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Abstract

We investigate the effect of buyer heterogeneity in a model in which
an incumbent firm prevents a competitor’s entry when it signs enough
exclusionary contracts with buyers. With heterogeneous buyers several
well-known results in exclusionary contracting with homogenous buyers are
overturned and novel ones emerge. a) Equilibria exist in which contracts
are signed by some buyers but entry still occurs, rendering contract rat-
ification an insufficient evidence of exclusion. These equilibria show that
signing an exclusionary contract can generate positive externality by being
pro-competitive. b) Sequential contracting may be more pro-competitive
than simultaneous contracting in the sense that entry occurs under sequen-
tial contracting but not under simultaneous contracting. When that hap-
pens, sequential contracting Pareto dominates simultaneous contracting. c)
Equilibrium outcome may change from exclusion to entry either when the
monopoly profit of the incumbent increases or when the market share nec-
essary for exclusion decreases.
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1 Introduction

In a seminal contribution to antitrust economics, Rasmusen, Ramseyer, and Wiley

[1991] and Segal and Whinston [2000] introduce a canonical model of exclusionary

contracting. In the model, an incumbent firm signs exclusionary contracts with

buyers. Signing a contract binds a buyer to purchase from the incumbent firm.

When the incumbent firm signs exclusionary contracts with a sufficient number of

buyers, entry is not profitable for a potential entrant, and exclusion ensues. The

key economic insight of their analysis is that exclusionary contracting generates

negative externalities and can result in social inefficiency. Another finding is that

sequential contracting is more anti-competitive than simultaneous contracting be-

cause whenever exclusion happens in equilibrium with simultaneous contracting

it also happens with sequential contracting.

One important assumption in Rasmusen et al. [1991], Segal and Whinston

[2000] and most of the subsequent exclusionary contracting literature is that buy-

ers are homogeneous. Although a very useful starting point, there are many in-

dustries in which the market consists of heterogeneous buyers. How important is

buyer heterogeneity in determining whether exclusion is successful? Is it still true

that sequential contracting is anti-competitive? New questions arise with buyer

heterogeneity as well, for example, with whom and in which order contracts are

signed.

We address these question by building upon the model in Segal and Whinston

[2000], allowing for buyers of heterogeneous size. This enables us to consider a

range of market structures, including the special case of homogeneous buyers and

markets with veto buyers, that is, buyers whose signing of a contract is necessary

for successful exclusion of the competitor. When the market consists of buyers

not too heterogeneous in size so that no buyer is a veto buyer, the equilibrium

outcomes resemble the homogeneous-buyer case: when the incumbent’s monopoly

profit is small, no exclusionary contract is signed and entry happens, and when it

is large, the incumbent firm is able to achieve exclusion at zero cost.

Novel equilibrium outcomes arise in the presence of veto buyers when the in-

cumbent’s monopoly profit is large. In this case in any equilibrium all non-veto

buyer sign exclusionary contracts in return for zero transfers, no veto buyer con-

tracts with the incumbent, and entry happens. The non-veto buyers are willing to

sign because if they were to reject, the incumbent firm would contract with buyers

sufficient for exclusion. Somewhat paradoxically, signing an exclusionary contract

by a non-veto buyer is pro-competitive because it leads to entry in equilibrium
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and generates positive externality on the other buyers. Interestingly, exclusionary

contracts are signed but entry still occurs in equilibrium. Entry occurs not be-

cause the incumbent firm is unable to achieve exclusion at a profit, but because

it is even more profitable to allow for entry, since preventing entry requires full

compensation of the veto buyers in return for exclusionary contracts.

It is well known that with homogeneous buyers the divide-and-conquer mech-

anism enabled by sequential contracting allows the incumbent firm to achieve

exclusion at a low cost, which makes sequential contracting more anti-competitive

than simultaneous contracting. However, with heterogeneous buyers, sequential

contracting may be more pro-competitive. The veto buyers do not sign exclusion-

ary contracts unless fully compensated even under sequential contracting. The

divide-and-conquer strategy is limited to the non-veto buyers, which results in

entry in the presence of veto buyers.

Under buyer heterogeneity equilibrium outcome may change from exclusion

to entry either when the monopoly profit of the incumbent increases or when the

market share necessary for exclusion decreases. Each change makes it easier for the

incumbent firm to achieve exclusion, which makes non-veto buyers willing to sign

an exclusionary contract in return for zero transfer, and, seemingly paradoxically,

makes it more profitable for the incumbent firm to contract only with the non-veto

buyers and allow for entry than to pursue exclusion.

Related literature: This paper builds on the seminal work on exclusionary

contracting by Rasmusen et al. [1991] and Segal and Whinston [2000]. Subsequent

work includes number of theoretical papers, which extend the original work in sev-

eral directions [see, for example, Chen and Shaffer 2014; Miklós-Thal and Shaffer

2016], as well as experimental and empirical papers [see, for example, Landeo and

Spier 2009; Boone, Müller, and Suetens 2014; Asker and Bar-Isaac 2014; Asker

2016]. Whinston [2006, chapter 4] and Fumagalli, Motta, and Calcagno [2018,

chapter 3] provide exhaustive surveys of this literature. Our contribution to this

literature is incorporating heterogeneous buyers to the study of exclusionary con-

tracting, which has remained unexplored. One exception we know of is Fumagalli

et al. [2018, chapter 3], who extend their two-buyer model to the case of heteroge-

neous buyers. Their discussion does not note that entry might be more profitable

than exclusion, which we discuss at length in Section 4. Also related are Fumagalli

and Motta [2006]. In their model two buyers compete in downstream market and

hence their size is endogenous.
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2 Model

There are two firms, an incumbent I and a potential entrant E, and n ≥ 1 buyers.

The game proceeds in three periods. In period 1, the incumbent offers buyers

exclusionary contracts. An exclusionary contract commits the buyer to purchasing

only from the incumbent. For most part of our paper, we consider sequential offers

and as a comparison, we also consider simultaneous offers. With sequential offers,

in each round of period 1, firm I either decides to stop, in which case the game

proceeds to period 2, or approaches an unapproached buyer i with offer ti ≥ 0,

after which i either accepts (in which case i becomes contracted and transfer ti is

made) or rejects (in which case i remains uncontracted and no transfer is made),

and the game proceeds to another round of period 1. All actions are publicly

observable. With simultaneous offers, firm I approaches all buyer simultaneously

with a profile of offers (ti)i∈N ∈ Rn
+, and then buyers simultaneously respond with

acceptance or rejection, and the game proceeds to period 2.

In period 2, firm E decides whether to enter or not. In period 3, active firms

set prices. If firm E does not enter, firm I acts as a monopolist in the market. If

firm E enters, firm I still acts as a monopolist with those buyers who have signed

exclusionary contracts, but engages in Bertrand competition with firm E in the

market for those buyers who have not signed exclusionary contracts (the “free”

buyers). The firms produce at a constant marginal cost cI > cE > 0. Firm E pays

f > 0 if it enters.

Buyers are heterogeneous in terms of the size of their demand. Specifically, we

assume that each buyer i ∈ N = {1, . . . , n} has a demand function di such that

given price p, she demands di(p) = sid(p) units, where d : R+ → R+ and si ∈ R++.

Hence, we can think of si as the “size” of buyer i. To make comparison with the

canonical model of Segal and Whinston [2000], we have kept most of the ingredients

of their model unchanged and focus on the effects of buyer heterogeneity; their

model is a special case of ours when si = 1 for all buyers.

Denote by C ⊆ N the set of buyers who have signed exclusionary contracts

with I in period 1 and by F = N \ C the set of free buyers.

In period 3, firm I sells to each buyer i ∈ C at price pm, where pm is the

maximizer of (p− cI)sid(p), which we assume is unique.1 Note that pm > cI and

pm is independent of i. Let π = (pm − cI)d(pm), and πi = siπ be the monopoly

profit of I from selling to buyer i ∈ N . If firm E does not enter, then firm I also

1This can be derived from a model where I offers a price to i ∈ C in period 3, which i either
accepts or rejects, and acceptance results in trade while rejection results in no trade.
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sells to each buyer i ∈ F at price pm.

If firm E enters, then it sells to each buyer i ∈ F at price cI , bringing profit

(cI − cE)sid(cI) to firm E and profit 0 to firm I.2 Hence, the total profit of firm E

if it enters is
∑

i∈F (cI − cE)sid(cI)− f = (cI − cE)d(cI)
∑

i∈F si − f and E enters

if and only if its profit is strictly positive:
∑

i∈F si >
f

(cI−cE)d(cI)
. Let

∑
i∈N si be

the total size of the market, and m be the size of the market that firm I has to

capture in order to deter entry. Since
∑

i∈N si =
∑

i∈C si +
∑

i∈F si, firm E does

not enter if and only if ∑
i∈C

si ≥
∑

i∈N
si − f

(cI−cE)d(cI)
. (1)

Hence, m =
∑

i∈N si −
f

(cI−cE)d(cI)
. Note that m <

∑
i∈N si, implying that con-

tracting with all buyers leads to exclusion. Assume that m > 0, so that exclusion

requires contracting with at least one buyer.

Let x =
∫ pm
cI

d(p)dp and xi =
∫ pm
cI

di(p)dp = six be the loss in consumer surplus

of buyer i ∈ N from buying at the monopoly rather than the competitive price.

Because of deadweight loss from monopoly pricing, we have x > π.

The solution concept we use is subgame perfect equilibrium in pure strategies

in which an indifferent buyer accepts. For the simultaneous offer game, we ad-

ditionally require that buyers’ strategies when they respond to I’s offer do not

admit profitable self-enforcing coalitional deviations.3 This refinement rules out

equilibria supported by mis-coordination of buyers. For the rest of the paper, we

simply use the term equilibrium to refer to this solution concept.

Incorporating buyer heterogeneity allows our model to encompass a number

of different market structures. If the buyers are homogeneous, then they are

perfectly substitutable. As they become somewhat heterogeneous in size, they are

still substitutable for the purpose of exclusion. Specifically, given a set of buyers,

we say that they are substitutable if there exists a threshold k such that firm I

needs any arbitrary k or more buyers to prevent entry. We call buyer j a veto

buyer if sj >
∑

i∈N si−m = f
(cI−cE)d(cI)

. That is, without contracting with buyer j,

firm I is unable to deter entry since the size of buyer j is large enough to generate

2This can be derived from Bertrand price-competition game between E and I, which admits
a Nash equilibrium in which E charges price cI and captures the entire (uncontracted) market.

3Formally, consider a history after I has offered a profile of transfers to the buyers. A profile
of strategies is an equilibrium if i) for every buyer i ∈ N , there is no profitable deviation, and
ii) for any coalition of buyers D ⊆ N , there is no deviation by all buyers in D that a) would
be profitable for all the deviating buyers in D and b) for each deviating buyer i ∈ D would be
best-response given that buyers in D \ {i} deviate. A similar refinement is used in both Segal
and Whinston [2000] and Genicot and Ray [2006].
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enough profit to attract firm E to enter. There could be market structures in

which there is no veto buyer and the buyers are not substitutable. For example,

there could be a market with one large buyer and two small buyers. In order to

deter entry, firm I needs to contract with either the large buyer or both small

buyers.

3 Simultaneous offers

This section studies the simultaneous-offer game. We consider two variants of this

game that differ in whether firm I is able to offer different transfers to buyers, or

not.

Consider a subgame after firm I offers a profile of transfers to the buyers.

In this subgame, each buyer decides either to accept or rejects I’s offer. In any

equilibrium of this subgame, any buyer i ∈ N with offer weakly above six accepts.

This is because signing an exclusionary contract results in a loss of consumer

surplus of at most six, which the offer fully compensates for. When the sizes of

the fully compensated buyers sum to at least m, then in the unique equilibrium

of the subgame all buyers accepts. Because buyers who are not fully compensated

know that exclusion happens irrespective of their actions, they accept as well.

When the sizes of the fully compensated buyers sum to strictly less than m, in

the unique equilibrium of the subgame only the fully compensated buyers accept.

Other buyers reject because either a) their acceptance turns entry into exclusion

and they are not fully compensated for the implied loss in consumer surplus, or b)

exclusion arises irrespective of their responses, in which case there is a coalition

of such buyers who all gain by collectively rejecting to induce entry. We formalize

this in Lemma A1 in the Appendix. Thus, to prevent entry using simultaneous

offers firm I has to offer a profile of transfers (t1, . . . , tn) such that the sizes of the

fully compensated buyers sum to at least m, that is,
∑

j∈{i∈N |ti≥six} sj ≥ m.

We first characterize equilibrium when firm I cannot discriminate. Let t∗ =

mint∈R t subject to
∑

j∈{i∈N |t≥six} sj ≥ m. In words, t∗ is the lowest nondiscrim-

inatory transfer that fully compensates buyers with sizes that sum to at least

m.

Proposition 1. In the simultaneous-offer game, when firm I cannot discriminate,

equilibrium exists and in any equilibrium:

1. if π
∑

i∈N si < nt∗, then I offers t < mini∈N six to the buyers, no buyer

accepts, and entry happens,
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2. if π
∑

i∈N si > nt∗, then I offers t∗ to the buyers, all buyers accept, and

exclusion happens.

The cost of exclusion for firm I that is unable to discriminate is an offer of t∗

to all buyers. When the cost of exclusion, nt∗, exceeds I’s profit from exclusion,

π
∑

i∈N si, firm I in equilibrium offers a transfer no buyer accepts. In the opposite

case, it offers t∗ and all buyers accept.

The latter case is only possible when buyers are heterogeneous. It requires that

the losses I incurs by fully compensating some buyers be offset by profits from

the other buyers. Because the fully compensated buyers are small, while the other

buyers are large, exclusion requires a market to have enough large buyers in order

for firm I to recover the cost of exclusion. This is impossible with homogeneous

buyers. Formally, if si = s̄ for each buyer i ∈ N , then t∗ = s̄x and exclusion

requires that ns̄(π − x) > 0, which fails.

Markets with heterogeneous buyers, however, present a different obstacle to

exclusion: veto buyers. Recall that a buyer is a veto buyer if exclusion cannot

happen without him signing an exclusionary contract. Note that any buyer larger

than a veto buyer is also a veto buyer. Hence, if there is a veto buyer in the market,

then t∗ = maxi∈N six, and exclusion requires that π
∑

i∈N si − nmaxi∈N six > 0,

which fails.

We now characterize equilibrium when firm I can discriminate. Let m∗ =

minT⊆N
∑

i∈T si subject to
∑

i∈T si ≥ m. In words, m∗ is the minimal sum of

buyers’ sizes that is at least m.

Proposition 2. In the simultaneous-offer game, when firm I can discriminate,

equilibrium exists and in any equilibrium:

1. if π
∑

i∈N si < xm∗, then I offers ti < six to each buyer i, no buyer accepts,

and entry happens,

2. if π
∑

i∈N si > xm∗, then I offers ti = six to all buyers in some T ∗ ⊆ N

that satisfies m∗ =
∑

i∈T ∗ si and ti = 0 otherwise, all buyers accept, and

exclusion happens.

The cost of exclusion for a discriminating firm I is the cost of fully compensat-

ing buyers whose sizes sum to m∗. Firm I prevents entry in equilibrium whenever

the profit from doing so, π
∑

i∈N si, exceeds the cost, xm∗.

The ability to discriminate enables firm I to exclude even in cases when it

would not be able to without discrimination. Discriminatory offers allow firm I
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to offset the loss from full compensation it offers to some buyers by the profit it

makes on the other buyers. For example, consider a market with three buyers such

that s1 = s2 = 1. When s3 = 1 and m = 3
2
, buyers are homogeneous, we have

m∗ = 2 and exclusion with discriminatory offers requires 3π > 2x, which holds if

π > 2
3
x. When s3 = 3 and m = 3, buyer 3 is a veto buyer, we have m∗ = 3 and

exclusion with discriminatory offers requires 5π > 3x, which holds if π > 3
5
x. In

both examples exclusion does not happen when firm I cannot discriminate.

The ability to discriminate also changes the set of fully compensated buyers

firm I targets in equilibrium. Without discriminatory offers, small buyers are

fully compensated. With discriminatory offers, large buyers might be fully com-

pensated. Continuing with the example of three buyers, suppose their sizes are

s1 = s2 = 1, s3 = 3
2
, and that m = 3

2
. Without discrimination, t∗ = x and buy-

ers 1 and 2 are fully compensated. With discrimination, m∗ = 3
2

and buyer 3 is

fully compensated. Full compensation of large buyers with discriminatory offers

is, however, suboptimal when buyers are substitutable. In this case firm I needs

to contract with arbitrary k or more buyers in order to exclude and if exclusion

occurs in equilibrium the set of fully compensated buyers consists of the k smallest

buyers.

We call buyer j ∈ S redundant when j can be dropped from S without lowering

the sum of buyers’ sizes in the set below m, that is, if
∑

i∈S\{j} si ≥ m. The set of

fully compensated buyers in equilibrium never includes redundant buyers. When

the sum of fully compensated buyers’ sizes strictly exceeds m (like in the example

with homogeneous buyers above), it is because for each buyer firm I faces a discrete

problem of contracting with that buyer or not. We highlight here that redundant

buyers are not fully compensated in equilibrium with simultaneous offers. As we

show later, this might occur in equilibrium when offers are sequential.

4 Sequential offers

This section studies exclusionary practices when firm I approaches buyers se-

quentially. To facilitate the discussion of the results we introduce the notions of

“(in)dispensability”. Fixing the strategies of the other players and a history, we

say that a buyer is indispensable when his rejection leads to entry and that a buyer

is dispensable when his rejection leads to exclusion.4 (In)dispensability of buyer

i captures his strategic position: an indispensable i has to be fully compensated

4We suppress the history and strategy dependence when no confusion arises.
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in order to accept and has a strong position, because he best-responds to offer ti

with acceptance if and only if ti ≥ six, whereas an dispensable i best-responds

with acceptance to any non-negative offer and has a weak position.5

Throughout the section we assume that for any A,B,C ⊆ N with A 6= ∅,

π
∑

i∈A si 6= x(
∑

i∈B si−
∑

i∈C si). The assumption holds generically as it requires

that π
x

differs from a finite set of values. Note that in any equilibrium any ap-

proached buyer is either dispensable and offered zero or indispensable and offered

full compensation. Thus firm I’s equilibrium payoff from exclusion achieved by

fully compensating buyers in B is π
∑

i∈N si− x
∑

i∈B si and its payoff from entry

achieved by fully compensating buyers in C is π
∑

i∈N\A si− x
∑

i∈C si where A is

the set of buyers served by firm E. Under this genericity assumption, these two

payoffs are different and equilibria with entry and exclusion cannot exist simulta-

neously.

Lemma 1. An equilibrium exists in the sequential-offer game. Either exclusion

happens in any equilibrium, or entry happens in any equilibrium.

Our main interest is in understanding if and how firm I achieves exclusion

and how it behaves when entry occurs. For comparison, we sum key results in

Segal and Whinston [2000], whose model is a special case of ours with homoge-

neous buyers each of unit size. They show that cutoffs c∗ and c′ exist such that

a) exclusion happens in equilibrium if and only if π
x
≥ c∗, b) any equilibrium with

exclusion goes through two phases: in the first phase, nonempty only when π
x
< c′,

approached buyers are indispensable and firm I fully compensates them, and in

the second phase, approached buyers are dispensable and sign exclusionary con-

tracts in return for zero transfers, and c) in any equilibrium with entry, no buyer

signs an exclusionary contract. The condition ensuring exclusion with sequential

offers, π
x
≥ c∗, is weaker than the condition ensuring exclusion with simultane-

ous (discriminatory) offers, π
x
≥ m

n
, since c∗ ≤ m

n
. This implies that sequential

offers make exclusion more likely relative to simultaneous offers when buyer are

homogeneous.6

Our results below show that the equilibrium properties in Segal and Whinston

[2000] do not hold in general with heterogeneous buyers. These properties still

arise with heterogeneous buyers in certain special cases, as discussed in the first

two parts of the following proposition. The third part of the proposition establishes

5These notions are adapted from Chen and Zápal [2022].
6Here we summarize Proposition 4, Corollary 1, its proof, which implies existence of the c′

cutoff, and the discussion that precedes the corollary in Segal and Whinston [2000].
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some novel equilibrium properties that arise from buyer heterogeneity.7

Proposition 3. Cutoffs π > 0 and π < x exists such that in any equilibrium of

the sequential-offer game we have:

1. if π < π, then entry happens because no buyer signs an exclusionary contract,

2. if π > π and no buyer is a veto buyer, then exclusion happens and each buyer

who signs an exclusionary contract receives zero transfer,

3. if π > π and at least one buyer is a veto buyer, then entry happens, no

veto buyer signs an exclusionary contract, but every non-veto buyer signs an

exclusionary contract and receives zero transfer.

Part 3 shows that equilibrium outcomes unlike those in Segal and Whinston

[2000] arise when π is large and at least one buyer has veto power. Specifically, all

non-veto buyers sign exclusionary contracts with firm I and receive zero transfers,

but entry still happens. To illustrate the mechanism underlying the result, consider

an example with two buyers, a small buyer 1 of size s1 and a large buyer 2 of size

s2 > s1. Setting m ∈ (s1, s2] implies that firm I deters entry if and only if it

contracts with the large buyer, making him a veto buyer. Because any veto buyer

is always indispensable, the large buyer will not contract unless fully compensated

with offer of at least s2x. By contracting with the large buyer and inducing

exclusion, firm I obtains payoff π(s1 + s2) − s2x. Suppose this payoff is strictly

positive. Then it is optimal for firm I to contract with the large buyer and induce

exclusion in the subgame after the small buyer rejects I’s offer, making the small

buyer dispensable at the beginning of the game. Firm I can thus achieve payoff πs1

by contracting with the small buyer for zero transfer in the first round and then

stopping. This payoff is strictly larger than π(s1 + s2)− s2x because s2(π−x) < 0

and hence in equilibrium the small buyer signs an exclusionary contract and entry

happens.8

The example points to three observations. First, rejection by the small buyer in

the first round leads to exclusion in the resulting subgame whereas his acceptance

leads to entry. This may seem counter-intuitive and the reason is acceptance by

a buyer induces two countervailing forces. First, acceptance by a buyer lowers

7The set of equilibria does not change when π and x change but π
x does not. In Proposition

3, we consider π below or above certain cutoffs, which is equivalent to considering x above or
below certain cutoffs.

8Proposition 3.1 in Fumagalli et al. [2018] discusses two heterogeneous buyers. Their discus-
sion does not note that firm I can do better to allow entry than to exclude when the small buyer
is dispensable.
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the share of the market firm I has to capture in order to deter entry. Second,

acceptance by a buyer lowers the additional payoff of firm I from exclusion beyond

what has already been secured and hence lowers the incentive of firm I to seek

exclusion. The former force makes exclusion post-acceptance more likely, the latter

less likely. In the example the former force is absent because firm E enters if and

only if the large buyer does not contract, making the small buyer irrelevant for

exclusion.

An act of signing an exclusionary contract by a buyer generates positive ex-

ternalities on the other buyers when it leads to entry. This contrasts with the

usual negative externalities found in the exclusionary contracting literature and

highlighted in surveys [see Whinston 2006, page 144 or Fumagalli et al. 2018, page

245].

We have illustrated the positive externalities in an example in which the first

force is absent and only the second force is at work. Because the first force

dominates the second one with homogeneous buyers, it is tempting to conjecture

that this is also true when buyers are substitutable. This turns out not to be

the case. Consider a market composed of two small buyers and two large buyers

when exclusion requires contracting with any two or more buyers.9 In this market

rejection by a large buyer in the first round leads to exclusion in the resulting

subgame while acceptance leads to entry. This example further illustrates that it is

the larger buyers whose contracting is more likely to generate positive externalities.

This is because when buyers are substitutable, the first force is independent of

buyer size, while the second force is stronger for larger buyers.

Second, note that firm I is able to induce exclusion at a positive profit, but

chooses not to do so because entry is more profitable than exclusion. To see how

this holds more generally with veto buyers, let V ⊆ N be the set of veto buyers.

Then I’s payoff from exclusion is at most π
∑

i∈N si − x
∑

i∈V si, while I’s payoff

from entry if it contracts with the non-veto buyers at no cost is π
∑

i∈N\V si. The

difference between the exclusion and the entry payoff is
∑

i∈V (π − x) < 0. The

joint implication of Proposition 3 parts 2 and 3 is that for high enough π, firm

I achieves its best possible payoff: in the absence of veto buyers, it contracts

with buyers sufficient for exclusion at no cost; in the presence of veto buyers, it

contracts with non-veto buyers at no cost and lets entry happen.

9In particular, when N = {1, 2, 3, 4}, s1 = s2 = 6, s3 = s4 = 9, m = 10, π = 21 and x = 80.
Entry happens in any equilibrium after one of the large buyers accepts if π(s1+s2+s4) < s1x and
exclusion happens in any equilibrium after one of the large buyers rejects if π(s1+s3+s4) > s1x.
In every equilibrium of this game entry happens and one of the large buyers contracts in the
first round in return for zero transfer. Example 3 in the Appendix elaborates on the details.
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Third, entry happens in any equilibrium in a market with two heterogeneous

buyers in which exclusion happens if and only if firm I contracts with the large

buyer. The discussion of the example already explains that entry happens in any

equilibrium when π(s1 + s2)− s2x is strictly positive. Entry also happens in equi-

librium when this payoff is strictly negative (equality is ruled out by genericity).

The reason is that π(s1 + s2) − s2x is the upper bound on the payoff of firm I

from exclusion. When this upper bound is strictly negative, firm I is better off

stopping immediately than inducing exclusion.

A natural conjecture is that entry happens in equilibrium in the presence of

veto buyers for any value of π. This conjecture turns out to be true under a further

condition. We call a set of buyers M ⊆ N minimal exclusionary given N and m

if
∑

i∈M si ≥ m and
∑

i∈M ′ si < m for any M ′ (M . Note that if M is the unique

minimal exclusionary set given N and m, then M = V . In this case, firm I deters

entry if and only if it contracts with all buyers in V . In the two-buyer example

above with m ∈ (s1, s2], M = V = {2}.10

Proposition 4. Suppose there exists a unique minimal exclusionary set given

N and m, denoted by M . Entry happens in any equilibrium of the sequential-

offer game. Moreover, if π
∑

i∈N si > x
∑

i∈M si, then exclusion happens in any

equilibrium of the simultaneous-discriminatory-offer game, but any equilibrium in

the sequential-offer game Pareto dominates any equilibrium in the simultaneous-

discriminatory-offer game.

When the set of veto buyers present in the market is sufficient for exclusion,

entry happens in any equilibrium of the sequential-offer game. The intuition is

the same as in the two-buyer example above: firm I either does not profit from

exclusion which comes at the cost of fully compensating the veto buyers, or it does,

but in that case, entry is even more profitable than exclusion. The key difference

between Proposition 4 and Proposition 3 part 3 is that Proposition 4 applies to

arbitrary not just large π.

Moreover, sequential contracting is pro-competitive in the sense that entry

happens under sequential but not under simultaneous (discriminatory) contract-

ing when π
∑

i∈N si > x
∑

i∈M si. By Proposition 2, the condition ensures that

exclusion happens in equilibrium of the simultaneous-discriminatory-offer game

because m∗ =
∑

i∈M si when M is the unique exclusionary set. This contrasts

10An example of a market with multiple minimal exclusionary sets of buyers is a three-buyer
market with s1 = s2 = 1, s3 = 3 and m = 4. In this case both {1, 3} and {2, 3} are minimal
exclusionary given N and m.
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with the anti-competitive effect of sequential contracting with homogeneous buy-

ers. To understand this, we note that the effect of the change from simultaneous

to sequential offers on the equilibrium payoff of firm I is necessarily weakly posi-

tive. Consider firm I’s strategy from the simultaneous-discriminatory-offer game,

in which it offers full compensation to a set of buyers sufficient for exclusion. It can

achieve the same payoff in the sequential-offer game, by sequentially approaching

the same set of buyers offering full compensation to each. This implies that sequen-

tial contracting cannot be pro-competitive with homogeneous buyers: if exclusion

happens in equilibrium with simultaneous offers and firm I’s equilibrium payoff is

strictly positive, then its equilibrium payoff is also strictly positive with sequen-

tial offers, which is incompatible with entry when buyers are homogeneous. With

heterogeneous buyers, however, sequential contracting can be pro-competitive be-

cause firm I can achieve strictly positive equilibrium payoff with sequential offers

even when entry happens.

Proposition 4 also shows that equilibria in the sequential-offer game Pareto

dominate equilibria in the simultaneous-discriminatory-offer game. We have al-

ready shown that firm I has a higher equilibrium payoff in the sequential-offer

game. Firm E is also better off with sequential offers because it enters when the

profit from doing so positive. The non-veto buyers receive zero transfers when

offers are simultaneous, and thus cannot be made worse off. And the veto buyers

are either fully compensated or benefit from entry when offers are sequential, and

hence cannot be worse off.

5 Two examples

This section includes two examples of the sequential-offer game to highlight a

number of equilibrium outcomes that arise from buyer heterogeneity. Example 1

shows that both contracting with redundant buyers and rejection of firm I’s offer

can arise in equilibrium. Example 2 shows that increasing the monopoly profit π

or decreasing the market share necessary for exclusion m can counter-intuitively

turn equilibrium exclusion to entry.

Example 1. Consider the sequential offers-game with two small buyers of size

s1 = s2 = l and one large buyer s3 = h > l. Assume that m ∈ (l,min{2l, h}],
which implies that there are two minimal exclusionary sets (given N and m) of

buyers {1, 2} and {3}.
Throughout the example, suppose that any buyer is indispensable initially and
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thus does not contract unless fully compensated.11 Suppose, moreover, that after

one small buyer contracts, the remaining small buyer is still indispensable. Firm

I can thus achieve exclusion either by fully compensating the large buyer, with

payoff π(2l + h) − hx, or by fully compensating the small buyers, with payoff

π(2l + h)− 2lx.

If π(l + h) − lx > 0, firm I can achieve a higher payoff of π(2l + h) − lx

by first fully compensating one small buyer and then offering zero to the large

buyer, which he accepts. The large buyer accepts because in the subgame after

a small buyer accepts, the large buyer becomes dispensable since even if he does

not contract with firm I, it would find it profitable to contract with the remaining

small buyer by compensating him fully and induce exclusion.

In the Appendix we show that it is indeed an equilibrium for firm I to first

contract with a small buyer by fully compensating him and then contract with the

large buyer with zero transfer. Somewhat paradoxically, by contracting with a set

of buyers strictly larger than minimal exclusionary, firm I achieves a payoff larger

than the payoff it would achieve by contracting with either minimal exclusionary

set. The reason is the effect of contracting with the small buyer on the bargaining

position of the large buyer: by securing acceptance of the small buyer, firm I

makes the large buyer dispensable.12

If π(l+ h)− lx < 0, the strategy described above is not part of an equilibrium

because the large buyer is still indispensable after a small buyer contracts with

firm I. Suppose that π(2l+h)−hx > 0, so that firm I can still profitably exclude

by fully compensating the large buyer. In this case firm I can achieve a payoff

of πl by first offering zero to one small buyer, which he rejects, and then offering

zero to the remaining small buyer, which he accepts. The small buyer accepts

because in the subgame after a small buyer rejects, the remaining small buyer

becomes dispensable since even if he does not contract with firm I, it would find

it profitable to contract with the large buyer by compensating him fully and induce

exclusion.

In the Appendix we show that it is indeed an equilibrium for firm I to first

offer zero to a small buyer, which is rejected, then contract with the remaining

11In the Appendix, we present conditions on the model parameters such that this, and any
other property we impose below, is satisfied. And we provide a numerical example that shows
that all the conditions can hold simultaneously.

12Contracting with redundant buyers might also arise because for any equilibrium with ex-
clusion, there is an identical equilibrium except that after ensuring exclusion, firm I approaches
the remaining buyers with zero offers, which the buyers accept. These equilibria are not robust
to costs of contracting because of the zero payoff benefit firm I derives from contracting with
the redundant buyers.
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small buyer in return for zero transfer, and then let entry happen. Interestingly,

rejection occurs on the equilibrium path because firm I uses rejection by one buyer

strategically to weaken the bargaining positions of other buyers and make them

dispensable.

We have provided an explanation for equilibrium rejection even without any in-

complete information. Rejections of exclusionary contracts have been documented

in case studies. For example, Fumagalli et al. [2018] provide an account of Nor-

wegian postal service company contracting with retailers so that Posten Norge

could exclusively offer its services at the retailers’ stores. Posten Norge failed to

reach an agreement with some of the retailers it approached. Because rejections

arise on the equilibrium path with heterogeneous but not homogeneous buyers,

our analysis incorporating buyer heterogeneity reconciles theoretical predictions

with certain industry observations.13

Example 2. Consider the sequential-offer game with two small buyers of size

s1 = s2 = l and one large buyer s3 = h > l. Assume that m ∈ (max{2l, h}, h+ l}],
which implies that there are two minimal exclusionary sets (given N and m) of

buyers {1, 3} and {2, 3}.
Because the large buyer is a veto buyer he is always indispensable. Suppose

that after the large buyer contracts with firm I both small buyers become dis-

pensable. Then firm I can achieve exclusion by contracting with the large buyer

first and a small buyer second. This results in payoff π(2l+ h)− hx we assume is

strictly positive.

Suppose that π(2l + h) − (l + h)x < 0 and π(l + h) − hx < 0. As we show

below under these conditions exclusion happens in any equilibrium with firm I

contracting with the large buyer first and a small buyer second.

Condition π(2l + h) − (l + h)x < 0 ensures that both small buyers are indis-

pensable initially. This is because if a small buyer rejects, both remaining buyers

become indispensable making exclusion too costly. Condition π(l + h) − hx < 0

ensures that after one small buyer contracts, the remaining small buyer is still

indispensable. This is because if one small buyer accepts and one small buyer re-

jects, the remaining large buyer is indispensable making exclusion too costly. The

two conditions thus jointly imply that firm I cannot achieve strictly positive pay-

off by approaching a small buyer initially: if firm I eventually achieves exclusion

then it comes at a cost of fully compensating one small and one large buyer, which

13Rejections might also arise because for any equilibrium with entry, there is an identical
equilibrium except that firm I approaches members with offers the buyers reject. These equilibria
are not robust to costs of contracting.
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is not profitable by the first condition, and if firm I eventually does not achieve

exclusion then since any buyer it contracts with must be fully compensated its

payoff cannot be positive.

Proposition 3 part 3 implies that in this example entry happens in any equi-

librium for sufficiently large π. Hence, increasing the monopoly profit π can turn

equilibrium outcome from exclusion to entry, a comparative statics than does not

arise with homogeneous buyers. Intuitively, when π is in an intermediate range it

is optimal for firm I to contract with the veto buyer first and a small buyer second

and thus induce exclusion. As π increases, it becomes feasible to contract with the

small buyers in return for zero transfers because they are now dispensable. This

is the most profitable strategy to pursue for firm I and it leads to entry.

Moreover, Proposition 4 implies that in this example entry happens in any

equilibrium whenever m decreases to m′ ∈ (2l, h]. This is because {3} is the

unique minimal exclusionary set given N and m′. Hence, decreasing the market

share necessary for exclusion m can turn equilibrium outcome from exclusion to

entry, a comparative statics than also does not arise with homogeneous buyers. To

understand why, notice that with m′ ∈ (2l, h] the large buyer is still a veto buyer

and hence the best payoff from exclusion for firm I is π(2l+h)−hx. Because this

payoff is strictly positive, exclusion happens in any equilibrium in the subgame

after both small buyers reject and thus, after a small buyer rejects initially, the

other small buyer is dispensable. This implies that firm I can achieve payoff of πl

by offering zero transfer to a small buyer, which he rejects, then offering another

zero transfer to the remaining small buyer, which he accepts, and then letting

entry occur. Since πl > π(2l+h)−hx, entry happens in any equilibrium. Similar

to increasing π, decreasing m makes it feasible and profitable for firm I to sign

contracts with small buyers at zero costs, even if it leads to entry.
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A Proofs

A.1 Proofs of Propositions 1 and 2

The proof of both propositions makes use of the following lemma. For each buyer

i ∈ N , let csi(p
m) and csi(cI) = csi(p

m)+six > csi(p
m) be the consumer surplus of

i from buying at the monopoly price pm and the competitive price cI , respectively.

Let ai be the response of buyer i to I’s offer, where ai = 0 and ai = 1 denote

rejection and acceptance, respectively.

Lemma A1. Consider the response subgame of the simultaneous-offer game after

I offers (t1, . . . , tn) ∈ Rn
+ to the buyers. A profile of responses (a1, . . . , an) that

constitutes a NE immune to self-enforcing coalitional deviations exists. In any

equilibrium:

1. if
∑

j∈{i∈N |ti≥six} sj ≥ m, then ai = 1 for any buyer i ∈ N ,

2. if
∑

j∈{i∈N |ti≥six} sj < m, then ai = 1 for any buyer i ∈ N with ti ≥ six and

ai = 0 for any buyer i ∈ N with ti < six.
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Proof. Consider the response subgame of the simultaneous-offer game after I offers

profile (t1, . . . , tn) ∈ Rn
+ to the buyers. Denote the set of buyers offered transfers

above their six by A = {i ∈ N |ti ≥ six} and denote be the set of buyers offered

transfers below their six by B = {i ∈ N |ti < six}.
Given a profile of responses (a1, . . . , an), we say that (a1, . . . , an) leads to exclu-

sion if
∑

j∈{i∈N |ai=1} sj ≥ m, and that (a1, . . . , an) leads to entry if
∑

j∈{i∈N |ai=1} sj <

m. Given (a1, . . . , an), buyer i ∈ N receives payoff ti + csi(p
m) if ai = 1,

while i’s payoff from ai = 0 is csi(p
m) if (a1, . . . , an) leads to exclusion, and is

csi(cI) = csi(p
m) + six > csi(p

m) if (a1, . . . , an) leads to entry.

We remark that if (a1, . . . , an) constitutes a NE, then ai = 1 ∀i ∈ A. This is

because ai = 1 provides i with payoff ti + csi(p
m) while a′i = 0 provides i with

payoff at most csi(cI), and we have ti ≥ six for any i ∈ A. This also implies that

for any buyer i ∈ A, ai = 1 is a best-response of i to any (a1, . . . , ai−1, ai+1, . . . , an),

which implies that i’s deviation from ai = 1 to a′i = 0 is not profitable, both when

i deviates alone or as part of a deviating coalition.

Part 1: Suppose
∑

j∈A sj ≥ m. By the opening remark, if (a1, . . . , an) consti-

tutes a NE, then ai = 1 ∀i ∈ A and hence (a1, . . . , an) leads to exclusion. This

implies that ai = 1 ∀i ∈ B: payoff of any i ∈ B from a′i = 0 is csi(p
m), from ai = 1

is ti + csi(p
m), and ti ≥ 0.

What remains is to show that (a1, . . . , an) = (1, . . . , 1) is a NE immune to

self-enforcing coalitional deviations. By the opening remark, no buyer i ∈ A has a

profitable deviation, either individual or as part of a deviating coalition. Consider

buyer i ∈ B who deviates as part of coalition C ⊆ B to a′j = 0 ∀j ∈ C. When

C = {i}, this is individual deviation. When C includes other buyers, this is

coalitional deviation. It suffices to restrict C ⊆ B by the opening remark. The

profile of responses induced by the deviation leads to exclusion because C ⊆ B

and
∑

i∈A si ≥ m. Hence j’s payoff decreases by tj ≥ 0 as a result of the deviation,

and thus is not profitable.

Part 2: Suppose
∑

i∈A si < m. Suppose first that (a1, . . . , an) constitutes a

NE immune to self-enforcing coalitional deviations. We show that ai = 1 ∀i ∈ A
and ai = 0 ∀i ∈ B. That ai = 1 ∀i ∈ A follows by the opening remark. Now

suppose, towards a contradiction, that we have ai = 1 for some i ∈ B. Then i’s

payoff is ti + csi(p
m). Deviation by i to a′i = 0 induces a profile of responses that

leads either to entry or to exclusion. In the former case, i’s payoff from a′i = 0

is csi(cI), making the deviation profitable because ti < six. In the latter case,

let C = {j ∈ B|aj = 1}. Note that i ∈ C and that aj = 0 ∀j ∈ B \ C. This

implies that when all buyers in C deviate to a′j = 0 ∀j ∈ C, the induced profile of
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responses leads to entry because all buyers in B reject and
∑

j∈A sj < m. Thus,

for each buyer j ∈ C, j’s payoff from the coalitional deviation is csj(cI), whereas

the payoff from aj = 1 is tj + csj(cI), making the coalitional deviation profitable

and self enforcing. In either case, we reach a contradiction.

What remains is to show that (a1, . . . , an) with ai = 1 ∀i ∈ A and ai = 0

∀i ∈ B constitutes a NE immune to self-enforcing coalitional deviations. By the

opening remark, no buyer i ∈ A has a profitable deviation, either individual or

as part of a deviating coalition. Consider buyer i ∈ B. His payoff from ai = 0 is

csi(cI) because
∑

j∈A sj < m. Deviation to a′i = 1, either individual or as a part

of deviating coalition, results in payoff ti+csi(p
m), which is not profitable because

ti < six. �

Proof of Proposition 1: Let t′ ≥ 0 be I’s homogeneous offer to all buyers, and

let a(t′) =
∑

j∈{i∈N |t′≥six} sj be the sum of sizes of the buyers with six weakly

greater than t′.

If a(t′) < m, then, by Lemma A1 part 2, entry happens after I offers t′ and

her payoff is
∑

j∈{i∈N |t′≥six}(πsj − t
′). Because t′ ≥ sjx ∀j ∈ {i ∈ N |t′ ≥ six}, the

payoff is maximized by setting t′ < xmini∈N si, in which case it is zero.

If a(t′) ≥ m, then, by Lemma A1 part 1, exclusion happens after I offers t′

and her payoff is
∑

j∈N(πsj− t′) = π
∑

j∈N sj−nt′, which is maximized by setting

t′ = t∗ = mint∈R t subject to a(t) =
∑

j∈{i∈N |t≥six} sj ≥ m, in which case it equals

π
∑

j∈N sj − nt∗.
Characterization of the buyers who accept or rejects follows directly from

Lemma A1. �

Proof of Proposition 2: By Lemma A1 part 2, I’s payoff from any offer

(t1, . . . , tn) ∈ Rn
+ with

∑
j∈{i∈N |ti≥six} sj < m is

∑
j∈{i∈N |ti≥six}(πsj − tj), which is

maximized by setting tj < sjx ∀j ∈ N , in which case it equals zero.

By Lemma A1 part 1, I’s payoff from any offer (t1, . . . , tn) ∈ Rn
+ with

∑
j∈{i∈N |ti≥six} sj ≥

m is
∑

j∈N(πsj − tj), which is maximized by setting tj = sjx ∀j ∈ T ∗ and

tj = 0 ∀j ∈ N \ T ∗, where T ∗ satisfies m∗ =
∑

j∈T ∗ sj, in which case it equals

π
∑

j∈N sj − xm∗.
Characterization of the buyers who accept or rejects follows directly from

Lemma A1. �

A.2 Proofs of Lemma 1 and Propositions 3 and 4

Throughout the proofs of the results for the sequential-offer game, we use a notion

of state. A state is (N ′,m′, r, a), where N ′ ⊆ N is the set of un-approached buyers,
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m′ ∈ R is the sum of buyers’ shares required for exclusion, and r and a are the

sums of shares of the buyers who already rejected and accepted, respectively. The

entire game starts in state (N,m, 0, 0). Notice that a state (N ′,m′, r, a) arising in

a game (N,m, 0, 0) satisfies m′ = m − a, r + a =
∑

i∈N\N ′ si, r =
∑

i∈A si ≥ 0

for some A ⊆ N , and a =
∑

i∈A si ≥ 0 for some A ⊆ N . Formally, state is

a collection of histories with certain properties. Subgames starting at histories

within the same state are identical up to a constant in payoffs and hence admit

identical set of equilibria.

Lemma 1 follows from Lemma A2. Proposition 3 follows from Lemma A3. The

first part of Proposition 4, that entry happens in any equilibrium of the sequential-

offer game, follows from Lemma A4. The moreover part of Proposition 4 follows

from the discussion after the proposition.

Lemma A2. Consider any state (N ′,m′, r, a) of the sequential-offer game. In the

subgame starting with (N ′,m′, r, a): equilibrium exists, either exclusion happens

in any equilibrium or entry happens in any equilibrium, and equilibria are payoff

equivalent for I.

Proof. Fix a state (N ′,m′, r, a) of the sequential offers game. We proceed by

induction on the size of N ′. If |N ′| = 0, a unique equilibrium exists in which I

stops as stoping is her only available action. If m′ ≤ 0, exclusion happens in the

equilibrium and I’s payoff is π(r + a+
∑

i∈N ′ si). If m > 0, entry happens in the

equilibrium and I’s payoff is πa.

Now suppose the lemma holds for all states with |N ′| = k−1, where k ≥ 1. We

need to show the lemma holds for any state with |N ′| = k. Given |N ′| = k, consider

buyer i ∈ N ′ approached with offer ti. Acceptance by i means he will buy at price

pm in stage 3. Rejection by i moves the game to state (N ′ \{i},m′, r+si, a), with,

by the induction hypothesis, either entry in any equilibrium or exclusion in any

equilibrium. In the former case, i will buy at price cI after rejecting, making his

payoff gain from acceptance equal to ti−six. In the latter case, i will buy at price

pm after rejecting, making his payoff gain from acceptance equal to ti. In either

case, it is an equilibrium for i to accept if and only if ti ≥ c(N ′,m′,r,a),i ∈ {0, six},
with c(N ′,m′,r,a),i constant across equilibria.

Hence I in (N ′,m′, r, a) faces finite choice problem: either stop, or approach

i ∈ N ′ with some ti < c(N ′,m′,r,a),i (any such ti will be rejected and provides all

players with the same payoff), or approach i ∈ N ′ with ti = c(N ′,m′,r,a),i (any

t′i > c(N ′,m′,r,a),i provides strictly lower payoff to I than ti = c(N ′,m′,r,a),i because

both ti and t′i are accepted moving the game to the same state). Hence equilibrium
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exists.

We now argue that either exclusion happens in any equilibrium or entry hap-

pens in any equilibrium. This is obvious when m′ ≤ 0 or m′ >
∑

i∈N ′ si, hence

consider m′ ∈ (0,
∑

i∈N ′ si]. Suppose, towards a contradiction, that I is indifferent

between approaching i ∈ N ′ and j ∈ N ′, where the former leads to exclusion and

the latter to entry. I’s payoff from the former is

π(r + a+
∑
i∈N ′

si)− x
∑
i∈T ′

si (A1)

for some T ′ ⊆ N ′, while I’s payoff from the latter is

π(a+
∑
i∈N ′′

si)− x
∑
i∈T ′′

si (A2)

for some N ′′, T ′′ ⊆ N ′. The two payoffs equal and hence

π(r +
∑

i∈N ′\N ′′
si) = x(

∑
i∈T ′

si −
∑
i∈T ′′

si). (A3)

We have r +
∑

i∈N ′\N ′′ si =
∑

i∈A si for some A ⊆ N . Because N ′′ is the set of

buyers I contracts with and N ′′ = N ′ would lead to exclusion, we have A 6= ∅.

Thus (A3) is a contradiction.

Finally, suppose multiple equilibria exist that are not payoff equivalent for

I. By the induction hypothesis, these equilibria differ in the action I takes in

state (N ′,m′, r, a) and, thus, I has a profitable deviation in at least one of these

equilibria. �

Lemma A3. Consider any state (N ′,m′, r, a) of the sequential-offer game with

m′ ∈ (0,
∑

i∈N ′ si]. Cutoffs π > 0 and π < x exist such that, in any equilibrium of

the subgame starting with (N ′,m′, r, a) we have:

1. if π < π, then no buyer signs an exclusionary contract with I, and entry

happens,

2. if π > π, r = 0, and v ∈ N ′ such that
∑

i∈N ′\{v} si < m′ exists, then no

veto buyer signs an exclusionary contract with I, all non-veto buyers sign an

exclusionary contract with I in return for zero transfer, and entry happens,

3. if π > π, and if either r > 0 or no v ∈ N ′ such that
∑

i∈N ′\{v} si < m′ exists,

then a set of buyers sufficient for exclusion signs an exclusionary contract
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with I in return for zero transfer, except for each veto buyer i who receives

six, and exclusion happens.

Proof. Fix a state (N ′,m′, r, a) of the sequential offers game withm′ ∈ (0,
∑

i∈N ′ si].

If N ′ = ∅ then
∑

i∈N ′ si = 0 and the condition cannot be satisfied, hence we have

N ′ 6= ∅. Moreover, r ≥ 0 and a ≥ 0.

We prove the lemma by induction on |N ′|. Throughout, we use repeatedly

the fact that equilibria exist and are payoff equivalent for I, without explicitly

invoking Lemma A2.

Let W ′ = {C ∈ 2N
′ |
∑

i∈C si ≥ m′} be the collection of winning coalitions

induced by N ′ and m′. We have N ′ ∈ W ′ and thus W ′ 6= ∅ from m′ ≤
∑

i∈N ′ si,

and ∅ /∈ W ′ from m′ > 0.14 Let V ′ = {i ∈ N ′|i ∈ C ∀C ∈ W ′} be the set of veto

buyers in W ′. Note that V ′ might be, but need not be, empty.

Rejection by buyer j ∈ N ′ in state (N ′,m′, r, a) moves the game to state

(N ′ \ {j},m′, r + sj, a), in which the collection of winning coalitions is W ′
j,r =

{C ∈ 2N
′\{j}|

∑
i∈C si ≥ m′}. Note that W ′

j,r = ∅ if and only if j is a veto buyer

in W ′. Moreover, ∅ /∈ W ′
j,r.

Acceptance by buyer j ∈ N ′ in state (N ′,m′, r, a) moves the game to state

(N ′ \ {j},m′− sj, r, a+ sj), in which the collection of winning coalitions is W ′
j,a =

{C ∈ 2N
′\{j}|

∑
i∈C si ≥ m′ − sj} and the set of veto buyers is V ′j,a = {i ∈

N ′ \ {j}|i ∈ C ∀C ∈ W ′
j,a}. Note that W ′

j,a 6= ∅ although ∅ ∈ W ′
j,a is possible

when j’s acceptance leads to exclusion. Moreover, V ′j,a = V ′ \ {j}.15

Initial induction step: |N ′| = 1. Because N ′ = {j}, W ′ 6= ∅, and ∅ /∈ W ′, we

have W ′ = {{j}} and V ′ = {j}. Acceptance by j leads to exclusion and rejection

by j leads to entry. Hence, in any equilibrium, j accepts I’s offer if and only

tj ≥ sjx.

Suppose π <
xsj
r+sj

and, towards a contradiction, that an equilibrium with

exclusion exists. I’s equilibrium payoff is π(r+ a+ sj)− xsj, which is strictly less

than πa, which is the payoff I can attain by stopping in (N ′,m′, r, a). Hence I has

a profitable deviation, a contradiction. Thus entry happens in any equilibrium and

no buyer signs an exclusionary contract. Note that
xsj
r+sj

> 0 and that π <
xsj
r+sj

at

r = 0 becomes π < x, which holds. Hence Parts 1 and 2 follow.

Suppose π >
xsj
r+sj

and, towards a contradiction, than an equilibrium with entry

14W ′ = ∅ arises when exclusion cannot be achieved. ∅ ∈ W ′ arises when exclusion has been
achieved. These cases are ruled out by m′ ∈ (0,

∑
i∈N ′ si] but arise from acceptance/rejection

in (N ′,m′, r, a).
15Denote W ′ = {C1, . . . , Cl} and fix j ∈ N ′. Then W ′

j,a = {C1 \ {j}, . . . , Cl \ {j}} and we
have V ′ \ {j} = (C1 ∩ · · · ∩ Cl) \ {j} = (C1 \ {j}) ∩ . . . ∩ (Cl \ {j}) = V ′

j,a, where the second
equality follows from the fact that set difference is right distributive over set intersection.
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exists. I’s equilibrium payoff is πa, which is strictly less than π(r+ a+ sj)− xsj,
which is the payoff I can attain by approaching j with tj = sjx in (N ′,m′, r, a).

Hence I has a profitable deviation, a contradiction. Thus exclusion happens in

any equilibrium and the veto buyer j signs an exclusionary contract in return for

tj = sjx. Note that
xsj
r+sj

< x when r > 0. Hence Part 3 follows.

Induction step: |N ′| = k. Suppose the lemma holds for all |N ′| ≤ k− 1, where

k ≥ 2. We need to prove the lemma for |N ′| = k.

Rejection by any buyer i ∈ N ′ leads to entry if i ∈ V ′ and moves the game to

a state for which the lemma holds, by the induction hypothesis, if i /∈ V ′. Thus

π > 0 and π < x exist such that, in any equilibrium, any buyer i ∈ N ′ accepts I’s

offer if and only if ti ≥ six, either when π < π or when π > π and i ∈ V ′, and if

and only if ti ≥ 0, when π > π and i /∈ V ′.
Part 1: Suppose π < π and, towards a contradiction, that an equilibrium with

exclusion exists. I’s equilibrium payoff is π(r + a +
∑

i∈N ′ si) − x
∑

i∈C si, for

some C ∈ W ′, where C is non-empty because ∅ /∈ W ′. If π <
x
∑

i∈C si
r+

∑
i∈N′ si

, this

payoff is strictly smaller than πa, which is the payoff I can attain by stopping

in (N ′,m′, r, a). Hence I has a profitable deviation, a contradiction. Thus entry

happens in any equilibrium. Because entry happens in any equilibrium, I’s equi-

librium payoff is π(a +
∑

i∈T ′ si)− x
∑

i∈T ′ si, for some T ′ ⊆ N ′. If T ′ 6= ∅, then

I stopping in (N ′,m′, r, a) is a profitable deviation, hence T ′ = ∅. Thus entry

happens in any equilibrium and no buyer signs an exclusionary contract. Note

that
x
∑

i∈C si
r+

∑
i∈N′ si

> 0 because C is non-empty.

Part 2: Suppose π > π, r = 0, V ′ 6= ∅, and, towards a contradiction, that

an equilibrium with exclusion exists. I’s equilibrium payoff is at most π(a +∑
i∈N ′ si)−x

∑
i∈V ′ si. This payoff is strictly smaller than π(a+

∑
i∈N ′\V ′ si), which

is the payoff I can attain by approaching i ∈ N ′ \ V ′ with ti = 0 in (N ′,m′, r, a).

This, by the induction hypothesis, leads to all remaining buyers in N ′ \ V ′ and

no buyer in V ′ subsequently approached. Hence I has a profitable deviation, a

contradiction. Thus entry happens in any equilibrium. Because entry happens in

any equilibrium, I’s equilibrium payoff is π(a +
∑

i∈NV ′′∪V ′′ si) − x
∑

i∈V ′′ si, for

some NV ′′ ⊆ N ′ \ V ′ and some V ′′ ⊆ V ′. If V ′′ 6= ∅ or NV ′′ 6= N ′ \ V ′, then I

approaching i ∈ N ′ \V ′ with ti = 0 in (N ′,m′, r, a) is a profitable deviation, hence

V ′′ = ∅ and NV ′′ = N ′ \ V ′. Thus entry happens in any equilibrium, no veto

buyer signs an exclusionary contract, and all non-veto buyers sign an exclusionary

contract in return for zero transfer.

Part 3: Suppose π > π, either r > 0 or V ′ = ∅, and, towards a contra-

diction, that an equilibrium with entry exists. I’s equilibrium payoff is π(a +
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∑
i∈NV ′′∪V ′′ si) − x

∑
i∈V ′′ si, for some NV ′′ ⊆ N ′ \ V ′ and some V ′′ ⊆ V ′ such

that V ′′ ∪ NV ′′ /∈ W ′. When I in (N ′,m′, r, a) deviates and approaches i ∈ C

with ti = six if i ∈ V ′ and with ti = 0 if i /∈ V ′, for some C ∈ W ′, she receives

payoff π(r + a+
∑

i∈N ′ si)− x
∑

i∈V ′ si. This is because the deviation, by the in-

duction hypothesis, leads to all remaining buyers in C subsequently approached.

When V ′ = ∅, the entry payoff is maximized for V ′′ = ∅ and NV ′′ a solution to

maxC⊆N ′,C /∈W ′
∑

i∈C si <
∑

i∈N ′ si, where the inequality follows from N ′ ∈ W ′, and

the maximized entry payoff is strictly smaller than the deviation payoff. When

V ′ 6= ∅, the entry payoff is maximized for V ′′ = ∅ and NV ′′ = N ′ \ V ′, and

the maximized entry payoff is strictly smaller than the deviation payoff when

π >
x
∑

i∈V ′ si
r+

∑
i∈V ′ si

. Thus exclusion happens in any equilibrium and a winning coali-

tion of buyers signs an exclusionary contract in return for six and zero transfers for

veto and non-veto buyers respectively. Note that
x
∑

i∈V ′ si
r+

∑
i∈V ′ si

< x when r > 0. �

Lemma A4. Consider any state (N ′,m′, r, a) of the sequential-offer game with

m′ ∈ (0,
∑

i∈N ′ si]. Suppose exactly one V ′ ⊆ N ′ exists such that
∑

i∈V ′ si ≥ m′

and
∑

i∈V ′′ si < m′ for any V ′′ ( V ′. We have:

1. if π(r +
∑

i∈V ′ si) > x
∑

i∈V ′ si, then exclusion happens in any equilibrium,

2. if π(r +
∑

i∈V ′ si) < x
∑

i∈V ′ si, then entry happens in any equilibrium.

Proof. Fix a state (N ′,m′, r, a) of the sequential offers game withm′ ∈ (0,
∑

i∈N ′ si].

If N ′ = ∅ then
∑

i∈N ′ si = 0 and the condition cannot be satisfied, hence we have

N ′ 6= ∅. Moreover, r ≥ 0 and a ≥ 0.

We call a set of buyers V ′ ⊆ N ′ minimal exclusionary given N ′ and m′ if∑
i∈V ′ si ≥ m′ and

∑
i∈V ′′ si < m′ ∀V ′′ ( V ′. Suppose there exists unique minimal

exclusionary V ′ given N ′ and m′ and let NV ′ = N ′ \V ′. Given (N ′,m′, r, a), both

acceptance and rejection by i ∈ NV ′ moves the game to a state with unique

minimal exclusionary V ′. Rejection by i ∈ V ′ results in exclusion because i is a

veto buyer in (N ′,m′, r, a), while acceptance by i ∈ V ′ moves the game to a state

with unique minimal exclusionary V ′ \ {i}.
We proceed by induction on |NV ′|. Throughout, we use repeatedly the fact

that equilibria exist and are payoff equivalent for I, without explicitly invoking

Lemma A2.

Initial induction step: |NV ′| = 0. Because NV ′ = ∅, N ′ = V ′. Suppose

π(r +
∑

i∈V ′ si) > x
∑

i∈V ′ si and, towards a contradiction, that entry happens

in equilibrium. The equilibrium payoff of I is π(a +
∑

i∈T ′ si) − x
∑

i∈T ′ si for

some T ′ ⊆ V ′, and hence is at most π(a). Consider I’s deviation to a strategy
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of approaching all buyers in V ′, in some sequence, and offering ti = six to each

buyer i ∈ V ′. The payoff from the deviation is π(r + a+
∑

i∈V ′ si)− x
∑

i∈V ′ si >

π(a), where the inequality follows from π(r+
∑

i∈V ′ si) > x
∑

i∈V ′ si, and hence is

profitable, a contradiction.

Suppose π(r+
∑

i∈V ′ si) < x
∑

i∈V ′ si and, towards a contradiction, that exclu-

sion happens in equilibrium. The equilibrium payoff of I is π(r + a+
∑

i∈V ′ si)−
x
∑

i∈V ′ si < π(a), where the inequality follows from π(r+
∑

i∈V ′ si) < x
∑

i∈V ′ si.

Hence stopping is a profitable deviation for I, a contradiction.

Induction step: |NV ′| = k. Suppose the lemma holds for all |NV ′| ≤ k − 1,

where k ≥ 1. We need to prove the lemma for |NV ′| = k.

Suppose π(r+
∑

i∈V ′ si) > x
∑

i∈V ′ si and, towards a contradiction, that entry

happens in equilibrium. The equilibrium payoff of I is at most π(a+
∑

i∈NV ′ si).

Consider I’s deviation to a strategy of approaching all buyers in V ′, in some

sequence, and offering ti = six to each buyer i ∈ V ′. The payoff from the deviation

is π(r + a +
∑

i∈NV ′ si +
∑

i∈V ′ si) − x
∑

i∈V ′ si > π(a +
∑

i∈NV ′ si), where the

inequality follows from π(r +
∑

i∈V ′ si) > x
∑

i∈V ′ si, and hence is profitable, a

contradiction.

Suppose π(r+
∑

i∈V ′ si) < x
∑

i∈V ′ si and, towards a contradiction, that exclu-

sion happens in equilibrium. The equilibrium payoff of I is π(r+ a+
∑

i∈NV ′ si +∑
i∈V ′ si) − x

∑
i∈V ′ si. Consider I’s deviation to a strategy of approaching all

buyers in NV ′, in some sequence, and offering ti = 0 to each buyer i ∈ NV ′.

Partition the approached buyers in NV ′ such that l ∈ NV ′ is the last buyer to

be approached, and R′ and A′ are the buyers in NV ′ \ {l} that reject and accept,

respectively, I’s offer. Note that NV ′ = R′ ∪ A′ ∪ {l}.
We first argue that l accepts. To see this, we have

π(r + a+
∑
i∈NV ′

si +
∑
i∈V ′

si)− x
∑
i∈V ′

si > π(a+
∑
i∈A′

si) (A4)

because the deviation is not profitable (equality is ruled out by genericity). By

construction NV ′ \ A′ = R′ ∪ {l}, and thus the inequality is equivalent to

π(r + sl +
∑
i∈R′

si +
∑
i∈V ′

si) > x
∑
i∈V ′

si (A5)

which, by the induction hypothesis, implies that rejection by l leads to exclusion.

Hence l accepts.

The payoff of I from the deviation thus equals π(a + sl +
∑

i∈A′ si). Because

24



the deviation is not profitable, we have (equality is ruled out by genericity)

π(r +
∑
i∈R′

si +
∑
i∈V ′

si) > x
∑
i∈V ′

si. (A6)

Because π(r +
∑

i∈V ′ si) < x
∑

i∈V ′ si, R
′ 6= ∅. Let lr ∈ R′ be the last buyer

to reject. If rejection by lr led to exclusion he would accept, hence his rejection

leads to entry. This, by the induction hypothesis, implies that π(r +
∑

i∈R′ si +∑
i∈V ′ si) ≤ x

∑
i∈V ′ si, a contradiction. �

A.3 Formal details of examples

Below we provide formal details of Examples 1 and 2 and develop Example 3

mentioned in footnote 9. For all subgames with one or two buyers Lemma A5

lists the key equilibrium outcomes. Proof of the lemma is a routine backward

induction argument and is omitted. We also omit the details of which buyers are

approached with what offers; these details are immediate from I’s payoff.16

Lemma A5. Consider any state (N ′,m′, r, a) of the sequential-offer game. If

|N ′| = |{i}| = 1, the equilibrium outcomes in the subgame starting with (N ′,m′, r, a)

are described in the following table.

parameters equilibrium

outcome I’s payoff

m′ ≤ 0 exclusion π(r + a+ si)
m′ ∈ (0, si], π(r + si) > six exclusion π(r + a+ si)− six
m′ ∈ (0, si], π(r + si) < six entry πa
m′ > si entry πa

If |N ′| = |{i, j}| = 2, with si ≤ sj, the equilibrium outcomes in the subgame

starting with (N ′,m′, r, a) are described, using shorthand π = π(r + a + si + sj),

in the following table.

16One exception is the second and the third case of m′ ∈ (0, si] in the second table. In
both cases, exclusion is achieved by approaching a buyer with zero offer. When π(r+ si + sj) ∈
(six, sjx), the approached buyer is the larger buyer j. When π(r+si+sj) > sjx, the approached
buyer is i in some equilibria and is j in another.
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parameters equilibrium

outcome I’s payoff

m′ ≤ 0 exclusion π
m′ ∈ (0, si], π(r + si + sj) < six entry πa
m′ ∈ (0, si], π(r + si + sj) ∈ (six, sjx) exclusion π
m′ ∈ (0, si], π(r + si + sj) > sjx exclusion π
m′ ∈ (si, sj], π(r + sj) < sjx, π(r + si + sj) < sjx entry πa
m′ ∈ (si, sj], π(r + sj) < sjx, π(r + si + sj) > sjx entry π(a+ si)
m′ ∈ (si, sj], π(r + sj) > sjx exclusion π − sjx
m′ ∈ (sj, si + sj], π(r + si + sj) < (si + sj)x entry πa
m′ ∈ (sj, si + sj], π(r + si + sj) > (si + sj)x exclusion π − (si + sj)x
m′ > si + sj entry πa

Example 1: In the example, N = {1, 2, 3}, s1 = s2 = l < h = s3 and m ∈
(l,min{2l, h}]. The minimal exclusionary sets of buyers given N and m are {1, 2}
and {3}.

The example assumes throughout that rejection by any of the buyers at the be-

ginning of the game leads to a subgame in which entry happens in any equilibrium.

The subgame after rejection by the large buyer starts with ({1, 2},m′ ∈ (l, 2l], h, 0),

in which entry happens in any equilibrium if, from Lemma A5,

π(2l + h) < 2lx. (A7)

The subgame after rejection by the small buyer 1 starts with ({2, 3},m′ ∈ (l, h], l, 0),

in which entry happens in any equilibrium if, from Lemma A5,

π(l + h) < hx. (A8)

Moreover, the example assumes that after one of the small buyers accepts, rejec-

tion by the remaining small buyer leads to a subgame in which entry happens in

any equilibrium. This subgame starts with ({3},m′ ∈ (0, h], l, l), in which entry

happens in any equilibrium if, from Lemma A5, (A8) holds.

At the beginning of the game I has four possible actions to choose from: either

approach one of the small buyers or approach the large buyer, and with an offer

I knows the approached buyer would either accept or reject. The following table,

derived from Lemma A5, disregarding the cases not possible under (A7) and (A8),

shows the payoff of I from the four actions.
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approached
buyer

transfer t I’s payoff

1 or 2 t < lx 0 if π(2l + h) < hx, πl if π(2l + h) > hx
1 or 2 t = lx πl − lx if π(l + h) < lx, π(2l + h)− lx if π(l + h) > lx
3 t < hx 0
3 t = hx π(2l + h)− hx

If π(l + h) > lx, then π(2l + h) − lx > 0 and π(2l + h) − lx > πl and hence

fully compensating one of the small buyers maximizes I’s payoff. Equilibrium

construction is routine and confirms that in the subgame after acceptance by one

of the small buyers I approaches the large buyer with zero offer, which he accepts,

and exclusion happens in any equilibrium. Example of parameters satisfying (A7),

(A8) and π(l + h) > lx is l = 1, h = 6/5, π = 1 and x = 21/10.

If π(l + h) < lx but π(2l + h) > hx, then we have π(2l + h) − hx < πl

because the inequality is equivalent to π(l + h) − hx < 0, which holds because

π(l+ h)− hx < π(l+ h)− lx < 0. Thus approaching one of the small buyers with

zero offer maximizes I’s payoff. Equilibrium construction is routine and confirms

that in the subgame after rejection by one of the small buyers I approaches the

remaining small buyer with zero offer, which he accepts, and entry happens in

any equilibrium. Example of parameters satisfying (A7), (A8), π(l + h) < lx and

π(2l + h) > lx is l = 1, h = 6/5, π = 1 and x = 12/5.

Example 2: In the example, N = {1, 2, 3}, s1 = s2 = l < h = s3 and m ∈
(max{2l, h}, l + h]. The minimal exclusionary sets of buyers given N and m are

{1, 3} and {2, 3}.
The example assumes that after the large buyer accepts, rejection by one of the

small buyers leads to a subgame in which exclusion happens in any equilibrium.

This subgame starts with ({i},m′ ∈ (0, sj], l, h), where i, j ∈ {1, 2} and i 6= j, in

which exclusion happens in any equilibrium if, from Lemma A5,

π(2l) > lx. (A9)

The example further assumes that rejection by any of the small buyers at the

beginning of the game leads to a subgame in which entry happens in any equilib-

rium. The subgame after rejection by the small buyer 1 starts with ({2, 3},m′ ∈
(h, l + h], l, 0), in which entry happens in any equilibrium if, from Lemma A5,

π(2l + h) < (l + h)x. (A10)

Finally, the example assumes that after one of the small buyers accepts, rejec-

27



tion by the remaining small buyer leads to a subgame in which entry happens in

any equilibrium. This subgame starts with ({3},m′ ∈ (0, h], l, l), in which entry

happens in any equilibrium if, from Lemma A5,

π(l + h) < hx. (A11)

At the beginning of the game I has four possible actions to choose from: either

approach one of the small buyers or approach the large buyer, and with an offer

I knows the approached buyer would either accept or reject. The following table,

derived from Lemma A5, disregarding the cases not possible under (A9), (A10)

and (A11), shows the payoff of I from the four actions.

approached
buyer

transfer t I’s payoff

1 or 2 t < lx 0
1 or 2 t = lx πl − lx
3 t < hx 0
3 t = hx π(2l + h)− hx

If π(2l + h) − hx > 0, fully compensating the large buyer maximizes I’s pay-

off. Equilibrium construction is routine and confirms that in the subgame after

acceptance by the large buyer I approaches one of the small buyers with zero

offer, which he accepts, and exclusion happens in any equilibrium. Example of

parameters satisfying (A9), (A10), (A11) and π(2l + h)− hx > 0 is l = 1, h = 6,

π = 1 and x = 5/4. Note that 2l < h so that there exists m′ ∈ (2l, h].

Example 3. Consider the sequential offers-game with two identical small buyers

of size s1 = s2 = 6 and two identical large buyers of size s3 = s4 = 9. Assume

that in order to exclude, I needs to contract with two or more buyers. Let π = 21

and x = 80.

We use an alternative notation for states. A state is ((nl, nh), n
′, r, a), where nl

is the number of un-approached small buyers, nh is the number of un-approached

large buyers, and n′ is the number of buyers I needs to contract with in order to

exclude (r and a are as before). The game starts at ((2, 2), 2, 0, 0).

We first consider states with nl = nh = 2. Consider any subgame starting with

state ((nl, nh), n
′, r, a) where nl + nh = 2.

1. If n′ = 0, exclusion happens in any equilibrium of the subgame and the

equilibrium payoff of I from this subgame is 21 · (6 · 2 + 9 · 2) = 21 · 30.
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2. If n′ = 1, from Lemma A5, if 21·(r+6nl+9nh) < (6I(nl 6= 0)+9I(nl = 0))·80,

then entry happens in any equilibrium of the subgame and the equilibrium

payoff of I from this subgame is 21 · a, and if 21 · (r+ 6nl + 9nh) > (6I(nl 6=
0)+9I(nl = 0))·80, then exclusion happens in any equilibrium of the subgame

and the equilibrium payoff of I from this subgame is 21 · 30.

3. If n′ = 2, from Lemma A5, entry happens in any equilibrium of the subgame

if 21·(r+6nl+9nh) < (6nl+9nh)·80 and the equilibrium payoff of I from this

subgame is 21·a. Because n′ = 2, we have a = 0 and r = 6(2−nl)+9(2−nh),
which implies that r+6nl+9nh = 6 ·2+9 ·2 = 30. Moreover, 6nl+9nh ≥ 12.

Thus the inequality holds, entry happens in any equilibrium of the subgame

and the equilibrium payoff of I from this subgame is 0.

Consider a subgame R after one of the buyers rejects at the beginning of the

game. Rejection by any buyer in R leads to a subgame starting with state in

which nl + nh = 2 and n′ = 2. Entry happens in any equilibrium of this subgame

and the equilibrium payoff of I from this subgame is 0. Acceptance by any buyer

in R leads to a subgame starting with state in which nl + nh = 2 and n′ = 1. If

21 · (r+ 6nl + 9nh) > (6I(nl 6= 0) + 9I(nl = 0)) · 80, then exclusion happens in any

equilibrium of this subgame and the equilibrium payoff of I from this subgame

is 21 · 30. If the inequality fails (equality is ruled out by genericity), then entry

happens in any equilibrium of this subgame and the equilibrium payoff of I from

this subgame is 21 · a. Because r + 6nl + 9nh ∈ {6 · 2 + 9, 6 + 9 · 2} = {21, 24},
the left hand side of the inequality is in {441, 504}. The right hand side of the

inequality is in {480, 720}. The inequality thus fails if either nl = 0, or nl = 2, or

nl = 1 and r = 6. The inequality holds if nl = 1 and r = 9.

Consider a subgame R6 after one of the small buyers rejects at the beginning

of the game. By the preceding paragraph with subgame R (the inequality fails

because r = 6), entry happens in any equilibrium of R6. Moreover, the equilibrium

payoff of I from R6 is 0. This is because, in R6, I’s payoff from approaching any

buyer with offer strictly smaller than full compensation is 0 and the payoff from

fully compensating buyer i ∈ N is at most 21 · si − si · 80 < 0.

Consider a subgame R9 after one of the large buyers rejects at the beginning

of the game. By the paragraph with subgame R, I’s payoff is at most zero both

from approaching any buyer with offer strictly smaller than full compensation and

also from fully compensating the remaining large buyer. Moreover, I’s payoff from

fully compensating one of the small buyers is 21 ·30−6 ·80 = 150. Thus exclusion

happens in any equilibrium of R9 and the equilibrium payoff of I from R9 is 150.
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Consider a subgame A9 after one of the large buyers accepts at the beginning

of the game. Rejection by any buyer in A9 leads to a subgame starting with

state in which nl + nh = 2 and n′ = 1. The same condition as in the paragraph

with subgame R determines the equilibrium outcome. Because r = 9 implies

nl = 2 now that one of the large buyers accepted at the beginning of the game,

the condition fails. Hence rejection by any buyer in A9 leads to a subgame in

which entry happens in any equilibrium and the equilibrium payoff of I from this

subgame is 21 · 9. Acceptance by any buyer in A9 leads to a subgame in which

exclusion happens in any equilibrium and the equilibrium payoff of I from this

subgame is 21 · 30. Thus in A9 the payoff of I from approaching any buyer with

offer strictly smaller than full compensation is 21 · 9 while the payoff from fully

compensating buyer i ∈ N is at most 21 ·30−si80. Note that 21 ·9 = 189 > 150 =

21 · 30− 6 · 80 ≥ 21 · 30− si80 ∀i ∈ N . Thus entry happens in any equilibrium of

A9 and the equilibrium payoff of I from A9 is 189.

Finally, consider the initial history. Rejection by any of the small buyers leads

to R6 in which entry happens and hence none of the small buyers contracts at the

beginning of the game unless fully compensated. The payoff of I from approaching

one of the small buyers with offer strictly smaller than full compensation is 0 while

the payoff from fully compensating one of the small buyers is at most 21 · 30 −
6 · 80 = 150. Rejection by any of the large buyers leads to R9 in which exclusion

happens and hence both of the large buyers are willing to contract in return for

zero transfer. The payoff of I from approaching one of the large buyers with zero

offer is 21 ·9 = 189. Thus entry happens in any equilibrium of the entire game and

I at the initial history approaches one of the large buyers with zero offer, which

the buyer accepts. (Multiple equilibria exist in the subgame after the acceptance

by the large buyer. Entry and no further acceptance happens in any equilibrium.

Firm I stops in some equilibria, but might approach further buyers with offers

that are rejected in other equilibria.)
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