Competitive Search and the Social Value of Public Information

Piotr Denderski¹ Eeva Mauring²

¹U Leicester and Polish Academy of Sciences

²U Bergen, U Vienna, and CEPR

EEA, 23 August 2022

Motivation

- Policy uncertainty/communication is important
 - monetary surprises (Lucas (1972, 1973, 1975))
 - global games (Moris and Shin (2002))
 - usually: frictionless trade
- Competitive search has strong efficiency properties
 - market prices the good and the likelihood of trade
 - usually: market conditions are known/no aggregate risk

This paper

- Competitive (posting + commitment + directed) search,
- aggregate risk, and
- public information.
- Characterize equilibria.
 - What does aggregate risk imply for competitive search equilibrium?
 - How do search frictions interact with information friction?
- Study the effects of information on welfare.

Results

- Arbitrary marginal effects of public information.
- Price dispersion even with identical sellers and buyers.
- Market freezes (no trade in some states).
- Less efficient single-price than price-dispersed equilibria.
- Entry is generally inefficient.
- When/if more general mechanism improves upon price posting.

Related Literature

- Price setting under incomplete information (e.g. Keller and Rady, 1999, Hellwig and Venkateswaran, 2009): frictionless trading
- Search and aggregate uncertainty & incomplete information: Mauring (2017), Lauermann et al. (2018), Shneyerov and Wong (2020): random search
- Competitive search (Moen, 1997) with incomplete information (e.g. Guerrieri et al., 2010, Moen and Rosén, 2011, Julien and Roger, 2019, and Mayr-Dorn, 2020): uncertainty about private/individual state

Model

Sellers and buyers

- Competitive search model with unknown demand state.
- Sellers
 - fixed mass S = 1,
 - one unit of indivisible good each,
 - post prices (can mix).
- Buyers
 - mass \mathcal{B}_i ,
 - unit demand,
 - each values good at v_i ,
 - see prices and decide which firm to contact (can mix),
 - trade off price and probability of getting good.

Matching

- Matching function *M*(*B*, *S*).
- Buyer-seller ratio: $x = \frac{B}{S}$.
- Probability of selling: $\lambda(x)$ with $\lambda' > 0$, $\lambda'' < 0$.
- Probability of buying: $\eta(x)$ with $\eta' < 0$, $\eta'' > 0$.
- Bilateral meetings.

Uncertainty and information

- Uncertainty about state of demand $i \in \{L, H\}$ with (\mathcal{B}_i, v_i)
 - uncertainty about buyer-seller ratio: B_H ≥ B_L, (tightness uncertainty)
 - uncertainty about valuation: $v_H \ge v_L$ (surplus uncertainty)
 - Today: $\mathcal{B}_H > \mathcal{B}_L$ and $v_H = v_L = v$.
- Information
 - Buyers know state.
 - Sellers get public signal $j \in \{G, B\}$ before setting prices

$$\mu = Pr(j = G|i = H) = P(j = B|i = L) \in \left[\frac{1}{2}, 1\right].$$

States and signals

Timing

- 1 Nature draws state $i \in \{H, L\}$.
- **2** Public signal is realised and sellers see outcome $j \in \{G, B\}$.
- **3** Sellers post prices.
- **4** Buyers contact sellers.
- **5** A buyer can buy at each seller that meets at least one buyer.
- 6 Trade.
- ⑦ Utilities are realised.

Equilibrium

- Strategies
 - firms see signal and post prices (can mix),
 - buyers see prices and choose prices to contact (can mix).
- Equilibrium
 - optimal prices p^j for firms, $j = \{G, B\}$,
 - contacting probabilities for buyers: buyer-seller ratios x^j_i,
 i = {H, L} and j = {G, B},
 - market clearing: buyer-seller ratios consistent with total measures of buyers and sellers.
- Symmetric equilibria.

Perfect information

Perfect information problem

- Sellers know state is $i \in \{L, H\}$.
- Sellers compete against market utility of buyers U_i ≤ v in state *i*:

$$\max_{p_i} \pi_i(p_i) := \lambda(x_i)p_i,$$

subject to: $\eta(x_i)(v - p_i) - U_i = 0.$

Perfect information problem

- Sellers know state is $i \in \{L, H\}$.
- Sellers compete against market utility of buyers U_i ≤ v in state *i*:

$$\max_{p_i} \pi_i(p_i) := \lambda(x_i)p_i,$$

subject to: $\eta(x_i)(v - p_i) - U_i = 0.$

• Solution:

$$p_i^* = \phi(x_i)v.$$

- $\phi(x_i) = -\frac{x_i \eta'(x_i)}{\eta(x_i)}$: elasticity of buying probability.
- Perfect information: single price in each state.

Perfect information profits

Imperfect information

Imperfect information problem

- Sellers do not know state $i \in \{L, H\}$, see j = G or B.
- Seller who sees j = G chooses p^G to $\max_{p^G} \pi^G(p^G) := \left[\mu \lambda \left(x_H^G \right) + (1 - \mu) \lambda \left(x_L^G \right) \right] p^G$ (1)

Imperfect information problem

- Sellers do not know state $i \in \{L, H\}$, see j = G or B.
- Seller who sees j = G chooses p^G to $\max_{p^G} \pi^G(p^G) := \left[\mu \lambda \left(x_H^G \right) + (1 - \mu) \lambda \left(x_L^G \right) \right] p^G$ (1)

subject to:
$$x_i^G \left[\eta(x_i^G) \left(v_i - p^G \right) - U_i^G \right] = 0$$
 and $x_i^G \ge 0$. (2)

- If p^G is acceptable in state *i*, $x_i^G > 0$.
- If p^G is unacceptable to buyers in state *i*, $x_i^G = 0$.

Imperfect information problem

- Sellers do not know state $i \in \{L, H\}$, see j = G or B.
- Seller who sees j = G chooses p^G to $\max_{p^G} \pi^G(p^G) := \left[\mu \lambda \left(x_H^G \right) + (1 - \mu) \lambda \left(x_L^G \right) \right] p^G$ (1)

subject to:
$$x_i^G \left[\eta(x_i^G) \left(v_i - p^G \right) - U_i^G \right] = 0$$
 and $x_i^G \ge 0$. (2)

- If p^G is acceptable in state *i*, $x_i^G > 0$.
- If p^G is unacceptable to buyers in state *i*, $x_i^G = 0$.
- Similar problem for sellers who see j = B.

▶ Equilibrium

Pricing under imperfect information

Pricing for both states, or pricing for high state only.
 Details

Pricing under imperfect information

Theorem (Equilibria, tightness risk)

- **1** There exist thresholds $\tilde{\mathcal{B}}_{H}^{j} := \tilde{\mathcal{B}}_{H}^{j}(\mathcal{B}_{L},\mu), \mathcal{B}_{L} < \tilde{\mathcal{B}}_{H}^{j} < \infty$ such that for $\mathcal{B}_H \in \left(\mathcal{B}_L, \tilde{\mathcal{B}}_H^j\right)$ the equilibrium profit function $\pi^j(p)$ is unimodal. Furthermore, $\partial \tilde{\mathcal{B}}_{H}^{j} / \partial \mathcal{B}_{L} > 0$, $\partial \tilde{\mathcal{B}}_{H}^{G} / \partial \mu > 0$, $\partial \tilde{\mathcal{B}}_{H}^{B} / \partial \mu < 0$ and $\tilde{\mathcal{B}}_{H}^{G} \geq \tilde{\mathcal{B}}_{H}^{B}$ with equality only if $\mu = 1/2$, **2** there exist thresholds $\bar{\mathcal{B}}_{H}^{j} := \bar{\mathcal{B}}_{H}^{j}(\mathcal{B}_{L},\mu); \tilde{\mathcal{B}}_{H}^{j} < \bar{\mathcal{B}}_{H}^{j} \leq \infty$ such that for $\mathcal{B}_H \in \left(\tilde{\mathcal{B}}_H^j, \bar{\mathcal{B}}_H^j\right)$ the equilibrium profit function $\pi^j(p)$ is bimodal, but pricing for both states maximizes profits. Furthermore, $\lim_{\mu \to 1} \bar{\mathcal{B}}^{j}_{\mu}(\mathcal{B}_{L},\mu) = \infty$, and $\bar{\mathcal{B}}^{j}_{\mu}(\mathcal{B}_{L},\mu) < \infty$ for \mathcal{B}_{I} and μ small enough,
- **3** a unique PSE exists iff $\mathcal{B}_H \leq \bar{\mathcal{B}}_H^j(\mathcal{B}_L,\mu)$ and a unique MSE exists iff $\mathcal{B}_H > \bar{\mathcal{B}}_H^j(\mathcal{B}_L,\mu)$.

Equilibria

Both signals mix in hatched and post single price in shaded area.

Welfare measure

• We measure welfare as expected value of trades:

$$W(\mu) = \frac{1}{2} \left[\mu \sum_{k=1}^{K^{G}} \kappa^{G,k} \lambda(x_{H}^{G,k}) + (1-\mu) \sum_{k=1}^{K^{B}} \kappa^{B,k} \lambda(x_{H}^{B,k}) \right] v_{H}$$
$$+ \frac{1}{2} \left[\mu \sum_{k=1}^{K^{B}} \kappa^{B,k} \lambda(x_{L}^{B,k}) + (1-\mu) \sum_{k=1}^{K^{G}} \kappa^{G,k} \lambda(x_{L}^{G,k}) \right] v_{L}$$

- Price level does not matter.
- Price dispersion is inefficient.

Information and welfare

Normalised welfare for three different \mathcal{B}_H (fixed v and \mathcal{B}_L).

Conclusions

- Competitive search and unknown aggregate state.
- Type of aggregate uncertainty matters for
 Surplus uncertainty
 - how information affects trade volume.
 - what is optimal trading mechanism.
- Provision of incomplete information might harm welfare.
- Some implications find support in empirical literature.
 Details
- Extensions: entry and more general trading mechanisms.

Model predictions

Model predictions and evidence •Go back

- Bond markets
 - Increase in transparency → decrease in price dispersion: municipal bonds in US (Schultz, 2012).
 - More risky markets → more dispersed prices: OTC corporate bonds in US (Jankowitsch et al., 2011, Uslu and Velioglu, 2021).
 - Decrease in transparency → more market freezes possible; in contrast to Zou (2021).
 - States more different \rightarrow more market freezes; as in Chiu and Koeppl, (2016).
- Labour markets
 - Increase in uncertainty → decrease in hiring; as in den Haan, Freund, Rendahl (2021).

US corporate bonds: dispersion and beta

Figure: Uslu and Velioglu (2021)

US corporate bonds: dispersion and rating

Figure: Jankowitsch et al (2011)

Equilibrium conditions

- Focus on symmetric Nash equilibria $\left\{ \left\{ \kappa^{j,k}, x_i^{j,k}, p^{j,k} \right\}_{k=1}^{K^j}, U_i^j \right\}_j, \text{ for } i \in \{L,H\}, j \in \{B,G\}.$
- Submarkets indexed by prices *p*^{*j*,*k*}.
- Buyers in state *i* for signal *j* indifferent between $p^{j,k}$:

$$U_i^{j,k} = (1 - \lambda(x_i^{j,k})) \left(v_i - p^{j,k}\right) \quad \text{for all } x_i^{j,k} > 0.$$
(3)

 Buyer-seller ratios consistent with measures of sellers and buyers: in state *i*, if Σ_k^{Kj} x_i^{j,k} > 0,

$$\sum_{k}^{K^{j}} \kappa^{j,k} x_{i}^{j,k} = \mathcal{B}_{i}.$$
(4)

Definition (Equilibrium)

We will say that a tuple $\left\{ \left\{ \kappa^{j,k}, x_i^{j,k}, p^{j,k} \right\}_{k=1}^{K^j}, U_i^j \right\}_j$ is an equilibrium for exogenous parameters $\Theta = (v_i, \mathcal{B}_i)$ with $i \in \{H, L\}$ and signal precision μ if for each $j \in \{G, B\}$:

- **1** given market utilities U_i^j , a tuple $\left\{x_i^{j,k}, p^{j,k}\right\}$ solves (1) and (2) for each k,
- 2 market utilities satisfy (3) given $\left\{x_{i}^{j,k}, p^{j,k}\right\}_{k=1}^{N}$,
- **6** buyer-seller ratios and probability weights $\left\{x_i^{j,k}, \kappa^{j,k}\right\}_{k=1}^{K^j}$ are consistent with (4).

◀ Go back

Pricing for both states

Lemma

If the constrained profit maximisation on $[0, \min_i \bar{p}_i]$ has an interior solution p^j , then unique buyer-seller ratios $x_i^j > 0$ exist which together with p^j jointly solve:

$$\left(1-\lambda\left(x_{i}^{j}\right)\right)\left(v_{i}-p^{j}\right)=U_{i}^{j},\text{ for }i\in\left\{L,H
ight\},j\in\left\{B,G
ight\}$$
, and

$$\mu\lambda(x_H^G)\left[\frac{\phi(x_H^G)v_H - p^G}{\phi(x_H^G)(v_H - p^G)}\right] + (1 - \mu)\lambda(x_L^G)\left[\frac{\phi(x_L^G)v_L - p^G}{\phi(x_L^G)(v_L - p^G)}\right] = 0,$$

for j = G and analogously for j = B. Simplifying assumptions

Small demand difference

Large demand difference Goback

Entry

Entry

Cost of setting up a trading post *c*:

- First best: entry depends on *demand state* and not signal.
- Second best: entry depends on signal, "pricing" as in perfect information, planner maximizes expected trades net of setup costs:

$$\begin{split} & \mu\lambda(x_H^G)\phi(x_H^G)v + (1-\mu)\lambda(x_L^G)\phi(x_L^G)v = c, \\ & (1-\mu)\lambda(x_H^B)\phi(x_H^B)v + \mu\lambda(x_L^B)\phi(x_L^B)v = c. \end{split}$$

• Free entry conditions:

$$\begin{bmatrix} \mu \lambda(x_H^G) + (1-\mu)\lambda(x_L^G) \end{bmatrix} p^G = c, \\ \left[(1-\mu)\lambda(x_H^B) + \mu \lambda(x_L^B) \right] p^B = c.$$

Information distorts entry Goback

Entry and information

Simplifying assumption

Assumption (Particular matching function) Let $M(\mathcal{B}, \mathcal{S}) = \frac{\mathcal{BS}}{\mathcal{B}+\mathcal{S}}$. Then $\lambda(x) = \phi(x) = \frac{x}{1+x}$, $\eta(x) = 1 - \lambda(x)$. Assumption (Particular matching function) Let $M(\mathcal{B}, \mathcal{S}) = \frac{\mathcal{B}\mathcal{S}}{\mathcal{B}+\mathcal{S}}$. Then $\lambda(x) = \phi(x) = \frac{x}{1+x}$, $\eta(x) = 1 - \lambda(x)$. • Under tightness risk: for $i \in \{L, H\}$ and j = G $\left(1 - \lambda\left(x_i^G\right)\right)\left(v - p^G\right) = U_i^G$, and $\mu\lambda(x_H^G)\left[\frac{\lambda(x_H^G)v - p^G}{\lambda(x_H^G)(v - p^G)}\right] + (1 - \mu)\lambda(x_L^G)\left[\frac{\lambda(x_L^G)v - p^G}{\lambda(x_L^G)(v - p^G)}\right] = 0.$ Surplus risk

Surplus risk

- If $v_H v_L$ is small, only single price equilibria exist.
- If $v_H v_L$ is large, equilibrium under no information features $p^N = \phi(\mathcal{B})v_H > v_L$ and no trade in *L*-state:
 - interval $(\underline{\mu}, \overline{\mu})$ exists where sellers mix and expected value of trades is greater than under no information.
 - qualitatively similar to tightness risk otherwise.
- Numerically find thresholds for each type of equilibrium.

Information and welfare: surplus risk

Go back

Normalised welfare for three different v_H (fixed v_L and \mathcal{B}).

Existence thresholds: surplus risk

Lotteries

Lotteries Go back

- Suppose sellers can post lotteries (θ_i^j, p_i^j) :
 - lottery price p_i^j , and
 - probability of getting the good θ_i^j .
- Lotteries screen states if

$$heta_i^j v_i - p_i^j \ge heta_{-i}^j v_i - p_{-i}^j.$$

- We show under
 - tightness risk, price posting is optimal: $\theta_i^j = 1$ and $p_i^j = p^j$.
 - surplus risk, lotteries weakly dominate price posting: zero trade in low state no longer equilibrium outcome.