ provides distributions of MRPL $_{j t}$ and markdowns $\left(\mu_{j t}\right)$.


## Controlling for labor quality matters:

- Also obtain "uncorrected" estimate of $\tilde{v}_{j t}$ using labor input $\tilde{\ell}_{j t}=h_{j t}$.
- Dispersion in TFP $\left(v_{j t}\right)$ reduced by $60 \%$ relative to $\tilde{v}_{j t}$. More Graph

Jointly estimating worker ability and TFP vital for results.

- Not controlling for worker ability $\rightarrow$ over-estimate passthrough.
- Using revenue/VA shock instead of TFP $\rightarrow$ under-estimate passthrough.


## Key Estimating Equation

Our main equation to estimate $\epsilon_{\text {TFP }}^{W}=\frac{\partial \log W_{i t}}{\partial \log T F P_{j t}}$ is derived directly from the model and timing assumptions:

$$
w_{j t}=f^{w}\left(\eta_{j t}, \varepsilon_{j t}, \omega_{j t-1}, \bar{Z}_{j t}, \tilde{Z}_{j t-1}\right)
$$

We use a first-order linear approximation of $f^{w}$, where:

- $\bar{Z}_{j t}$ includes (logs of): $K_{j t}$, industry, firm age.
- $\tilde{Z}_{j t}$ includes (logs of): $L_{j t}$ and workforce characteristics (size, age, education, experience, tenure, mobility rate, occupation composition etc).


## Key Estimating Equation

Our main equation to estimate $\epsilon_{\text {TFP }}^{W}=\frac{\partial \log W_{i t}}{\partial \log T F P_{j t}}$ is derived directly from the model and timing assumptions:

$$
w_{j t}=f^{w}\left(\eta_{j t}, \varepsilon_{j t}, \omega_{j t-1}, \bar{Z}_{j t}, \tilde{Z}_{j t-1}\right)
$$

We use a first-order linear approximation of $f^{w}$, where:

- $\bar{Z}_{j t}$ includes (logs of): $K_{j t}$, industry, firm age.
- $\tilde{Z}_{j t}$ includes (logs of): $L_{j t}$ and workforce characteristics (size, age, education, experience, tenure, mobility rate, occupation composition etc).


## We estimate:

$$
\Delta w_{j t}=\alpha+\underbrace{\beta^{\eta} \eta_{j t}+\beta^{\varepsilon} \varepsilon_{j t}}_{\text {TFP Shocks }}+\underbrace{\bar{Z}_{j t} \Gamma^{1}+\tilde{Z}_{j t-1} \Gamma^{2}+\beta^{w} w_{j t-1}+\delta_{t}}_{\text {Controls }}+\zeta_{i j t}
$$

$\beta^{\eta}$ and $\beta^{\varepsilon}$ are average passthrough elasticities of $\eta$ and $\varepsilon$ to wages.

## Summary/Key Estimating Equation

Our approach has several key advantages:

- Separately identifies persistent $\left(\eta_{j t}\right)$ from transitory $\left(\epsilon_{j t}\right)$ shocks.
- Weak parametric and distributional assumptions on shock processes.
- Can separately analyze wage effects of positive vs. negative shocks.
- Peels changes in labour quantity and quality out of firm shock.
- Can decompose passthrough into $\Delta$ Markdown and $\Delta$ MRPL.


## Theoretical Implications

$$
\bar{W}_{j t}=\frac{\varepsilon_{\bar{w}_{j t}}^{L}}{1+\varepsilon_{\bar{W}_{j t}}^{L}}\left(\overline{\mathrm{MRPL}}_{j t}-\frac{\partial \Phi_{j t}}{\partial L_{j t}}+\frac{\partial}{\partial L_{j t}} \beta \bar{V}_{j t+1}\right)
$$

- Perfectly competitive labor markets generate zero passthrough.


## Theoretical Implications

$$
\bar{W}_{j t}=\frac{\varepsilon_{\bar{w}_{j t}}^{L}}{1+\varepsilon_{\bar{w}_{j t}}^{L}}\left(\overline{\operatorname{MRPL}}_{j t}-\frac{\partial \Phi_{j t}}{\partial L_{j t}}+\frac{\partial}{\partial L_{j t}} \beta \bar{V}_{j t+1}\right)
$$

- Perfectly competitive labor markets generate zero passthrough.
- Atomistic monopolistic competition model without other frictions generates positive, homogeneous and symmetric passthrough.


## Theoretical Implications

$$
\bar{W}_{j t}=\frac{\varepsilon_{\bar{W} j t}^{L}}{1+\varepsilon_{\bar{W} j t}^{L}}\left(\overline{\mathrm{MRPL}}_{j t}-\frac{\partial \Phi_{j t}}{\partial L_{j t}}+\frac{\partial}{\partial L_{j t}} \beta \bar{V}_{j t+1}\right)
$$

- Perfectly competitive labor markets generate zero passthrough.
- Atomistic monopolistic competition model without other frictions generates positive, homogeneous and symmetric passthrough.
- Deviating from the simple case (adjustment costs, market power, etc) can generate heterogeneous and asymmetric passthrough.


## Results

## Firm-level Average Passthrough

- Passthrough is positive and asymmetric.
- Persistent shocks $(\eta)$ have larger effect than Transitory shocks $(\varepsilon)$.


## Firm-level Average Passthrough

- Passthrough is positive and asymmetric.
- Persistent shocks $(\eta)$ have larger effect than Transitory shocks $(\varepsilon)$.


## Recovering joint distribution of ability and TFP matters!

- $\Delta$ ability price from $\Delta$ value-added $=.06$ (no tfp)
- $\Delta$ mean wage from $\triangle \mathrm{TFPL}=.58$ (no akm)
- $\Delta$ mean wage from $\Delta$ value-added $=.12$ (neither)


## Persistence of Passthrough

$$
\Delta w_{j t}=\alpha+\underbrace{\beta^{\eta} \eta_{j t}+\beta^{\varepsilon} \varepsilon_{j t}}_{\text {TFP Shocks }}+\underbrace{\bar{Z}_{j t} \Gamma^{1}+\tilde{Z}_{j t-1} \Gamma^{2}+\beta^{w} w_{j t-1}+\delta_{t}}_{\text {Controls }}+\zeta_{i j t}
$$

| Periods After Shock |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| $\beta^{\eta}$ | $0.36^{* * *}$ <br> $(0.01)$ | $0.33^{* * *}$ <br> $(0.01)$ | $0.31^{* * *}$ <br> $(0.01)$ | $0.27^{* * *}$ <br> $(0.01)$ |
| $\beta^{\varepsilon}$ | $0.29^{* * *}$ <br> $(0.01)$ | $0.14^{* * *}$ <br> $(0.01)$ | $0.03^{* * *}$ <br> $(0.01)$ | -0.03 <br> $(0.02)$ |

- Balanced panel of firms in sample for 4+ years.
- Effect of transitory shock $(\varepsilon)$ gone after 4 periods.
- Effect of persistent shock $(\eta)$ remains relatively constant.


## Decomposition of Passthrough

We can identify the firm's expected markdown $\bar{\mu}_{j t}$

$$
W_{j t}=\mu_{j t} \mathrm{MRPL}_{j t}
$$

where

- A $1 \%$ increase in TFP leads to a $1.87 \%$ decrease in markdowns.
- Markdowns more sensitive to negative shocks than positive shocks.


## Heterogeneity in Decomposition

|  | Markdown $\mu_{j t-1}<0.5$ |  | Markdown $1>\mu_{j t-1}>0.8$ |  |
| :---: | :---: | :---: | :---: | :---: |
| LHS Var | $\eta_{j t}>0$ | $\eta_{j t}<0$ | $\eta_{j t}>0$ | $\eta_{j t}<0$ |
| $\Delta \log W_{j t}$ | $0.24^{* * *}$ | $0.17^{* * *}$ | $0.45^{* * *}$ | $0.23^{* * *}$ |
| $\Delta \log$ MRPL $_{j t}$ | $1.18^{* * *}$ | $2.96^{* * *}$ | $1.81^{* * *}$ | $2.15^{* * *}$ |
| $\Delta \log \mu_{j t}$ | $-0.94^{* * *}$ | $-2.79^{* * *}$ | $-1.36^{* * *}$ | $-1.92^{* * *}$ |
|  |  |  |  |  |

- Firms with more market power (low $\mu_{j t}$ ) have less passthrough.
- Especially true for positive shocks.
- Mostly due to low markdown firms being larger with higher returns-to-scale.


## Heterogeneity in Productivity

|  | Productivity Quintile ( $\omega_{j t-1}$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 |
| $\eta>0$ | $0.42^{* * *}$ | $0.39^{* * *}$ | $0.34^{* * *}$ | $0.30^{* * *}$ | $0.25^{* * *}$ |
| $\eta<0$ | $0.28^{* * *}$ | $0.21^{* * *}$ | $0.19^{* * *}$ | $0.14^{* * *}$ | $0.15^{* * *}$ |

- Passthrough decreasing in productivity.
- Consistent with predictions of oligopsonistic labor market model.
- Positive asymmetry for most firms is consistent with adjustment costs.

Similar patterns with firm size, returns-to-scale, and market share.

- Firms with 200+ workers ( $1 \%$ of firms) employ $44 \%$ of workers.
- Passthrough at these firms is negative asymmetric: $0.01(\eta>0)$ and $0.14(\eta<0)$
- To understand how passthrough affects workers $\rightarrow$ worker level estimation.


## Worker-level Selection Model

$$
\Delta \hat{w}_{i j t}=\Delta a_{i t}+\Delta w_{j t}=\alpha+\underbrace{\beta^{\eta} \eta_{j t}+\beta^{\varepsilon} \varepsilon_{j t}}_{\text {TFP Shocks }}+\underbrace{\Delta Z_{j t} \Gamma+\Delta X_{i t} \Omega+\delta_{t}}_{\text {Controls }}+\varepsilon_{i j t}^{x}
$$

## Main Issue

- Workers more likely to leave firms with negative shocks - exiting sample.
- Utility from working at firm $j: U_{i j t}=f^{u}\left(X_{i t}, \tilde{X}_{i t}, \mathcal{I}_{j t}\right)+\varepsilon_{i j t}^{u}$
- $\tilde{X}_{j t}$ are non-wage worker characteristics (relationship status, etc)
- Estimates may be biased since

$$
\mathbb{E}\left[\Delta w_{i j t} \mid X_{i t}, \tilde{X}_{i t}, \mathcal{I}_{j t}\right]=\alpha+\beta^{\eta} \eta_{j t}+\ldots+\mathbb{E}\left[\varepsilon_{j t}^{X} \mid \varepsilon_{j t}^{u}>-f^{u}\right]
$$

Solution: Heckman-style Selection Correction.
Exclusion restriction: $\tilde{X}_{i t}$ (relationship status and spouse's firm/wage shocks) affect employment but not firm-level wage setting. i.e. $\tilde{X}_{i t} \notin I_{j t}$.

## Worker-level Results

$$
\Delta \hat{w}_{i j t}=\alpha+\underbrace{\beta^{\eta} \eta_{j t}+\beta^{\varepsilon} \varepsilon_{j t}}_{\text {TFP Shocks }}+\underbrace{\Delta Z_{j t} \Gamma+\Delta X_{i t} \Omega+\delta_{t}}_{\text {Controls }}+\underbrace{\rho \tilde{\lambda}_{i j t}}_{\text {Correction }}+\varepsilon_{i j t}^{x}
$$

Dependent variable log-change in real wages, $\Delta w_{i j t}$
Uncorrected

|  | $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\Delta$ | $\Delta>0$ | $\Delta<0$ | $\Delta$ | $\Delta>0$ | $\Delta<0$ |
|  |  |  |  |  |  |  |
| $\beta^{\eta}$ | $0.033^{* * *}$ | $0.044^{* * *}$ | $0.022^{* * *}$ | $0.077^{* * *}$ | $0.061^{* * *}$ | $0.131^{* * *}$ |
|  | $(0.004)$ | $(0.004)$ | $(0.009)$ | $(0.007)$ | $(0.004)$ | $(0.007)$ |

- Correction $\rightarrow$ Increase in passthrough of persistent shocks.
- Mostly due to increase in passthrough of negative shocks.


## Passthrough Heterogeneity

- Firm heterogeneity
- High productivity firms have lower passthrough
- Firms with more labor market power have lower passthrough
- Worker heterogeneity
- Higher wage workers face higher passthrough
- High ability workers also face higher passthrough
- Positive passthrough $\rightarrow 0$ in great recession. Negative passthrough unaffected.
- Passthrough effects are twice as large for switchers.


## Conclusion

- Positive and significant passthrough from TFP shocks
- Larger (asymmetric) passthrough than existing literature
- A change of one st.dev. in TFP implies 1.8 pp change in wages $(\$ 1,100)$
- Large passthrough to wage markdowns.
- Selection is important when estimating worker-level passthrough
- Large heterogeneity across worker and firm types
- Workers more exposed to negative shocks.
- Passthrough $\uparrow$ in wages and ability, $\downarrow$ in TFP and Market Power.
- Data suggest that both market power and adjustment costs are significant drivers of passthrough.


## Heterogeneity: Firm Productivity



- Higher passthrough for workers at low TFP firms


## Heterogeneity: Labor Market Power



- Labor Market Concentration defined as share of employment within a year-municipality pair
- Higher concentration is associated with lower passthrough, especially for negative shocks


## Heterogeneity: Worker Ability



Worker Ability defined as $\widehat{\mathrm{a}}_{i j t} \equiv \exp \left(\hat{\alpha}_{i}+X_{i t} \hat{\beta}\right)$ from akm regression.

## Heterogeneity: Stayers vs. Switchers

Dependent variable log-change in real wages, $\Delta w_{i j t}$

## Stayers

Switchers

|  | $(1)$ <br> $\Delta T F P_{j t}$ | $(2)$ <br> $+\Delta T F P_{j t}$ | $(3)$ <br> $-\Delta T F P_{j t}$ | $(4)$ <br> $\Delta T F P_{j t}$ | (5) <br> $+\Delta T F P_{j t}$ | (6) <br>  <br>  <br> $\beta_{1}^{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0.077^{* * *}$ | $0.061^{* * *}$ | $0.131^{* * *}$ | $0.026^{* * *}$ | $0.025^{* * *}$ | $0.027^{* * *}$ |  |
| $\beta_{1}^{\varepsilon}$ | $0.034^{* * *}$ | $0.025^{* * *}$ | $0.032^{* * *}$ | $0.049^{* * *}$ | $0.057^{* * *}$ | $0.040^{* * *}$ |
|  |  |  |  |  |  |  |
| $\$$ Val. $\beta^{\eta}$ | $\$ 873$ | $\$ 688$ | $\$ 1,495$ | $\$ 2,166$ | $\$ 2,099$ | $\$ 1,914$ |
| $\$$ Val. $\beta^{\varepsilon}$ | $\$ 336$ | $\$ 252$ | $\$ 437$ | $\$ 470$ | $\$ 554$ | $\$ 369$ |
| \% Inc. $\beta^{\eta}$ | $1.5 \%$ | $1.2 \%$ | $2.5 \%$ | $3.8 \%$ | $3.7 \%$ | $3.4 \%$ |
| \% Inc. $\beta^{\varepsilon}$ | $0.6 \%$ | $0.4 \%$ | $0.7 \%$ | $0.8 \%$ | $0.9 \%$ | $0.7 \%$ |

## Heterogeneity: Recessions

|  | (1) | (2) | (3) | (4) | (5) (6) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No Recessions |  | 2002-2003 |  | 2008-2009 |  |
|  | $+\Delta T F P_{j t}$ | $-\Delta T F P_{j t}$ | $+\triangle T F P_{j t}$ | $-\triangle T F P_{j t}$ | $+\triangle T F P_{j t}$ | $-\Delta T F P_{j t}$ |
| Persistent ( $\beta^{\eta}$ ) | 0.056*** | $0.136^{* * *}$ | 0.067*** | $0.105^{* * *}$ | 0.014 | $0.141^{* * *}$ |
| Transitory ( $\beta^{\varepsilon}$ ) | $0.025^{* *}$ | 0.046*** | 0.025*** | $0.035^{* * *}$ | 0.032*** | $0.025^{* * *}$ |
| \$Val. $\beta^{\eta}$ | \$638 | \$1,528 | \$756 | \$1,192 | \$167 | \$1,662 |
| \%Inc. $\beta^{\eta}$ | 1.1\% | 2.6\% | 1.3\% | 2.0\% | 0.2\% | 2.7\% |
| \$Val. $\beta^{\varepsilon}$ | \$252 | \$453 | \$252 | \$353 | \$336 | \$269 |
| $\%$ Inc. $\beta^{\varepsilon}$ | 0.4\% | 0.8\% | 0.4\% | 0.6\% | 0.5\% | 0.4\% |

## Heterogeneity: Wage Quintiles



- More heterogeneity across income distribution when the persistent shock is negative. Low wage workers experience relatively low gain and low pain.


## Sample Selection

Firms: TFP shocks

- All firms in register with at least one employee
- Around 0.8 million firm-year observations

Workers: Change in Annual Wage

- Full-time workers who are 15 years and older
- Annual earnings above 30,000 DKK (\$4,600 USD)
- No public sector or self-employed workers
- 7.3 million worker-year observations


## Summary Statistics Bas

|  | Mean | Std.dev. | N |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
|  | Workers Characteristics |  |  |  |  |
| Annual Wages (dkk) | 363,661 | 208,240 | 8.98 M |  |  |
| Hourly Wages (dkk) | 234 | 147 | 7.36 M |  |  |
| Age | 41.7 | 11.3 | 8.98 M |  |  |
|  | Firms Characteristics |  |  |  |  |
|  | 1.33 |  |  |  | 0.71 M |
| Log Value Added | 14.6 | 1.33 | 0.58 |  |  |
| Log TFP | 7.94 | 0.71 M |  |  |  |
| Firm Age (years) | 13.1 | 12.5 | 0.71 M |  |  |
| Number of Employees | 19.8 | 192.7 | 0.71 M |  |  |
| 1 USD $\$=6.55$ dkk |  |  |  |  |  |

## AKM Identification

- Identify returns to covariates using "common switchers"

$$
\begin{aligned}
w_{i j t}-w_{m j t} & =\alpha_{i}-\alpha_{m}+\left(\mathbf{X}_{i t}-\mathbf{X}_{m t}\right) \Gamma_{t}+\xi_{i j t}-\xi_{m j t} \\
w_{i k t-1}-w_{m k t-1} & =\alpha_{i}-\alpha_{m}+\left(\mathbf{X}_{i t-1}-\mathbf{X}_{m t-1}\right) \Gamma_{t-1}+\xi_{i k t-1}-\xi_{m k t-1} \\
\Longrightarrow \Delta w_{i t}-\Delta w_{m t} & =\left(\mathbf{X}_{i t}-\mathbf{X}_{m t}\right) \Gamma_{t}-\left(\mathbf{X}_{i t-1}-\mathbf{X}_{m t-1}\right) \Gamma_{t-1}+\Delta \xi_{i t}+\Delta \xi_{m t}
\end{aligned}
$$

- Identify firm time effects using all switchers

$$
\psi_{j(i, t) t}-\psi_{k(i, t-1) t-1}=w_{i j t}-w_{i k t-1}+\mathbf{X}_{i t} \Gamma_{t}-\mathbf{X}_{i t-1} \Gamma_{t-1}+\xi_{i j t}-\xi_{i k t-1}
$$

- Worker time invariant fixed effects then recovered as

$$
\alpha_{i}=\mathbb{E}_{j(i, t) t}\left[w_{i j t}-\psi_{j(i, t) t}+\mathbf{X}_{i t} \Gamma_{t}\right]
$$

- Multiple jobs per worker provides additional identification

$$
w_{i j t}-w_{i k t}=\psi_{j t}-\psi_{k t}+\xi_{i j t}-\xi_{i k t}
$$

## Connected Set Using Multiple Jobs



Note: $54.4 \%$ of workers have held a second job in at least one year, and $4.7 \%$ of workers have held three or more jobs in one year.

## Accounting for Small Mobility Bias cebad

|  | Minimum number of ex-ante connections: |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Min \# Connections: | 1 | 2 | 3 | 4 | 5 | 10 | 15 | 50 | 100 |
| Share Explained by: |  |  |  |  |  |  |  |  |  |
| $\alpha_{i}+X_{i t} \Gamma$ | 51.0\% | 51.0\% | 51.1\% | $51.3 \%$ | $51.4 \%$ | $52.1 \%$ | $52.7 \%$ | 54.4\% | $55.4 \%$ |
| $\psi_{(i, t) j}$ | 11.3\% | 11.0\% | 10.3\% | 10.0\% | 9.5\% | 8.4\% | 7.9\% | 6.8\% | 6.4\% |
| $2 \times \operatorname{Cov}\left(\psi_{(i, t) j}, \alpha_{i}+X_{i t} \Gamma\right)$ | 1.0\% | 1.0\% | 1.3\% | 1.4\% | 1.5\% | 1.6\% | 1.6\% | 1.2\% | 1.1\% |
| $\operatorname{Corr}\left(\psi_{(i, t) j}, \alpha_{i}+X_{i t} \Gamma\right)$ | 0.02 | 0.02 | 0.03 | 0.03 | $0.03$ | 0.04 | 0.04 | 0.03 | 0.03 |
| Num $i \times j \times t$ obs. | 57,509,434 |  |  |  |  |  |  |  |  |
| Unique firms | 450,467 |  |  |  |  |  |  |  |  |
| Unique firm/times | 2,967,450 |  |  |  |  |  |  |  |  |
| Unique Workers | 4,329,825 |  |  |  |  |  |  |  |  |
| Largest Connected set contains: |  |  |  |  |  |  |  |  |  |
| Firm/times | 2,784,546 | 2,639,123 | $2,258,122$ | 2,043,546 | 1,800,386 | 1,196,300 | 871,560 | 257,752 | 116,421 |
| \% of baseline sample | (93.8\%) | (89.0\%) | (76.1\%) | (68.9\%) | (60.7\%) | (40.3\%) | (29.4\%) | (8.7\%) | (3.9\%) |
| Workers | 4,303,394 | 4,299,071 | 4,290,456 | 4,281,289 | 4,271,422 | 4,219,321 | 4,169,563 | 3,931,396 | 3,755,195 |
| \% of the sample | (99.4\%) | (99.3\%) | (99.1\%) | (98.9\%) | (98.7\%) | (97.4\%) | (96.3\%) | (90.8\%) | (86.7\%) |
| Firms | 412,822 | 389,135 | 349,627 | 313,090 | 281,466 | 188,705 | 138,320 | 39,909 | 17,532 |
| $i \times j \times t$ observations | 57,295,638 | 57,130,540 | 56,666,144 | 56,308,219 | 55,812,613 | 53,721,761 | 51,828,097 | 44,116,870 | 39,491,246 |
| Mean hourly wage | 5.17 | 5.17 | 5.17 | 5.17 | 5.17 | 5.18 | 5.19 | 5.2 | 5.21 |
| Variance of hourly wage | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.29 | 0.29 | 0.26 | 0.25 |
| $R^{2}$ | 0.63 | 0.63 | 0.63 | 0.63 | 0.62 | 0.62 | 0.62 | $0.62$ | 0.63 |
| RMSE | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.33 | 0.32 |
| \% of Firms in connected set: |  |  |  |  |  |  |  |  |  |
| $<=2$ connections | 35.1\% | 14.8\% | 4.0\% | 2.30\% | 1.40\% | 0.55\% | 0.35\% | 0.04\% | 0.00\% |
| $<5$ connections | 39\% | 31.90\% | 21.90\% | 15.60\% | 7.90\% | 1.80\% | 1.10\% | 0.14\% | 0.00\% |
| $<10$ connections | $57.00 \%$ | $54.70 \%$ | 47.30\% | $42.20 \%$ | 35.10\% | 13.00\% | 5.80\% | 0.80\% | 0.20\% |
| Mean connections | 42.0 | 44.2 | 51.2 | 56.1 | 62.9 | 89.9 | 117.8 | 325.6 | 632.1 |
| Median connections | 8 | 8 | 10 | 12 | 14 | 21 | 29 | 81 | 166 |

Notes: Table II presents the results of our AKM wage decomposition exercise and analyses the effects of limited mobility bias in our estimates. Specifically, it shows how the contribution of worker's characteristics, firms' characteristics and sorting varies at different minimum thresholds of number of ex-ante connections. Our procedure is to use the full sample to characterize the graph of connections between workers and firms. We then obtain for each firm-time pair the number of (ex-ante connections) in this graph and drop any firm-times which have below the minimum number of connections listed in the top row of each column. We then recalculate the largest connected set and estimate our AKM model on that subset of firms and workers. All estimations are obtained by pooling data from 1991 to 2010.

## Moments of the TFP Distribution and Shocks

Controlling for worker ability greatly reduces the dispersion in firm-level TFP and shocks

Table 1: Moments of the log-TFP and TFP shock Distribution

|  |  | Std. Dev. | P75-P25 | P90-P10 | Skewness |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Log TFP, $v_{j t}$ | Hours | 1.57 | 1.75 | 3.55 | -1.82 |
|  | AKM | 0.63 | 0.67 | 1.43 | 1.41 |
|  | Hours | 0.64 | 0.43 | 1.10 | 0.50 |
|  | AKM | 0.19 | 0.13 | 0.29 | 8.14 |

## TFP distribution Bace

## Distributions of eta



