Competitive Search and the Social Value of Public Information

Piotr Denderski ${ }^{1} \quad$ Eeva Mauring ${ }^{2}$
${ }^{1}$ U Leicester and Polish Academy of Sciences
${ }^{2} \mathrm{U}$ Bergen, U Vienna, and CEPR

EEA, 23 August 2022

Motivation

- Policy uncertainty / communication is important
- monetary surprises (Lucas (1972, 1973, 1975))
- global games (Moris and Shin (2002))
- usually: frictionless trade
- Competitive search has strong efficiency properties
- market prices the good and the likelihood of trade
- usually: market conditions are known/no aggregate risk

This paper

- Competitive (posting + commitment + directed) search,
- aggregate risk, and
- public information.
- Characterize equilibria.
- What does aggregate risk imply for competitive search equilibrium?
- How do search frictions interact with information friction?
- Study the effects of information on welfare.

Results

- Arbitrary marginal effects of public information.
- Price dispersion even with identical sellers and buyers.
- Market freezes (no trade in some states).
- Less efficient single-price than price-dispersed equilibria.
- Entry is generally inefficient.
- When/if more general mechanism improves upon price posting.

Related Literature

- Price setting under incomplete information (e.g. Keller and Rady, 1999, Hellwig and Venkateswaran, 2009): frictionless trading
- Search and aggregate uncertainty \& incomplete information: Mauring (2017), Lauermann et al. (2018), Shneyerov and Wong (2020): random search
- Competitive search (Moen, 1997) with incomplete information (e.g. Guerrieri et al., 2010, Moen and Rosén, 2011, Julien and Roger, 2019, and Mayr-Dorn, 2020): uncertainty about private/individual state

Model

Sellers and buyers

- Competitive search model with unknown demand state.
- Sellers
- fixed mass $\mathcal{S}=1$,
- one unit of indivisible good each,
- post prices (can mix).
- Buyers
- mass \mathcal{B}_{i},
- unit demand,
- each values good at v_{i},
- see prices and decide which firm to contact (can mix),
- trade off price and probability of getting good.

Matching

- Matching function $M(\mathcal{B}, \mathcal{S})$.
- Buyer-seller ratio: $x=\frac{\mathcal{B}}{\mathcal{S}}$.
- Probability of selling: $\lambda(x)$ with $\lambda^{\prime}>0, \lambda^{\prime \prime}<0$.
- Probability of buying: $\eta(x)$ with $\eta^{\prime}<0, \eta^{\prime \prime}>0$.
- Bilateral meetings.

Uncertainty and information

- Uncertainty about state of demand $i \in\{L, H\}$ with $\left(\mathcal{B}_{i}, v_{i}\right)$
- uncertainty about buyer-seller ratio: $\mathcal{B}_{H} \geq \mathcal{B}_{L}$, (tightness uncertainty)
- uncertainty about valuation: $v_{H} \geq v_{L}$ (surplus uncertainty)
- Today: $\mathcal{B}_{H}>\mathcal{B}_{L}$ and $v_{H}=v_{L}=v$.
- Information
- Buyers know state.
- Sellers get public signal $j \in\{G, B\}$ before setting prices

$$
\mu=\operatorname{Pr}(j=G \mid i=H)=P(j=B \mid i=L) \in\left[\frac{1}{2}, 1\right] .
$$

States and signals

Nature, demand state $i \in\{L, H\}$

Timing

(1) Nature draws state $i \in\{H, L\}$.
(2) Public signal is realised and sellers see outcome $j \in\{G, B\}$.
(3) Sellers post prices.
4) Buyers contact sellers.
(5) A buyer can buy at each seller that meets at least one buyer.
(6) Trade.
(7) Utilities are realised.

Equilibrium

- Strategies
- firms see signal and post prices (can mix),
- buyers see prices and choose prices to contact (can mix).
- Equilibrium
- optimal prices p^{j} for firms, $j=\{G, B\}$,
- contacting probabilities for buyers: buyer-seller ratios x_{i}^{j}, $i=\{H, L\}$ and $j=\{G, B\}$,
- market clearing: buyer-seller ratios consistent with total measures of buyers and sellers.
- Symmetric equilibria.

Perfect information

Perfect information problem

- Sellers know state is $i \in\{L, H\}$.
- Sellers compete against market utility of buyers $U_{i} \leq v$ in state i :

$$
\begin{aligned}
& \max _{p_{i}} \pi_{i}\left(p_{i}\right):=\lambda\left(x_{i}\right) p_{i} \\
& \text { subject to: } \eta\left(x_{i}\right)\left(v-p_{i}\right)-U_{i}=0 .
\end{aligned}
$$

Perfect information problem

- Sellers know state is $i \in\{L, H\}$.
- Sellers compete against market utility of buyers $U_{i} \leq v$ in state i :

$$
\begin{aligned}
& \max _{p_{i}} \pi_{i}\left(p_{i}\right):=\lambda\left(x_{i}\right) p_{i}, \\
& \text { subject to: } \eta\left(x_{i}\right)\left(v-p_{i}\right)-U_{i}=0 .
\end{aligned}
$$

- Solution:

$$
p_{i}^{*}=\phi\left(x_{i}\right) v
$$

- $\phi\left(x_{i}\right)=-\frac{x_{i} \eta^{\prime}\left(x_{i}\right)}{\eta\left(x_{i}\right)}$: elasticity of buying probability.
- Perfect information: single price in each state.

Perfect information profits

Imperfect information

Imperfect information problem

- Sellers do not know state $i \in\{L, H\}$, see $j=G$ or B.
- Seller who sees $j=G$ chooses p^{G} to

$$
\begin{equation*}
\max _{p^{G}} \pi^{G}\left(p^{G}\right):=\left[\mu \lambda\left(x_{H}^{G}\right)+(1-\mu) \lambda\left(x_{L}^{G}\right)\right] p^{G} \tag{1}
\end{equation*}
$$

Imperfect information problem

- Sellers do not know state $i \in\{L, H\}$, see $j=G$ or B.
- Seller who sees $j=G$ chooses p^{G} to

$$
\begin{equation*}
\max _{p^{G}} \pi^{G}\left(p^{G}\right):=\left[\mu \lambda\left(x_{H}^{G}\right)+(1-\mu) \lambda\left(x_{L}^{G}\right)\right] p^{G} \tag{1}
\end{equation*}
$$

subject to: $x_{i}^{G}\left[\eta\left(x_{i}^{G}\right)\left(v_{i}-p^{G}\right)-U_{i}^{G}\right]=0$ and $x_{i}^{G} \geq 0$.

- If p^{G} is acceptable in state $i, x_{i}^{G}>0$.
- If p^{G} is unacceptable to buyers in state $i, x_{i}^{G}=0$.

Imperfect information problem

- Sellers do not know state $i \in\{L, H\}$, see $j=G$ or B.
- Seller who sees $j=G$ chooses p^{G} to

$$
\begin{equation*}
\max _{p^{G}} \pi^{G}\left(p^{G}\right):=\left[\mu \lambda\left(x_{H}^{G}\right)+(1-\mu) \lambda\left(x_{L}^{G}\right)\right] p^{G} \tag{1}
\end{equation*}
$$

subject to: $x_{i}^{G}\left[\eta\left(x_{i}^{G}\right)\left(v_{i}-p^{G}\right)-U_{i}^{G}\right]=0$ and $x_{i}^{G} \geq 0$.

- If p^{G} is acceptable in state $i, x_{i}^{G}>0$.
- If p^{G} is unacceptable to buyers in state $i, x_{i}^{G}=0$.
- Similar problem for sellers who see $j=B$.

Pricing under imperfect information

- Pricing for both states, or pricing for high state only. Details

Pricing under imperfect information

- Pricing for both states, or pricing for high state only.

Theorem (Equilibria, tightness risk)

(1) There exist thresholds $\tilde{\mathcal{B}}_{H}^{j}:=\tilde{\mathcal{B}}_{H}^{j}\left(\mathcal{B}_{L}, \mu\right), \mathcal{B}_{L}<\tilde{\mathcal{B}}_{H}^{j}<\infty$ such that for $\mathcal{B}_{H} \in\left(\mathcal{B}_{L}, \tilde{\mathcal{B}}_{H}^{j}\right]$ the equilibrium profit function $\pi^{j}(p)$ is unimodal. Furthermore, $\partial \tilde{\mathcal{B}}_{H}^{j} / \partial \mathcal{B}_{L}>0, \partial \tilde{\mathcal{B}}_{H}^{G} / \partial \mu>0$, $\partial \tilde{\mathcal{B}}_{H}^{B} / \partial \mu<0$ and $\tilde{\mathcal{B}}_{H}^{G} \geq \tilde{\mathcal{B}}_{H}^{B}$ with equality only if $\mu=1 / 2$,
(2) there exist thresholds $\overline{\mathcal{B}}_{H}^{j}:=\overline{\mathcal{B}}_{H}^{j}\left(\mathcal{B}_{L}, \mu\right) ; \tilde{\mathcal{B}}_{H}^{j}<\overline{\mathcal{B}}_{H}^{j} \leq \infty$ such that for $\mathcal{B}_{H} \in\left(\tilde{\mathcal{B}}_{H}^{j}, \overline{\mathcal{B}}_{H}^{j}\right)$ the equilibrium profit function $\pi^{j}(p)$ is bimodal, but pricing for both states maximizes profits.
Furthermore, $\lim _{\mu \rightarrow 1} \overline{\mathcal{B}}_{H}^{j}\left(\mathcal{B}_{L}, \mu\right)=\infty$, and $\overline{\mathcal{B}}_{H}^{j}\left(\mathcal{B}_{L}, \mu\right)<\infty$ for \mathcal{B}_{L} and μ small enough,
(3) a unique PSE exists iff $\mathcal{B}_{H} \leq \overline{\mathcal{B}}_{H}^{j}\left(\mathcal{B}_{L}, \mu\right)$ and a unique MSE exists iff $\mathcal{B}_{H}>\overline{\mathcal{B}}_{H}^{j}\left(\mathcal{B}_{L}, \mu\right)$.

Equilibria

Both signals mix in hatched and post single price in shaded area.

Welfare measure

- We measure welfare as expected value of trades:

$$
\begin{aligned}
W(\mu) & =\frac{1}{2}\left[\mu \sum_{k=1}^{K^{G}} \kappa^{G, k} \lambda\left(x_{H}^{G, k}\right)+(1-\mu) \sum_{k=1}^{K^{B}} \kappa^{B, k} \lambda\left(x_{H}^{B, k}\right)\right] v_{H} \\
& +\frac{1}{2}\left[\mu \sum_{k=1}^{K^{B}} \kappa^{B, k} \lambda\left(x_{L}^{B, k}\right)+(1-\mu) \sum_{k=1}^{K^{G}} \kappa^{G, k} \lambda\left(x_{L}^{G, k}\right)\right] v_{L}
\end{aligned}
$$

- Price level does not matter.
- Price dispersion is inefficient.

Information and welfare

Normalised welfare for three different \mathcal{B}_{H} (fixed v and \mathcal{B}_{L}).

Conclusions

- Competitive search and unknown aggregate state.
- Type of aggregate uncertainty matters for Surplus uncertainty
- how information affects trade volume.
- what is optimal trading mechanism.
- Provision of incomplete information might harm welfare.
- Some implications find support in empirical literature.
- Details
- Extensions: entry and more general trading mechanisms.

Appendix

Model predictions

Model predictions and evidence

- Bond markets
- Increase in transparency \rightarrow decrease in price dispersion: municipal bonds in US (Schultz, 2012).
- More risky markets \rightarrow more dispersed prices: OTC corporate bonds in US (Jankowitsch et al., 2011, Uslu and Velioglu, 2021).
- Decrease in transparency \rightarrow more market freezes possible; in contrast to Zou (2021).
- States more different \rightarrow more market freezes; as in Chiu and Koeppl, (2016).
- Labour markets
- Increase in uncertainty \rightarrow decrease in hiring; as in den Haan, Freund, Rendahl (2021).

US corporate bonds: dispersion and

 beta

Figure: Uslu and Velioglu (2021)

US corporate bonds: dispersion and

Figure: Jankowitsch et al (2011)

Equilibrium

Equilibrium conditions

- Focus on symmetric Nash equilibria

$$
\left\{\left\{\mathcal{K}^{j, k}, x_{i}^{j, k}, p^{j, k}\right\}_{k=1}^{K^{j}}, U_{i}^{j}\right\}_{j}, \text { for } i \in\{L, H\}, j \in\{B, G\}
$$

- Submarkets indexed by prices $p^{j, k}$.
- Buyers in state i for signal j indifferent between $p^{j, k}$:

$$
\begin{equation*}
U_{i}^{j, k}=\left(1-\lambda\left(x_{i}^{j, k}\right)\right)\left(v_{i}-p^{j, k}\right) \quad \text { for all } x_{i}^{j, k}>0 \tag{3}
\end{equation*}
$$

- Buyer-seller ratios consistent with measures of sellers and buyers: in state i, if $\sum_{k}^{K^{j}} x_{i}^{j, k}>0$,

$$
\begin{equation*}
\sum_{k}^{K^{j}} \mathcal{K}^{j, k} x_{i}^{j, k}=\mathcal{B}_{i} . \tag{4}
\end{equation*}
$$

Definition (Equilibrium)

We will say that a tuple $\left\{\left\{\kappa^{j, k}, x_{i}^{j, k}, p^{j, k}\right\}_{k=1}^{K^{j}}, U_{i}^{j}\right\}_{j}$ is an
equilibrium for exogenous parameters $\Theta=\left(v_{i}, \mathcal{B}_{i}\right)$ with
$i \in\{H, L\}$ and signal precision μ if for each $j \in\{G, B\}$:
(1) given market utilities U_{i}^{j}, a tuple $\left\{x_{i}^{j, k}, p^{j, k}\right\}$ solves (1) and (2) for each k,
(2) market utilities satisfy (3) given $\left\{x_{i}^{j, k}, p^{j, k}\right\}_{k=1^{\prime}}^{K^{j}}$
(3) buyer-seller ratios and probability weights $\left\{x_{i}^{j, k}, \kappa^{j, k}\right\}_{k=1}^{K^{j}}$ are consistent with (4).

Pricing for both states

Lemma

If the constrained profit maximisation on $\left[0, \min _{i} \bar{p}_{i}\right]$ has an interior solution p^{j}, then unique buyer-seller ratios $x_{i}^{j}>0$ exist which together with p^{j} jointly solve:

$$
\left(1-\lambda\left(x_{i}^{j}\right)\right)\left(v_{i}-p^{j}\right)=U_{i}^{j}, \text { for } i \in\{L, H\}, j \in\{B, G\}, \text { and }
$$

$\mu \lambda\left(x_{H}^{G}\right)\left[\frac{\phi\left(x_{H}^{G}\right) v_{H}-p^{G}}{\phi\left(x_{H}^{G}\right)\left(v_{H}-p^{G}\right)}\right]+(1-\mu) \lambda\left(x_{L}^{G}\right)\left[\frac{\phi\left(x_{L}^{G}\right) v_{L}-p^{G}}{\phi\left(x_{L}^{G}\right)\left(v_{L}-p^{G}\right)}\right]=0$, for $j=G$ and analogously for $j=B$. Simplifing assumptions

Small demand difference

Large demand difference

Theorem 2, Case 2

Theorem 2, Case 3

Entry

Entry

Cost of setting up a trading post c :

- First best: entry depends on demand state and not signal.
- Second best: entry depends on signal, "pricing" as in perfect information, planner maximizes expected trades net of setup costs:

$$
\begin{aligned}
\mu \lambda\left(x_{H}^{G}\right) \phi\left(x_{H}^{G}\right) v+(1-\mu) \lambda\left(x_{L}^{G}\right) \phi\left(x_{L}^{G}\right) v & =c, \\
(1-\mu) \lambda\left(x_{H}^{B}\right) \phi\left(x_{H}^{B}\right) v+\mu \lambda\left(x_{L}^{B}\right) \phi\left(x_{L}^{B}\right) v & =c .
\end{aligned}
$$

- Free entry conditions:

$$
\begin{aligned}
& {\left[\mu \lambda\left(x_{H}^{G}\right)+(1-\mu) \lambda\left(x_{L}^{G}\right)\right] p^{G}=c} \\
& {\left[(1-\mu) \lambda\left(x_{H}^{B}\right)+\mu \lambda\left(x_{L}^{B}\right)\right] p^{B}=c .}
\end{aligned}
$$

Information distorts entry crobad

Entry and information

Simplifying assumption

Assumption (Particular matching function)
Let $M(\mathcal{B}, \mathcal{S})=\frac{\mathcal{B} \mathcal{S}}{\mathcal{B}+\mathcal{S}}$. Then $\lambda(x)=\phi(x)=\frac{x}{1+x}, \eta(x)=1-\lambda(x)$.

Assumption (Particular matching function)
Let $M(\mathcal{B}, \mathcal{S})=\frac{\mathcal{B} \mathcal{S}}{\mathcal{B}+\mathcal{S}}$. Then $\lambda(x)=\phi(x)=\frac{x}{1+x}, \eta(x)=1-\lambda(x)$.

- Under tightness risk: for $i \in\{L, H\}$ and $j=G$

$$
\begin{gathered}
\left(1-\lambda\left(x_{i}^{G}\right)\right)\left(v-p^{G}\right)=U_{i}^{G} \text {, and } \\
\mu \lambda\left(x_{H}^{G}\right)\left[\frac{\lambda\left(x_{H}^{G}\right) v-p^{G}}{\lambda\left(x_{H}^{G}\right)\left(v-p^{G}\right)}\right]+(1-\mu) \lambda\left(x_{L}^{G}\right)\left[\frac{\lambda\left(x_{L}^{G}\right) v-p^{G}}{\lambda\left(x_{L}^{G}\right)\left(v-p^{G}\right)}\right]=0 .
\end{gathered}
$$

Surplus risk

Surplus risk

- If $v_{H}-v_{L}$ is small, only single price equilibria exist.
- If $v_{H}-v_{L}$ is large, equilibrium under no information features $p^{N}=\phi(\mathcal{B}) v_{H}>v_{L}$ and no trade in L-state:
- interval $(\underline{\mu}, \bar{\mu})$ exists where sellers mix and expected value of trades is greater than under no information.
- qualitatively similar to tightness risk otherwise.
- Numerically find thresholds for each type of equilibrium.

Information and welfare: surplus risk

4 Go back

Normalised welfare for three different $v_{H}\left(\right.$ fixed v_{L} and $\left.\mathcal{B}\right)$.

Existence thresholds: surplus risk

Lotteries

Lotteries Ccobad

- Suppose sellers can post lotteries $\left(\theta_{i}^{j}, p_{i}^{j}\right)$:
- lottery price p_{i}^{j}, and
- probability of getting the good θ_{i}^{j}.
- Lotteries screen states if

$$
\theta_{i}^{j} v_{i}-p_{i}^{j} \geq \theta_{-i}^{j} v_{i}-p_{-i}^{j} .
$$

- We show under
- tightness risk, price posting is optimal: $\theta_{i}^{j}=1$ and $p_{i}^{j}=p^{j}$.
- surplus risk, lotteries weakly dominate price posting: zero trade in low state no longer equilibrium outcome.

