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Abstract

International environmental agreements address global environmental

problems such as the decline in biodiversity. The Convention on Inter-

national Trade in Endangered Species of Wild Fauna and Flora (CITES)

regulates international trade in wildlife to prevent its decline. Discussions

about CITES' e�ectiveness abound, but evidence is lacking. We combine

the largest available panel database on wildlife populations with the his-

tory of countries' membership and species' inclusion into CITES' protec-

tion. We �nd that wildlife populations increase by 20% after the species'

inclusion. This e�ect is driven by populations in countries with thorough

enforcement, irrespective of whether the species' trade is only restricted

or completely banned under CITES. Our results suggest re-focusing dis-

cussions from whether CITES should partially restrict trade or impose a

complete trade ban towards better enforcement. More generally, we �nd

that enforcement is crucial for e�ective international environmental agree-

ments.

JEL Classi�cation Codes: F18, Q27, Q56

Keywords: CITES, endangered species, enforcement, international envi-

ronmental agreements, wildlife trade



1 Introduction

Global environmental problems such as the decline in wildlife and biodi-

versity have given rise to international environmental agreements (IEAs).

To avoid extinction of endangered species, the Convention on International

Trade in Endangered Species of Wild Fauna and Flora (CITES) regulates

international wildlife trade. IEAs often remain vague in their implications

for member countries. In contrast, CITES has established a system of

export and import permits to implement its trade restrictions or bans in

species under its protection. Whether CITES is e�ective in reaching its

ultimate goal, i.e., preventing the decline of wildlife, is unclear.1 One rea-

son for scepticism is that enforcing CITES is di�cult: It targets numerous

species and its detailed regulations have to be implemented and enforced

by national authorities across all member countries. CITES' regulations

impose costs on wildlife trade or render it illegal. With imperfect enforce-

ment, this may drive wildlife trade from regulated to unregulated countries

and from legal to illegal sources.

In this paper, we document that CITES is e�ective in preserving wildlife

if its regulations are properly enforced. We thus provide evidence that in-

forms the ongoing debate on whether and under which circumstances re-

strictions on wildlife trade are e�ective in protecting wildlife. On the one

hand, restricting trade seems an intuitive policy measure to prevent unsus-

tainable resource use and subsequent wildlife decline. Outright trade bans

can stigmatize consumption of wildlife products, reducing their demand.

Economists, on the other hand, tend to be sceptical about trade bans,

as banning wildlife trade renders the legal economic value of wildlife to

zero, reducing the incentive for local communities to protect or harvest re-

sources at sustainable levels. Without costly monitoring and enforcement,

poaching and illegal trade may replace legal trade, rendering trade bans in-

e�ective. Summarizing the literature on wildlife trade restrictions, Fischer

(2010) calls for an empirical evaluation of their e�ectiveness in preventing

wildlife decline.2 Similarly, `t Sas-Rolfes et al. (2019) highlight the need for

1For di�erent viewpoints concerning the e�ectiveness of CITES, see, e.g., Hutton and
Dickson (2000); Ginsberg (2002); Bulte et al. (2004); Fischer (2010); Challender et al.
(2015).

2So do Bulte and Barbier (2005) in an earlier survey of the e�ects of trade liberal-
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evaluating the e�ectiveness of speci�c trade policy interventions in a recent

survey on illegal wildlife trade. Our paper provides such an evaluation us-

ing the history of species' listings in CITES as well as of countries' CITES

membership, and documents the importance of enforcement for e�ective

IEAs.

A naive test of CITES' e�ectiveness would compare the size of wildlife

populations of species listed in CITES with non-listed species. A challenge

in interpreting this means comparison causally is the endogeneous selection

of individual wildlife species into CITES. For example, CITES listed species

may be more likely to become extinct. Then, comparing population sizes

of CITES listed and non-listed species would deliver biased results. Other

confounding factors may correlate with both wildlife decline and CITES'

listing decisions: Commercially valuable species may be less likely to see

their international trade restricted or banned (Stokstad, 2010). Moreover,

CITES' listings may be more likely for well-known, charismatic species,

re�ecting a more general �taxonomic bias� in wildlife conservation e�orts

(Clark and May, 2002).

Our paper overcomes these challenges by using a geo-referenced unbal-

anced panel of from 1950 to 2015, the largest publicly available database on

vertebrate population sizes over time. We combine these wildlife population

data with the detailed history of species' inclusion into CITES and with

data from the International Union for Conservation of Nature (IUCN) Red

List of Threatened Species, the world's most comprehensive inventory of

species' extinction risk. Our panel data allow us to control for unobserved

species' characteristics that drive the non-random selection of species into

CITES. This enables us to identify the causal e�ect of CITES' trade re-

strictions on wildlife population sizes once a species gets listed in CITES,

and determine whether CITES e�ectively prevents the decline of wildlife.

We �nd that wildlife populations increase after their corresponding

species is listed in CITES, but with considerable lag. This result is driven

by populations located in CITES' member countries with strong enforce-

ment of its rules. Populations increase by about 20% 11 to 15 years after

the species is listed in CITES, and by about 50% for species that bene�t

from CITES' protection for more than 20 years. Frank and Wilcove (2019)

ization on welfare and wildlife stocks.
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�nd that, on average, species are listed in CITES more than 10 years after

they have been identi�ed as threatened by international trade. Our results,

combined with this �nding, highlight the importance of reducing the time

lag between new scienti�c evidence and species' inclusion into CITES to

e�ectively prevent wildlife decline.

We explore whether populations of di�erent types of species are a�ected

di�erently after their CITES' listing. Species that are intentionally har-

vested, vulnerable species with high extinction risk, highly-studied species,

well-known species, and large species, i.e., with a large body mass, do

not seem to bene�t di�erently from CITES protection in countries with

strong enforcement. While CITES does not e�ectively protect populations

of listed species in member countries with weak enforcement in general, it

is e�ective for large species even when enforcement is weak. One reason

for this may be that large species such as elephants, rhinos, or whales (and

their derived products) are more readily recognizable by enforcing agen-

cies such as customs, making the enforcement of CITES' regulations for

these species easier. It may also re�ect that these species are particularly

salient for the international community and member countries with weak

enforcement therefore focus their e�orts on these species.

Our results are robust to controlling for time-varying country-speci�c

confounding factors that may a�ect both CITES' listing decisions and

wildlife decline such as habitat loss, corruption, or armed con�icts.

We explore the two main mechanisms through which species bene�t

from CITES' protection: 1.) outright trade bans or 2.) more nuanced

trade restrictions that are meant to ensure the sustainable use of species.

This allows us to quantify the relative e�ectiveness of these mechanisms,

which are represented by CITES' two main appendices: Species listed in

Appendix I are not allowed to be traded internationally for commercial

purposes. Species listed in Appendix II may be traded internationally but

their trade is restricted to ensure that trade is sustainable and does not

threaten a species' survival. Our results show that wildlife populations in-

crease by a similar magnitude for species in both Appendix I and Appendix

II. Contrary to views that champion either international wildlife trade bans

or sustainable use of wildlife, these results corroborate the importance of

enforcement for e�ective wildlife protection (see, e.g., Smith et al., 2003b).

3



Our paper relates to various strands of the literature. A broad the-

oretical literature discusses the circumstances under which trade restric-

tions can alleviate or exacerbate the overharvesting of renewable resources.

Whether trade bans are e�ective in protecting wildlife populations depends

on speci�c modeling assumptions such as whether wildlife trade is imper-

fectly competitive, whether species can be illegally traded or stockpiled,

whether legal trade enables the possibility of laundering of poached spec-

imens, and how the behavior of the regulator is modeled, e.g., if it sells

or destroys seized specimens of poached species. Much of this theoretical

literature focuses on the ivory trade ban, see, e.g., Khanna and Harford

(1996), Bulte and van Kooten (1999), Burton (1999), Fischer (2004), Helt-

berg (2001), and Kremer and Morcom (2000). Copeland and Taylor (2009)

stress the importance of country-speci�c institutional factors for successful

management of common property resources such as a government's ability

to enforce wildlife trade regulations. Our results provide empirical evi-

dence on the importance of countries' enforcement capability for CITES'

e�ectiveness.

Several studies quantify the e�ectiveness of other IEAs. Aichele and

Felbermayr (2012) study whether the Kyoto Protocol, which attempts to

reduce carbon dioxide emissions of its member countries, has led to a reduc-

tion in countries' carbon footprint, i.e., the emissions embodied in domestic

consumption and investment. They �nd that the Kyoto Protocol has been

ine�ective, as it has not reduced global emissions. Kellenberg and Levin-

son (2014) analyze the e�ectiveness of the Basel Convention, which intends

to reduce the generation of hazardous waste by restricting its shipment to

countries with inadequate environmental regulation. They �nd no evidence

of a reduction in the overall level of international trade in waste. Contrary

to the evidence in this literature, we �nd that CITES is e�ective in its

goal of preventing wildlife decline. More generally, our paper highlights

that international cooperation helps to prevent environmental degradation

caused by global threats such as international wildlife trade.

Our paper also relates to the literature that analyzes the e�ects of do-

mestic regulations concerning endangered species. A large part of this

literature focuses on the U.S. Endangered Species Act (ESA). Similar to

CITES, ESA's protection relies on listing endangered species. ESA im-
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plements CITES' regulations in domestic law, but has more far-reaching

powers. Whereas CITES only regulates international wildlife trade, ESA

protects species by e�ectively preventing any economic development of ar-

eas with populations of listed species, see the survey by Brown and Shogren

(1998). Metrick and Weitzman (1996) document that species' characteris-

tics determine the probability of receiving protection by ESA: Charismatic

species, particularly large mammals, the so-called �charismatic megafauna�,

are more likely to be protected, highlighting the importance of the non-

random selection of species. Ferraro et al. (2007) evaluate the e�ectiveness

of ESA's listings by studying their impact on the change in a species' en-

dangerment status between 1993 and 2004 using 430 species from the US.

Similar to our results for CITES, they �nd that enforcement is crucial for

ESA's e�ectiveness. Ando and Langpap (2018) provide a survey on em-

pirical studies of ESA's e�ectiveness, as well as on similar regulations in

Australia and Canada. The literature surveyed �nds only little evidence for

the e�ectiveness of domestic regulations that intend to protect endangered

species. Our study identi�es a positive e�ect of international wildlife trade

regulation on populations using data from 185 countries over 66 years.

We also relate to a literature that empirically analyzes the consequences

of international trade bans using case studies of individual species. Hsiang

and Sekar (2016) study the e�ect of a temporary removal of the trade

ban for ivory for a one-o� international legal sale. Using an unbalanced

panel of illegal elephant killings across 38 countries, they �nd that the

temporary removal of the trade ban led to an increase in elephant poaching.

Chimeli and Soares (2017) study the e�ects of the introduction of a ban

on mahogany exports in Brazil in 2001. They �nd that illegal exports of

mahogany increase after the introduction of the trade ban and decrease

with improved monitoring and enforcement of trade bans. Taylor (2011)

documents that international trade and the absence of trade restrictions

in wildlife products explain the virtual extinction of the North American

bison. Complementing these studies of individual species, we study the

impact of CITES' e�ectiveness for more than 3000 species.

More broadly, our paper relates to the literature on environmental ef-

fects of international trade, see the review by Cherniwchan et al. (2017).

This literature focuses mostly on local pollution and global emission e�ects
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of changes in trade policies for manufacturing goods, whereas we focus on

the e�ects of wildlife trade policy on global wildlife.

The rest of the paper is organized as follows. Section 2 provides in-

stitutional background and describes the data. Section 3 describes our

identi�cation strategy. Section 4 presents results. Section 5 concludes.

2 Institutional background and data

2.1 Wildlife protection under CITES

CITES is the international environmental agreement that regulates wildlife

trade in endangered species.3 Essentially, it is a multilateral trade agree-

ment, as it aims at ensuring species' survival by prohibiting or regulating

international wildlife trade and the commercial use of wildlife and its prod-

ucts. Species covered by CITES are listed in two appendices, according

to their degree of protection. International commercial trade in species

listed in Appendix I is prohibited, but may be allowed for species listed in

Appendix II if it does not endanger the survival of the species.4

With its entry into force in 1975, CITES protected a large number of

species. In subsequent years, species were included into CITES at one of

the Conferences of the Parties (CoPs), the meeting of representatives of

CITES' member countries. Today, about 3664 vertebrate species are listed

in any of CITES' appendices.5 We present the distribution of entry years

of the species in our data in Figure 1. The majority of species were �rst

listed into CITES by the mid-80s, and since then the inclusion of species
3For an in-depth description of CITES, see Favre (1989), for more recent overviews

see Hutton and Dickson (2000); Ginsberg (2002); Reeve (2006); Challender et al. (2015).
4In addition to the multilaterally agreed upon species listed in Appendices I and II,

CITES also gives member countries the right to unilaterally list species in Appendix
III. Countries can only list species in this appendix if they are not already included in
Appendices I and II, if they are native to the respective country, and when the country
has passed domestic regulation to prevent or restrict exploitation of the species and to
control international trade. Populations of Appendix III species are only protected in
their respective country, whereas Appendix I and II species are protected in all member
countries. Our analysis therefore focuses on multilaterally protected species (i.e., Ap-
pendices I and II). We explore the robustness of our results to the e�ect of unilateral,
domestic regulations re�ected in Appendix III in Section 4.6.

5Own calculation based on data from https://cites.org/eng/disc/species.php,
accessed 18/05/2022.

6



has slowed down.6

Once a species is listed, CITES monitors its international trade via a

system of export permits (for Appendix I and II) and import permits (for

Appendix I). CITES member countries are expected to control all inter-

national trade in species listed in CITES, even imports of species from

non-member countries. We show the evolution of the number of member

countries over time in Figure 2. Today, CITES' membership is almost

universal, with 184 country members. This is more than the 164 signato-

ries of the World Trade Organization agreements that are the basis of the

multilateral trade system.

Implementing and enforcing CITES is crucial for its success. As part

of the �National Legislation Project� (NLP), CITES oversees the imple-

mentation of CITES' regulations into domestic legislation in the member

states and classi�es countries accordingly. Using information and recom-

mendations provided by the CITES Secretariat, countries are classi�ed by

CITES' Standing Committee.7 The classi�cation is based on four criteria

that assess a country's legislation, as set out in Conf. 8.4 (Rev. CoP15)

�National laws for implementation of the Convention�: First, that the coun-

try has designated, at least, one management authority and one scienti�c

authority. Second, that the country prohibits trade in specimens in viola-

tion of CITES. Third, that the country penalizes such trade; and, �nally,

that the country con�scates specimens illegally traded or possessed. Coun-

tries are then classi�ed as Category 1 (those that have legislation that meet

all four requirements for e�ective implementation of CITES), Category 2

(those countries that have legislation that is believed generally to meet one

to three of the four requirements for e�ective implementation of CITES),

and Category 3 (those that have legislation that is believed generally not to

6242 species in our data were included since CITES' inception in 1975. Overall, 569
species in our data were included into CITES at some point in time.

7The Standing Committee consists of an elected group of member countries, rep-
resenting the di�erent world regions. The Standing Committee was created in 1979,
re�ecting the recognition by CITES member countries of the need of a coordinating
body for CITES in between the biannual CoPs. For the current mandate of the Stand-
ing Committee as well as a description of how CITES member countries are elected to
become Standing Committee members, see Conf. 18.2 �Establishment of Committees�.
For a detailed history of the Standing Committee as well as its pre-1979 predecessor,
the Steering Committee, see Wijnstekers (2011), chapter 25.
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Figure 1: Distribution of year of �rst entry into CITES (species)
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Figure depicts the distribution of the �rst year a species entered into one of CITES'
appendices in our data.

meet any of the four requirements for e�ective implementation of CITES).8

As implementing CITES into national legislation is a prerequisite for en-

forcing CITES, we take these categories as indicators of the quality of

countries' enforcement and compliance procedures. In our analysis, we will

make use of the variation across species, time, member countries, as well

as their quality of enforcement, to identify the e�ect of CITES on wildlife.

2.2 Listing decisions

We provide details of the process of listing a species in one of CITES'

appendices that are relevant for our identi�cation strategy.

CITES' Article XV lays out the procedure for making amendments to

Appendices I and II. Any member country can, at any time, propose a

species to be included in any of the two appendices by sending a proposal

to the CITES Secretariat in Geneva. The member country does not have

to be a range country, i.e., there is no requirement that a species is na-

tive to the proposing country. In practice, proposals include a supporting

statement which should provide both biological and trade data concerning
8This description is the language used by the Standing Committee to distinguish the

country classi�cations, see, e.g., page 2 in CoP18 Doc. 26, Annex 3 (Rev. 1).
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Figure 2: Year of entry into CITES (countries)
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Figure depicts number of countries in which CITES entered into force per year.

the proposed taxon.

Member countries then vote at the next CoP whether the amendment

should be adopted. To allow enough time for the Secretariat to communi-

cate the proposal to all member countries, and to allow it and the member

countries to gather relevant information, proposals have to be communi-

cated to the Secretariat at least 150 days before the next CoP. While CITES

stipulates CoPs to take place at least every two years, since 2004, three

years have passed between two CoPs.9 At a CoP, a proposal is accepted if

at least a two-thirds majority of the members present and voting is reached,

where every member country has one vote.

A particular feature of CITES' listing procedures helps with our iden-

ti�cation strategy: Decisions separate the fact-�nding (�Is a species en-

dangered by international trade?�) from the decision-making (�Should the

species be included into Appendix I or II?�). Once the Secretariat receives

a proposal, it has to gather information about the status of the species.

According to Article XV(1)(a), the Secretariat has to formulate a recom-

mendation as to whether the species should be included into Appendix I or

II or not, and this recommendation has to be communicated to the mem-
9CITES also allows for a postal vote in between CoPs, but this procedure is hardly

used in practice, see Favre (1989).
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ber countries at least 30 days before the CoP. As described in Gehring and

Ru�ng (2008), this separation of the recommendation during the scienti�c

assessment stage from the voting stage creates incentives for the Secretariat

to provide a truthful evaluation about the facts concerning a proposed list-

ing. Crucially, the recommendation has to be based on available evidence

in line with the listing criteria all member countries have agreed upon and

apply to all species.10

This restricts the possibility for individual member countries to make

�deals�, particularly as the Secretariat's recommendation and the evidence

on which it is based is made available to all member countries. In addition,

at any CoP, decisions are made on a large number of listing proposals.11

The majority of member countries are not range countries for any given

species considered in a listing decision, hence they are less likely to have an

economic interest in a species. In practice, the majority of listing decisions

are unanimous, see Favre (1989), and less than 10% of listing decisions

are so contentious that voting is done by secret ballot, see Blundell and

Rodan (2001). Consensus-based public voting likely reduces the possibility

of �package deals� of trading favors between members, as any country that

wishes to in�uence a particular listing decision would have to convince

a large number of members that all would have to be willing to display

their vote against the recommendation of the Secretariat in public. These

aspects make it di�cult for any one country to in�uence a particular listing

decision, and in general, in the words of Gehring and Ru�ng (2008), in

CITES, �arguments prevail over power�.

Still, if scienti�c evidence is scant, or for species where the decision is

more contentious, the listing process may be more prone to be in�uenced

by country-speci�c interests. For example, in the decision on listing the

Great White Shark (Carcharodon carcharias), the available evidence prior

to the listing decision was scant, and hence the recommendation of the

Secretariat was formulated in a cautious way, see Gehring and Ru�ng
10Listing criteria consider biological as well as trade-related factors of species, see for

a detailed description Conf. 9.24 (Rev. CoP17) �Criteria for Amendment of Appendices
I and II�.

11For example, at the last CoP18 in 2019, 57 proposals were considered (see CoP18
Doc. 105.1 Annex 2). Favre (1989) reports between 50 to 100 proposals per CoP;
Gehring and Ru�ng (2008) report 30 to 50 adopted listing decisions per CoP.
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(2008). We discuss this threat to our identi�cation strategy in more detail

in Section 3. Our data allow us to create a measure of the availability

of scienti�c evidence at the time of inclusion, mitigating this threat. In

addition, we exclude species for which listing decisions are known to be

particularly contentious in a subsample analysis in Section 4.1.

Further, the CITES listing process has been criticized for over-

representing certain types of species in its appendices, particularly charis-

matic species, see, e.g., Webb (2000). We document that this is the case

in our data in Section 3. We therefore control for di�erences across species

in their probability of being listed by inclusion of species-location (i.e.,

population) �xed e�ects in all our regressions.

Finally, the time lag between the emergence of scienti�c evidence and

the listing of a species is considerable: Frank and Wilcove (2019) document

that on average, more than ten years pass from an IUCN Red List assess-

ment to a CITES inclusion. At the same time, Rivalan et al. (2007) show

that anticipation e�ects in terms of higher trade volumes in soon-to-be-

listed species only materialize in the immediate year before the listing of

a species. Our event study speci�cation controls for potential anticipation

e�ects via the inclusion of respective leads.

2.3 Data

Our focus is measuring CITES' e�ectiveness in terms of its ultimate goal,

the prevention of wildlife decline. We therefore use wildlife population size

as our dependent variable.

Wildlife population size data.�We focus on the evolution of the pop-

ulation size of a (sub-)species s at a geographic location l at time t, i.e.,

population refers to the tuple (s, l). We use the raw population data that

are used to construct the Living Planet Index (LPI) by World Wildlife

Fund (2016).12 These data are the largest publicly-available database pro-

viding information on wildlife population sizes over time and are routinely

used to monitor the progress of biodiversity conservation targets (see, e.g.,

12For a more detailed description of the raw data, see Loh et al. (2005) and Collen et al.
(2009). The data can be downloaded from http://www.livingplanetindex.org/pr

ojects?main\_page\_project=LivingPlanetReport\&home\_flag=1 (downloaded 10
January 2017).
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Butchart et al., 2010 and Tittensor et al., 2014).13

The LPI project was created by the World Wildlife Fund (WWF) in

1997 as a global, comprehensive, and representative database that allows

to measure the evolution of population sizes of vertebrate species over time.

Today, the Zoological Society of London is managing the LPI data in col-

laboration with the WWF. Hence, the LPI data are collected independently

of CITES, and CITES listings are determined independently from the data

collection e�orts of the LPI. To be included into the LPI database, a popula-

tion has to be observed for at least two years using the same methodology.

The population data have to be referenced and traceable, i.e., for every

population in our sample, LPI reports the exact reference for the popula-

tion data. The main source of population data are peer-reviewed academic

journals (36% of all sources). Other sources, in declining importance, are

secondary sources (33%), other sources (15%), government reports (10%),

and unpublished reports (6%).14

Population size data are ideal for our purpose as they react more quickly

to changes in wildlife protection than data on species' endangerment sta-

tus and whether species are (close to becoming) extinct. Extinction is a

long-run process and it can be di�cult to determine whether a species is ac-

tually extinct.15 Declines in population sizes are directly linked to reduced

ecosystem services, e.g., for �sheries and agricultural production. Particu-

larly, wildlife populations can become so small that they are functionally

extinct, i.e., they cease to provide economic bene�ts, even when complete
13Note that wildlife trade data for species included in the LPI raw data are not

available. Available databases such as the CITES Trade Database only contain trade
in species listed in CITES, preventing before-and-after comparisons of species becoming
listed in CITES. Furthermore, the CITES Trade Database is derived from the number
of import and export permits CITES' members submit through annual reports. These
data are measured with considerable error, and no clear rules exist on how to calculate
trade volumes from the underlying records on permits, see, e.g., Berec et al. (2018). As
pointed out by Chan et al. (2015), standard merchandise trade classi�cations such as
the Harmonized System do not distinguish trade in individual species. Even if trade
data were available, many species, including those that are regulated under CITES, are
traded illegally and hence their trade is not documented, see, e.g., `t Sas-Rolfes et al.
(2019).

14Information in this paragraph is based on the supporting documents provided on
the LPI website, www.livingplanetindex.org, as well as Loh et al. (2005).

15For a discussion of these issues, see, e.g., Ceballos and Ehrlich (2002) and Butchart
et al. (2006).
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extinction can be avoided, see Sekercioglu et al. (2004).16

Population size data in the LPI are unbalanced and not necessarily

available for consecutive years. For example, the population of Cape vul-

tures (Gyps coprotheres) in Namibia is only observed for the years 1975,

1980, 1990, and 2000. Hence we cannot calculate annual (log) growth rates

for all populations. In our empirical analysis, we therefore use a within esti-

mator instead of a �rst di�erence transformation to control for unobserved

population �xed e�ects. This allows us to incorporate the information from

those populations whose size is not observed every year.

The LPI data report population size in a variety of units, depending on

the study from which the raw data are collected: Population sizes may be

simple counts of individuals in a given geographic location, or the number

of breeding pairs; sometimes, population size is measured as the amount

of biomass in a population, i.e., in kilograms, or as the number of indi-

viduals per a given area. In our empirical analysis, we use a log-linear

regression with species-location (i.e., population) �xed e�ects that control

for these di�erences in units of measurements across the di�erent popula-

tions.17 This strategy also corrects for potential population-speci�c mea-
16In our �nal dataset, 4003 observations report a population size of zero, about 3%

of our �nal dataset. Note that population sizes of 0 do not necessarily imply that a
population has gone extinct, as population size data are measured with considerable
measurement error, see, e.g., Meir and Fagan (2000), and the recent upward revisions
of population size data for Gorilla gorilla gorilla by Strindberg et al. (2018). In our
dataset, of the 1226 populations which record a zero population size in one year, 87
percent report a non-zero population size afterwards. We therefore assume that zeros
are due to random measurement error. If measurement errors are speci�c to certain
populations, the �xed e�ects we include in our regressions will control for this.

17By way of illustration, imagine that there are just two di�erent measurement units
used, individuals and pairs. In this case, the di�erence in measurement units is a fac-
tor of 2. By multiplying our dependent variable by this factor for all observations
measured in pairs, we can transform all observations measured in pairs to individuals.
This factor is constant over time, as the measurement unit for a population does not
change over time in our dataset, and is not a�ected by CITES. It is hence perfectly
captured by a population �xed e�ect µsl. More generally, all observations can be con-
verted to the same unit of measurement by multiplying by bsl, a population-speci�c,
time-invariant scale factor (Nsame unit

slt = bslNslt). Taking the natural logarithm, this
becomes (lnNsame unit

slt = ln bsl + lnNslt). Hence, including a population-speci�c �xed
e�ect in combination with using the dependent variable in logs controls for the di�erent
units of measurement problem and we can then interpret regression coe�cients in the
usual way, as a semi-elasticity that is independent of the unit of measurement. This also
holds for measures of a species' population density in our sample, as the relationship
between population density and biomass is stable over time and log-linear, so-called
Damuth's rule, see Damuth (1981) and White et al. (2007).
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surement errors.18

While the LPI data are arguably the largest available global database on

vertebrate population data over time, one may be concerned that the LPI

data overrepresent data of species with declining populations. Collen et al.

(2009), who describe the LPI raw data in detail, investigate whether the

LPI raw data overrepresent data with particular patterns of time trends.

They argue that data sets with declining populations may be published

more quickly because these data may be helpful to argue for more conser-

vation e�orts. Collen et al. (2009) test whether there is a di�erence in the

publication date of data between declining and non-declining populations,

but they do not �nd any signi�cant di�erence. Similarly, studying whether

endangered species are overrepresented in the LPI data, Loh et al. (2005)

conclude that this �does not occur to any marked extent� (p. 295).

Also, the LPI data may overrepresent charismatic species, i.e., the LPI

data itself may su�er from taxonomic bias. Clark and May (2002) docu-

ment that scienti�c studies su�er from taxonomic bias. As the LPI data

are based on scienti�c studies, this bias applies to the data as well. How-

ever, Clark and May (2002) also document that the taxonomic bias does

not seem to change over time. Whether charisma of species changes over

time is an under-researched topic, but in a pioneering study, Monsarrat
18Classical measurement error in our dependent variable, i.e., population size, does

not lead to inconsistently estimated regression coe�cients. However, a form of non-
classical measurement error in our dependent variable may occur if endangered species'
populations are harder to measure. For these species, the variance of the measurement
error is larger, i.e., the measurement �uctuates more, potentially in combination with
systematic over- or undercounting, i.e., a non-zero average measurement error. Includ-
ing a constant (or population �xed e�ects) in the regression allows for a non-zero mean
in the dependent variable, and, conditional on the regressors, a non-zero error term.
Hence, a non-zero average measurement error for such species is accounted for by the
population �xed e�ects. The di�erences in variance imply heteroskedasticity. We will
cluster standard errors at the species-level, allowing for arbitrary correlation of the error
terms across populations of the same species and thus account for this heteroskedastic-
ity. Another form of non-classical measurement error may occur if more endangered
populations are measured with a larger measurement error, i.e., there is a negative cor-
relation between the size of the population and the size of the measurement error. A
simple way to model this is to assume that instead of the true dependent variable Yp, we

measure Ỹp = Yp + vp, and the measurement error is given by vp = δYp + v∗p, where v∗p
is uncorrelated with the other variables and δ < 0. Bound et al. (1994) show that this
leads to a downward bias in the regression coe�cient. If this were the case, we would
underestimate the e�ectiveness of CITES and our estimates would be a conservative
lower bound.
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and Kerley (2018) �nd that species considered to be of high charisma in

the 16th to 19th century are generally considered to be of high charisma

today too, so in our view, charisma and the according taxonomic bias can

be treated as time-invariant drivers of population sizes and CITES listings,

such that they are controlled by the population �xed e�ects we include in

all our regressions.

CITES data.�We combine the wildlife population size data with in-

formation about which species are listed in CITES' Appendices I and II

from the Checklist of CITES Species by UNEP-WCMC (2017). We get the

year in which countries became CITES members from the CITES Secre-

tariat website.19 We use the CITES classi�cation of Category 1 members

to identify countries with high levels of enforcement and compliance proce-

dures from the CITES o�cial document �Status of Legislative Progress for

Implementing CITES�, CoP17 Doc. 22 Annex 3 (Rev. 1). We create an

indicator variable that identi�es populations in Category 1 CITES member

countries.

CITES' sanctions data.�CITES allows to impose sanctions on coun-

tries that are not compliant with CITES' regulations. If a country is sanc-

tioned, all commercial trade in CITES-listed species is suspended. Sanc-

tions are indicative of a lack of enforcement of CITES. It is likely that

CITES is not e�ective in sanctioned countries. In a subsample analysis,

we therefore exclude all populations in sanctioned countries for those years

where the sanctions are applied. To do so, we rely on the historical data on

suspensions of all commercial trade in CITES-listed species that is avail-

able from Sand (2013). Sand lists sanctions for the period 1985-2013. We

update sanctions data until 2016 by using the information provided on the

CITES webpage regarding �Countries currently subject to a recommenda-

tion to suspend trade�.20

Corruption data.�CITES being an international trade agreement, its

rules have to be implemented by national governments and enforced by cus-
19The �List of Contracting Parties� is available at https://www.cites.org/eng/di

sc/parties/chronolo.php.
20This information is available at https://www.cites.org/eng/resources/ref/su

spend.php, but is updated with frequency, hence countries that are no longer subject to
a recommendation to suspend trade, are removed from the list. We update the sanctions
data with the help of the Wayback Machine - Internet Archive.
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toms o�cials. In countries with high levels of customs corruption, CITES

may therefore be less e�ective. As a proxy for corruption at the border, we

use the share of a country's population that answered �yes� to the question

�in the last 12 months anyone living in a household paid a bribe in any

form to customs� (variable �Paid Bribe: Customs�) in the Global Corrup-

tion Barometer by Transparency International. As an alternative, more

general measure of corruption in a country, we use the World Bank's con-

trol of corruption indicator by Kaufmann et al. (2010). This indicator is

standardized to have a mean of zero and a standard deviation of one, with

higher values indicating more control of corruption (i.e., less corruption).

We create an indicator variable that is one if a country has a below average

level of corruption, and zero otherwise. We use both corruption measures

as reported in the Quality of Government Basic Dataset (version Jan17)

by Dahlberg et al. (2017).

GDP per capita data.�We estimate separate treatment e�ects for pop-

ulations in high-income countries versus populations in other countries, as

the e�ectiveness of CITES may be conditioned by a country's income level.

We use GDP per capita data in purchasing power parities in 2011 US$ from

the updated Maddison project by Bolt and Luiten Van Zanden (2020). We

de�ne a population to be located in a high-income country when its GDP

per capita in that year is within the top 25% of countries by GDP per

capita in the panel of countries from 1950 to 2015.

IUCN Red List data.�We estimate separate species-type speci�c treat-

ment e�ects because CITES may be more or less e�ective for di�erent types

of species. For example, the protection o�ered by CITES may be more ef-

fective for species with commercial value (or species with �intentional use�),

as it may prevent overharvesting. We use data on intentional use from the

IUCN-CMP Uni�ed Classi�cation of Direct Threats (version 3.2), which is

a re�ned version of the classi�cation introduced by Salafsky et al. (2008).21

We also estimate a separate e�ect for species that are vulnerable. We use

the IUCN Red List of Threatened Species classi�cation on extinction risk

and consider as vulnerable all species that are classi�ed as �critically en-

dangered�, �endangered�, and �vulnerable�, i.e., species facing extremely or
21We downloaded these data from the IUCN Red List API-v3 (http://apiv3.iucn

redlist.org/api/v3/docs) on 20 February 2019.
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very high risk of extinction in the wild.22

Citizen science data (iNaturalist).�We estimate a separate treatment

e�ect for well-known species. To identify these species, we use citizen

science data on users' identi�cations for species from iNaturalist.23 This

database contains information about exemplars of species identi�ed by the

community, mostly by photos, going back to 1970. Today, users can upload

their photos via a smartphone app.

Species traits data.�We estimate a separate treatment e�ect for large

species, i.e., species with larger than average body mass. We use data from

the EltonTraits 1.0 dataset, a species-level compilation from various sources

of species' attributes of birds and mammals by Wilman et al. (2014).24

3 Research design and identi�cation

Our goal is to estimate the causal e�ect of CITES' listings on the size of

species' populations. To inform our identi�cation strategy, we start by vi-

sualizing the average trends in our population data. Figure 3 shows the

evolution of the average population size for species that are listed in CITES

at some point of time within our sample period and those which are not,

respectively, i.e., the graph does not take into account that di�erent species

enter in di�erent years. The �gure shows predicted log population size per

year for these two groups. To calculate predicted population sizes, we run a

regression of log population sizes on a population �xed e�ect to control for

the di�erence in measurement units, and di�erent year e�ects for CITES

listed and non-listed (never listed) species. Figure 3 shows the average of

the predicted values from this regression excluding the population �xed

e�ect to ensure that we use the same measurement unit for all observa-

tions. Species protected by CITES have smaller populations before CITES

entered into force in 1975, i.e., there are pre-existing di�erences in listed

and non-listed species which we will control by the inclusion of popula-
22We downloaded these data from the IUCN Red List API-v3 on 8 November 2017.
23Data downloaded from the iNaturalist webpage https://www.inaturalist.org/ho

me. Data downloaded are for taxa on amphibians, birds, �shes, mammals, and reptiles.
Data downloaded on 12 and 13 November 2019.

24The main sources for the body mass data are Smith et al. (2003a) for mammals and
Dunning (2007) for birds.
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tion �xed e�ects in our regressions below. The �gure also shows a dashed

line with the evolution of the di�erence in population size between listed

and non-listed species. This line allows a coarse comparison of the relative

pre-existing trends for the period before any species are treated, i.e, before

1975. We see that population size seems to move on parallel trends be-

fore CITES entered into force.25 After 1975, species start to get listed in

CITES' appendices and trends start to diverge.

The intuition derived from eyeballing Figure 3 is also borne out when

using a formal statistical test for equality of trends following the approach

by Antwi et al. (2013). As species start to be included into CITES with its

entry into force in 1975, we only use data of populations observed before

1975 for this test (N = 14540). We then regress population size on pop-

ulation (species-location) and year �xed e�ects, and an interaction term

of the linear time trend with EV ERCITESs, EV ERCITESst, where

EV ERCITESs indicates whether species s is part of the treatment group,

i.e., a species included into CITES' appendices at some point in time in

our dataset. There is no di�erence in the trends of treatment and control

groups prior to the entry into force of CITES.26

One of the reasons for pre-existing di�erences between listed and non-

listed species is that the probability of being listed in CITES is di�erent

across species. Metrick and Weitzman (1996) document that di�erent types

of species have di�erent probabilities of getting listed in the U.S. Endan-

gered Species Act. We con�rm their result for CITES. In Appendix A, we

show that large mammals (the so-called �charismatic megafauna�), vulnera-

ble species, and species used intentionally have a higher probability of being

listed in CITES. Similarly, we �nd higher probabilities of getting listed for

mammals, birds, and reptiles than for �shes. This provides evidence of a

selection bias driven by species' time-invariant characteristics.

The probability of a species getting listed may change over time because

new scienti�c evidence on the status of a species becomes known. For every

population in our data, the LPI data reference the source of the population
25Note that the number of observations included in the �treated� group is considerably

lower than the number of observations included in the �control� group, which explains
the larger variance in the average population size for listed species.

26The estimated coe�cient for EV ERCITESst is −0.001 (s.e. = 0.013, p-value =
0.951), the 95% con�dence interval is [-0.026; 0.025].
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Figure 3: Average population size: Listed and never listed species by year
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Figure depicts the (predicted) population size per year for species that have ever been
listed in CITES versus species that have never been listed in CITES.

size data in the scienti�c literature. This allows us to construct a balanced

panel dataset for all species for the years 1950 to 2015 where we count

the accumulated number of studies available in a given year for a speci�c

species, ACCUMULATEDSTUDIESst. We run the following regression:

CITESst = αs + βACCUMULATEDSTUDIESst + δt+ εst, (1)

where CITESst is an indicator variable which is one if species s is listed

in CITES in year t and zero otherwise, δt is a time trend, and αs is a

species �xed e�ect that controls for all time-invariant species characteristics

in�uencing the selection into CITES as documented in Appendix A.27 We

cluster standard errors at the species level. We present results in Table 1.

In column (1), we start with estimating a restricted version of Equation

(1) by dropping ACCUMULATEDSTUDIESst and the species �xed ef-

fect. We �nd a signi�cant time trend, with the probability of being listed
27Changes in ACCUMULATEDSTUDIESst may also be interpreted as a proxy

for changes in the unobserved endangerment status of a particular species. Then, the
coe�cient β should be biased towards zero when assuming a classical measurement error.
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Table 1: Determinants of CITES listings (panel)

(1) (2) (3) (4)

trend 0.003 0.003 0.003 0.003
(0.000) (0.000) (0.000) (0.000)

accumulated number of studies available 0.005 −0.000
(0.003) (0.001)

R2 0.05 0.05 0.58 0.58
N 228162 228162 228162 228162

Notes: Table 1 reports estimated coe�cients from a panel linear probability model of variants of Equation (1). The dependent variable is a
dummy variable that equals one when the species is listed in CITES in year t and zero otherwise. As regressors we use a variable that measures
the accumulated number of published studies in our dataset in t on a speci�c species and a time trend. Column (1) estimates Equation (1) but
drops ACCUMULATEDSTUDIESst using pooled OLS, i.e., without a species �xed e�ect αs. Column (2) re-estimates Column (1) but adds
ACCUMULATEDSTUDIESst. Columns (3) and (4) re-estimate Columns (1) and (2) but add a species �xed e�ect. Column (4) estimates
Equation (1) as presented in the main text. Standard errors are in parentheses and are clustered at the species level.

in CITES increasing by 0.3 percentage points per year. Its explanatory

power is quite low as it only explains about �ve percent of the variation

in the dependent variable. In column (2), we add the number of accumu-

lated studies. The regressor is not signi�cant. Accordingly, the explanatory

power of the regressor is close to zero, which together with the time trend

contributes still only �ve percent to the overall R2 of the pooled regression.

Columns (3) and (4) re-estimate columns (1) and (2) but add the species

�xed e�ect. They reveal that the majority of the variation in CITESst is

explained by the species �xed e�ect.28

These results inform our identi�cation strategy to estimate the e�ect

of CITES' listings on wildlife populations. Including population-speci�c

�xed e�ects remedies the documented time-invariant selection bias by fo-

cusing on within-population variation for a given species. In addition, our

population �xed e�ect eliminates the time-invariant taxonomic bias. It

also controls for systematic time-invariant di�erences between species that

have been listed early on in CITES and those that have been listed later.

We control for the trend in the probability of species becoming listed by

including year �xed e�ects. Our baseline regression is given by:

lnNslt = µsl + ηt + β(in CITES)st + εslt, (2)

where Nslt is the size of the population of a species s in location l in year
28In unreported regressions, we also experimented with non-linear time trends as

well as including only studies published after the entry into force of CITES in 1975.
Conclusions do not change.
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t.29 (in CITES)st is a dummy variable that is one when a species is listed

in one of CITES' appendices in a given year, and zero otherwise. µsl is a

time-invariant species-location (i.e., population) �xed e�ect that controls

for factors such as, e.g., habitat suitability, which determine population

size of a species in a given location. Even in a world without any loss of

wildlife caused by human activity, species are unevenly distributed across

space according to their habitat. For example, red fox (Vulpes vulpes)

populations vary considerably across their geographical range, which is the

largest within the order Carnivora, see Ho�mann and Silero-Zubiri (2016).

This highlights the importance of allowing for di�erent base levels of a

species' population size in di�erent locations. In addition, species di�er

in terms of both their abundance and their extinction risk due to factors

such as body weight, size, attractiveness to humans, economic value and

reproductive rates, see Hutton and Dickson (2000), Cardillo et al. (2005),

and McClenachan et al. (2016).

ηt is a year-speci�c �xed e�ect that controls for time-varying factors

that in�uence treatment and control species in a similar way. Finally, εslt
is an error term that measures random �uctuations in population size. This

regression is equivalent to a generalized di�erences-in-di�erences approach

where species protected by CITES are the treatment group and the control

group comprises species that are not included in the CITES appendices.30

Our �nal sample includes 11054 populations of 3457 species in 185 countries

over 66 years (from 1950 to 2015). We follow the suggestion of Bertrand

et al. (2004) and cluster standard errors at the species level to allow for

correlation within species as our treatment variable is de�ned at the species

level.

We later relax the assumption of constant treatment e�ects over time

by estimating the following event study speci�cation:

lnNslt =
∑

τ∈{−10,−5,0,5
10,15,20,>20}

βτ1(t = tCITES
s + τ)st + µsl + ηt + εslt. (3)

29Note that population refers to a given species s in location l. Hence, for a given
year, there may be several species in the same location, and the same species may occur
in several locations.

30For our estimation, we use the Stata package reghdfe by Correia (2016).
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We regress the log of population size on a set of relative time dummies

that indicate the number of years before or after a species' listing in either

CITES Appendix I or II. Our interest lies in estimating the treatment

e�ect βτ on population size τ years after a species is included into CITES'

appendices.31 The set of time dummies allows the treatment e�ect to vary

with time τ since the year a species was listed into CITES' appendices,

tCITES
s . We consider di�erent e�ects for the year of inclusion (τ = 0), the

�rst �ve years after listing, and then, in �ve year intervals up to 20 years.

We also consider a separate treatment e�ect for species listed for more than

20 years.

We estimate leading values of the treatment to test the reliability of

our identi�cation strategy. A statistical signi�cant e�ect for τ = −10 or

τ = −5 indicates pre-existing di�erences in the trends between listed and

non-listed species, which may cast doubt on the common trend assumption

underlying our approach.

As an additional test of the parallel trend assumption, we follow the

recommendation by Bilinski and Hat�eld (2019) and estimate a model

that uses the same treatment variables as in Equation (3) but we include

EV ERCITESst instead of placebo treatments in the years before inclu-

sion into CITES. Note that in this speci�cation with a full set of treatment

dummies for all years after treatment starts, θEV ERCITESst directly

measures a violation of the parallel trend assumption prior to treatment,

i.e., inclusion into CITES. We estimate θ̂ = −0.002 (s.e. = 0.007, p-value =

0.818). Hence we can rule out a violation of the parallel trend assumption

of trend di�erences larger than the bounds of the 95% con�dence interval

of θ̂, [−0.014, 0.011], validating our identi�cation strategy.32

31We write τ = −10 for years 6 to 10 years before a species' CITES listing, τ = −5
for years 1 to 5 before a species' CITES listing, τ = 0 for the year of a species' CITES
listing, τ = 5 for years 1 to 5 after a species' listing into CITES, τ = 10 for years 6 to
10, τ = 15 for years 11 to 15, τ = 20 for years 16 to 20, and τ > 20 for more than 20
years after a species' CITES listing.

32Note that neither Figure 3 nor this test are ultimately informative about whether
treated and non-treated species follow the same pre-treatment trends in our setting
with variation in treatment timing. Instead, pre-treatment dummies in an event study
speci�cation are used to test this assumption, and we include these in all our event study
speci�cations, see Equation (3). For a lucid discussion of these issues, see chapter 9 in
Cunningham (2021).
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4 Results

4.1 E�ect of CITES listings on wildlife population sizes

Species listed in CITES.�We present results of Equation (2) in column

(1) of Table 2. After a species is listed in CITES, the populations of this

species increase by 20%.33 Most of the species in our sample were included

into CITES in 1975 (see Figure 1). There may be a di�erence in CITES'

e�ectiveness between the species listed in 1975 and those that were listed

later. We therefore estimate separate treatment e�ects for these two groups

of species.34 In column (2), we de�ne treatment only for those species that

were included into CITES in 1975. We estimate a similarly sized e�ect as

in column (1) but with low precision. In column (3), we de�ne treatment

only for those species included after 1975. The e�ect is again of similar size,

and is now precisely estimated. In column (4), we include both dummies

simultaneously, with similar results. We cannot reject the null hypothesis

that the e�ect for species listed in 1975 and after 1975 is the same (p-value

= 0.754), but their e�ect is jointly signi�cant (p-value = 0.031).

Sanctions.�Under Article XIV.1(a) of CITES, member countries can

sanction other countries if they do not comply with CITES regulations,

e.g., by not passing local legislation to implement CITES.35 We create an

indicator variable that is one if a country is not subject to sanctions in

a given year (NONSANCTIONED). By interacting this variable with our

baseline CITES treatment dummy from column (1), we can test whether

CITES is less e�ective for populations located in sanctioned countries. We

present results in column (5). We do not �nd a signi�cant di�erence of

the e�ectiveness of CITES between populations in sanctioned and non-

sanctioned countries. However, we should interpret this result with caution:

The correlation between our baseline treatment dummy and the interaction

term with sanctioned countries is 0.99, therefore, our data probably do

not allow us to identify a meaningful di�erence between populations in

33We calculate marginal e�ects of variable k as (eβk − 1)× 100.
34This also checks for the similarity of treatment e�ects for early and late treated

species, in the spirit of Goodman-Bacon (2021). Note that the decomposition of
di�erence-in-di�erences estimates in balanced panels proposed by Goodman-Bacon
(2021) does not apply in our unbalanced panel, see Baker et al. (2022).

35For an overview of CITES' sanction regime, see Sand (2013).
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sanctioned and non-sanctioned countries.

Corruption.�Countries with high levels of corruption may limit the

success of conservation projects by reducing e�ective funding levels and

distorting priorities. Empirically, there seems to be a relationship between

(bad) governance and wildlife (decline) (see Smith et al., 2003b). We in-

teract our baseline treatment dummy with a variable de�ned as one minus

a particular measure of corruption. As our measure of corruption, we use

the share of population in country c answering �yes� to the question �in

the last 12 months anyone living in a household paid a bribe in any form

to customs� (variable �Paid Bribe: Customs�, see Dahlberg et al., 2017).

Hence, we interact our baseline treatment dummy with 1−P (BRIBE=1),

which allows corruption at the border to vary the �dosage� of the e�ective-

ness of CITES. Results obtained in column (6) imply that less corruption

at the border increases the e�ectiveness of CITES. At the mean value of

1− P (BRIBE=1) (0.88 in our sample), we �nd that inclusion into CITES

increases populations by (-1.281+1.700*0.88)*100=22%.

CITES not only has to be enforced by customs o�cials but also by other

government agencies. Hence our corruption measure may be too speci�c

and not capture the overall level of corruption in a country. Also, individu-

als may under-report that they have paid a bribe to avoid self-incrimination.

More generally, di�erences in de�nitions of corruption may lead to im-

portant di�erences across corruption indicators, see Malito (2014). We

therefore use the World Bank's control of corruption index to construct an

indicator variable that is one when a country is characterized by low (below

average) levels of corruption. We interact this indicator with our baseline

treatment dummy and present results in column (7). We �nd a signi�cant

e�ect of CITES only for populations of species located in countries with

low corruption, con�rming the importance of good governance for CITES'

e�ectiveness.

Countries' income level.�Countries with a higher income per capita

may be more e�ective at implementing CITES due to higher public fund-

ing. In addition, with rising income levels, consumers have a higher will-

ingness to pay for conservation, see the meta-analysis by Jacobsen and

Hanley (2009). We therefore interact our baseline treatment indicator with

a dummy variable that is 1 for populations located in high-income countries
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in a given year.36 We present results in column (8). We �nd that CITES'

e�ectiveness is concentrated on populations in high-income countries.

CITES' member countries.�Until now, our treatment dummy takes

the same value for all populations of a given species. Some populations

of protected species in our data are located in a country which was not

a CITES member country at the time of observation. CITES members

are expected to apply CITES regulations also to wildlife trade originating

from non-member countries (see Article X of CITES). Therefore, CITES in

principle should also protect species in non-member countries. If the protec-

tion of a species is only imperfectly enforced, our estimates in the previous

columns can be interpreted as the intention-to-treat e�ect of the inclusion

in CITES. Still, CITES' listings may be more e�ective to protect wildlife

populations in member countries. We therefore map each population to the

country in which it is located. This allows us to include, in addition to our

baseline species-speci�c treatment dummy an interaction term between the

treatment dummy and a dummy variable indicating whether the country

in which the population is located is a member of CITES that year. We

present results in column (9). Both variables are not signi�cant individu-

ally, but are jointly signi�cantly di�erent from 0 (p-value = 0.02), and we

cannot reject the hypothesis that the e�ect of CITES is the same for pop-

ulations in and outside CITES member countries (p-value = 0.83). This is

not surprising. Article X of CITES stipulates that trade with non-member

countries is only allowed when essentially equivalent documentation, par-

ticularly export permits, are provided by any potential trader, and coun-

tries explicitly are allowed to even apply stricter standards to non-member

country trade.37

Member countries' implementation and enforcement.�Column (9) may

seem to imply that there are no di�erences between member and non-

member countries of CITES. This may be due to heterogeneity within the

group of CITES member countries, as some member countries may imple-

ment and enforce CITES more stringently than others. Following the previ-

ous result that CITES' listings are e�ectively protecting species in countries
36Note that not all populations are located in either high-income or non-high-income

countries: In our data, populations are also found in international waters or Antarctica.
37For a detailed discussion of the provisions of Article X and their implementation,

see Sand (2013) and Wijnstekers (2011), pp. 339-342.
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that are less corrupt, we analyze whether the e�ectiveness of CITES might

di�er by a member country's implementation and enforcement level. If a

country is not implementing or enforcing CITES regulations properly, we

should not expect CITES to have a positive impact on the populations

located in these countries. To check this, we create a dummy variable that

identi�es populations in Category 1 CITES member countries, i.e., coun-

tries that are CITES members and whose national legislation fully complies

with the requirements of CITES, and interact it with our baseline treat-

ment dummy. We present results in column (10). We �nd that CITES is

only e�ective in Category 1 CITES member countries, i.e., countries that

enforce CITES well, stressing the importance of proper enforcement.

In column (11), we include all variables simultaneously from columns

(5) to (10), except that we only use the corruption measure from column

(7), as it is available for more countries.38 The precision of the estimates

becomes low, and none of the regressors is individually signi�cant. For

example, we cannot distinguish meaningfully whether it is the high level of

income of countries or their high level of enforcement that is driving CITES'

e�ectiveness, as there is not enough variation in our data to separate the

in�uence of the di�erent variables. This is likely due to their high pairwise

correlation, which ranges between 0.74 and 0.99.

Contentious listing decisions.�While Gehring and Ru�ng (2008) argue

that for CITES listing decisions, �arguments prevail over power�, this may

not always be the case, particular for species for which listing decisions are

contentious. For these species, listing decisions may be driven by country-

speci�c interests. We check whether our results are driven by such species.

According to Blundell and Rodan (2001), listing decisions of elephants,

sharks, turtles, and whales are particularly contentious. In a subsample

analysis, we drop all populations of these species.39 We present results in
38The correlation between in CITES ×(1 − P (BRIBE=1)) and in CITES

×(1−CORRUPT ) is 0.82.
39Particularly, we drop all populations of the family Elephantidae (i.e., elephants)

and of the order Testudines (i.e., turtles). To drop shark populations, we drop popula-
tions of the orders Carcharhiniformes, Hexanchiformes, Lamniformes, Orectolobiformes,
Squaliformes, and Squatiniformes. Our data set does not contain shark populations of
the orders Heterodontiformes, Pristiophoriformes, and Echinorhiniformes. As whales
are an informal taxonomic group, we drop all populations of species that include the
word �whale� in their common name. This also excludes orcas (killer whales, Orcinus
orca) that are part of the family Delphinidae, i.e., oceanic dolphins. In total, we drop

27



Appendix Table 2. Compared with Table 2, we �nd similar results, albeit

estimated coe�cients are slightly larger in absolute magnitude. In sum,

we do not �nd evidence that our results are driven by contentious listing

decisions.

Event study speci�cations.�We now allow the treatment e�ect of CITES

listings to vary over time in our event study speci�cation given in Equation

(3). We present estimates in Figure 4. Results con�rm that CITES listings

have a positive e�ect on species' population sizes, however, the e�ect of

CITES does not occur immediately, as it takes about 16 to 20 years until

populations of CITES-listed species increase in size as a consequence of

the species' listings in CITES. In addition, the pre-trend variables are not

signi�cant, validating the common trend assumption.

In the following, we present variations of the baseline event study speci�-

cation where we allow for separate e�ects across di�erent types of countries,

similar to the variables presented in Table 2. As in columns (2) and (3)

of Table 2, we allow for separate e�ects of species listed in 1975 and after

1975. We present results in Appendix Figure 1. We �nd a similar pattern

of the estimated coe�cients for both species listed in 1975 and those listed

after 1975. It takes about 16 to 20 years until populations of CITES-listed

species increase. Again, precision of the estimates is considerably lower

when singling out 1975, probably because we observe the majority of pop-

ulations after 1975. The e�ect of CITES on population sizes increases over

time, as wildlife populations slowly recover.

We then allow for separate dynamic e�ects of CITES listings for coun-

tries with high and low corruption, using the corruption measure from

column (7) in Table 2. We present results in Figure 5. For high-corruption

countries (left panel), we �nd negative point estimates but with low pre-

cision overall. Importantly, we �nd that CITES' e�ectiveness is driven

by populations in countries with low corruption (right panel). Compared

to Figure 4, we now �nd signi�cantly larger populations 11 to 15 years

after inclusion into CITES, i.e., earlier than in the baseline event study

speci�cation.

In Figure 6, we alternatively allow for separate dynamic e�ect for pop-

ulation in low and high income countries, similar to column (8) in Table

5820 observations of 126 species.
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Figure 4: E�ect of CITES on population size (species listed in CITES)
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This �gure shows coe�cient estimates from Equation (3), i.e., a panel regression of log
of population size on a set of dummy variables indicating the years since a species'
entry into CITES, along with a set of population and year �xed e�ects. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 119538.

2. While we �nd no signi�cant e�ect of CITES's listings in low-income

countries (left panel), we �nd that populations are signi�cantly larger in

high-income countries beginning 16 years after their inclusion into CITES

(right panel).

Finally, we allow for separate dynamic e�ects of CITES' listings de-

pending on whether a population is located in a CITES member country

with a high level of CITES enforcement, i.e., a Category 1 member country,

similar to column (10) in Table 2. We present results in Figure 7. We �nd

that CITES has a signi�cant lagged e�ect on population sizes in Category

1 countries only, stressing the importance of proper enforcement.

The results in this section show evidence of heterogeneous treatment

e�ects at the country level, as CITES is e�ective in countries with low

corruption, high income, and strong enforcement. They also show that

CITES' e�ectiveness increases over time.
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Figure 5: E�ect of CITES on population size by corruption level (species
listed in CITES)
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This �gure shows results from a panel regression of log of population size on a set of
treatment dummies, along with a set of population and year �xed e�ects. The left
panel shows the coe�cient estimates of dummy variables indicating the years since a
species' entry into CITES interacted with a variable indicating whether the population
is located in high-corruption countries. The right panel shows the coe�cient estimates of
dummy variables indicating the years since entry into CITES interacted with a variable
indicating whether the population is located in a low-corruption country. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 113818.

4.2 Reverse causality and selection on vulnerability

While our speci�cation controls for di�erences in the probability of in-

clusion of di�erent species into CITES via the population �xed e�ects, it

may be that a species' vulnerability or endangerment status change over

time, i.e., species whose populations experience a recent decline are more

likely to be included into CITES. This would be a case of reverse causality:

Because a species is in decline, it gets listed. Similarly, species whose pop-

ulations have increased recently may have a lower probability of inclusion

into CITES. What is the implication of this selection on vulnerability on

the size of our estimated CITES treatment e�ect?

Let us denote the in�uence of such a time-varying omitted variable by

αxst. If this omitted variable is correlated with (in CITES)st, our estimated

e�ect of CITES, β, is biased. With selection on vulnerability, the bias is
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Figure 6: E�ect of CITES on population size by country income level
(species listed in CITES)
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This �gure shows results from a panel regression of log of population size on a set of
treatment dummies, along with a set of population and year �xed e�ects. The left
panel shows the coe�cient estimates of dummy variables indicating the years since a
species' entry into CITES interacted with a variable indicating whether the population is
located outside high-income countries. The right panel shows the coe�cient estimates of
dummy variables indicating the years since entry into CITES interacted with a variable
indicating whether the population is located in a high-income country. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 119538.

downwards, as vulnerability is negatively correlated with population sizes

(α < 0) and as discussed above, the correlation between vulnerability and

CITES is likely positive, i.e., Corr[(in CITES)st, xst] > 0.40

While the inclusion of population �xed e�ects goes some way towards

controlling for this vulnerability bias, i.e., for its species and population

speci�c time-invariant determinants, it does not control for time-varying

vulnerability bias. In an ideal world, we would control for an independent,

time-varying risk vulnerability measure at the population-level for all pop-

ulations across the globe but such a measure does not exist to the best of

our knowledge. The best available proxy at the global level is the IUCN

Red List. The IUCN Red List is the largest available database that pub-
40In our species-level data, the correlation between a species being ever listed in

CITES' Appendix I or II and it being classi�ed as either �critically endangered�, �en-
dangered�, or �vulnerable� by the time-invariant IUCN Red List data is 0.327.
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Figure 7: E�ect of CITES on population size depending on enforcement
status (species listed in CITES, in CITES' member countries)
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This �gure shows results from a panel regression of log of population size on a set of
treatment dummies, along with a set of population and year �xed e�ects. The left
panel shows the coe�cient estimates of dummy variables indicating the years since a
species' entry into CITES interacted with a variable indicating whether the country is
a CITES member in year t for non-�Category 1� countries. The right panel shows the
coe�cient estimates of dummy variables indicating the years since entry into CITES
interacted with a variable indicating whether the country is a CITES member in year
t for �Category 1� countries. 95% con�dence intervals are displayed around each point
estimate. Standard errors are clustered at the species level. Number of observations:
119538.

lishes classi�cations for the endangerment status of individual species, see

Rodrigues et al. (2006), but not at the level of populations. However, there

is hardly any time variation in the IUCN Red List except for few individual

species. Rondinini et al. (2014) estimate that with current funding levels,

83% of Red List assessments will be outdated by 2025 and the average age

of assessments will be more than 30 years. Therefore, available measures

of endangerment status are slow moving indicators at best.

Another way of looking at this problem is through counterfactual think-

ing, see Ferraro (2009). To estimate the e�ectiveness of CITES's listings,

we would like to know what would have happened to a species had it not

been listed. For a credible identi�cation, we need to identify counterfactual

species, i.e., those that are similar to listed species (in terms of their endan-

germent status and other characteristics) except their CITES listing status.
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As two robustness checks, we use two separate approaches to identify such

counterfactual species: 1.) As a crude approximation, we restrict our sam-

ple to species that have similar endangerment status, and 2.) we use a

matching approach in the spirit of Ferraro et al. (2007) to identify counter-

factual species that are similar in terms of observable characteristics. We

will explain both approaches in the following.

Subsample analysis for vulnerable species.�We restrict our sample to

species that have similar IUCN Red List threat evaluations, irrespective of

whether they are listed in CITES or not. We use the IUCN Red List of

Threatened Species classi�cation on extinction risk and create an indicator

variable that identi�es vulnerable species, which we de�ne as species that

are classi�ed as �critically endangered�, �endangered�, and �vulnerable�, i.e.,

species that face a high risk of extinction in the wild. Once we do this, our

sample reduces to 16391 observations, about 14% of our baseline sample.

We present results in Appendix Table 3. The table replicates Table 2 from

the main text but uses the restricted sample. Point estimates are mostly

of the same sign and larger than those in our baseline results presented in

Table 2, in line with our bias prediction. Likely due to the small sample size,

most of the estimated e�ects are not signi�cant with the exception of the

e�ect of CITES in high-income countries (columns (8) and (11)). Hence,

the subsample analysis con�rms CITES' e�ectiveness for populations of

species located in high-income countries.

Matching.�Ferraro et al. (2007) use propensity score and covariate

matching estimators to control for the endogenous selection of species listed

into ESA. This allows them to identify counterfactual species, i.e., compa-

rable species that are not listed into ESA to answer the question what

would have happened to a species' endangerment status if it had not been

listed in ESA. While Ferraro et al. (2007) use a cross-sectional outcome

regression, Ferraro and Miranda (2017) go one step further in terms of

methodology and combine covariate matching with a two way �xed e�ects

panel estimator to identify the counterfactual observations. This is closer

to our application, as we also use panel data and a two way �xed e�ects

panel estimator. We therefore combine the insights by Ferraro et al. (2007)

and Ferraro and Miranda (2017): Following Ferraro and Miranda (2017),

we use nearest neighbor covariate matching with replacement using a Ma-
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halanobis distance metric to create a sample of matched counterfactual

species, i.e., species that are similar in terms of observable characteristics

except their CITES listing status, for all species that are listed into CITES

in our data set. As Ferraro and Miranda (2017), we apply a caliper of

one standard deviation of the propensity score, i.e., the probability that a

species gets listed into CITES' Appendix I or II, and we trim our sample

by keeping only those species for which the estimated propensity score lies

within [0.1;0.9] using Crump et al. (2009)'s rule of thumb. We follow Fer-

raro et al. (2007) and use a Metrick and Weitzman (1996) style regression

to estimate the propensity score, using the same covariates as we use for

the covariate matching. In particular, we estimate a logit model using the

same speci�cation as we use in the log-linear probability model in column

(4) of Appendix Table 1, i.e., the most exhaustive speci�cation of our Met-

rick and Weitzman (1996) style regressions. After our matching procedure,

the sample of matched species is well balanced in terms of covariates and

the propensity score, see Appendix Table 4 and Appendix Figure 2.

Following the methodology of Ferraro and Miranda (2017), we use the

matched species to create a matched panel dataset of populations. This

panel contains all populations listed into CITES as well as all populations

of species identi�ed as nearest neighbors in the matching process, i.e., the

non-treated species that serve as counterfactuals. This ensures that we

estimate the treatment e�ect of CITES on population sizes on a sample of

populations of species that are similar in terms of their observed covariates.

In this panel dataset, we re-estimate our baseline panel �xed e�ects model

from Table 2. We present results in Appendix Table 5. The matched sam-

ple consists of 13645 observations. A major di�erence is that in column

(1), we �nd a smaller e�ect of CITES' listing on population sizes that is no

longer signi�cant, and we do not �nd signi�cant e�ects of CITES after 1975

in columns (3) and (4). As in the baseline results, we �nd non-signi�cant

e�ects when we distinguish between species listed in 1975 in columns (2)

and (4), and no di�erence between sanctioned and non-sanctioned countries

in column (5). We do �nd signi�cant e�ects and con�rm the detrimental

e�ects of corruption for the e�ectiveness of CITES in columns (6) and (7).

We also con�rm the e�ectiveness of CITES in high-income countries in col-

umn (8). As in the baseline results, we do not �nd a di�erential e�ect for
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CITES member countries (column (9)), but we con�rm the importance of

enforcement in column (10). When controlling for all regressors simulta-

neously, we obtain similar signs and magnitudes as in our baseline results,

but with low precision.

To sum up, when identifying counterfactual species, we con�rm the

importance of low corruption, high income, and the quality of enforcement

for the e�ectiveness of CITES.

4.3 E�ects of CITES: Robustness to cohort-speci�c

treatment e�ects

A recent literature studies the estimation of treatment e�ects and event

studies using two way �xed e�ects (TWFE) models with staggered treat-

ments.41 We explore its implications in our setting. This literature pro-

poses alternative estimators than TWFE in the case of staggered treat-

ments when treatment e�ects are heterogeneous across cohorts (units that

receive treatment in the same time period form a cohort, i.e., in our set-

ting species listed in CITES in the same year). Prominent examples for

such estimators are Callaway and Sant'Anna (2021) and Sun and Abraham

(2021). A common feature of this literature is that it focuses on balanced

panels only, and the respective estimators can only be applied in balanced

settings, whereas our panel is unbalanced.42 This literature highlights that

estimated treatment e�ects with staggered treatments may su�er from bias.

This bias arises if the standard estimator forms wrong comparisons, i.e.,

comparisons between treated units (species) with those that will be treated

at a later date. These comparisons contaminate the estimated treatment

e�ects for one cohort by e�ects of later cohorts.

This bias can be remedied by estimating separate, cohort-speci�c event

studies using TWFE using clean control groups.43 This delivers consistent
41de Chaisemartin and D'Haultf÷uille (2022) and Wooldridge (2021) provide technical

surveys of this literature. For a more intuitive survey from an applied perspective, see
Baker et al. (2022), but note that this paper does not include the insights by Wooldridge
(2021).

42Similarly, Goodman-Bacon (2021)'s diagnostic decomposition often used in this con-
text does not apply in unbalanced panels, see Baker et al. (2022), page 391.

43As Wooldridge (2021) points out, two further advantages of TWFE we use in com-
parison with the proposed estimators by Callaway and Sant'Anna (2021) and Sun and
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treatment e�ects for each cohort, see Sun and Abraham (2021), Wooldridge

(2021), and Baker et al. (2022). Baker et al. (2022) explain that this prob-

lem is particularly relevant when the data set contains only few units that

are never treated (never included into CITES). In our analysis, the per-

centage of species in the sample that are never listed into CITES is 85.5%.

Still, as a robustness check, we report estimates for single treatment events,

i.e., cohorts, using as control groups only species that were never treated

(never listed in CITES) to avoid comparison of treated species with species

that will be treated at a later date. We estimate our model on a sample

that only includes species that where included into CITES at its inception

in 1975, and species that have never been included into CITES. Hence, this

regression allows us to consistently estimate the treatment e�ects for those

species that were included in 1975. We present these results in Appendix

Figure 3. Similar to the results presented in the left panel of Appendix

Figure 1, while point estimates indicate an increasing e�ect of CITES over

time, the precision of the estimates is low.

Similarly, we estimate an event study for all species listed into CITES

in 1977, the next CoP of CITES, see Appendix Figure 4. There, we �nd

similar e�ects as in the right panel of Appendix Figure 1, both signi�cant

and increasing over time.

Finally, we estimate an event study for all species listed into CITES in

1979, see Appendix Figure 5. Estimates are imprecise. It seems that we

identify signi�cant and positive e�ects of CITES primarily from the varia-

tion o�ered by the species included in 1977.44 In unreported regressions, we

estimated cohort-speci�c treatment e�ects for species added at later CoPs.

Most of these e�ects could not be identi�ed in our sample, as only few

species are included in any given year after 1979, see Figure 1. Also, not

enough time has passed for species included at more recent CoPs to iden-

tify longer time lags. There are simply not enough species listed in CITES

in our sample to allow identi�cation of cohort-speci�c treatment e�ects in

Abraham (2021) are that it can be applied in unbalanced panels and it allows for the
inclusion of heterogeneous trends, both features that are highly relevant in our applica-
tion.

44There are no listed species in 1976 nor 1978, see 1. Listing mostly takes place at
the biannual Conferences of the Parties (CoP) of CITES, so with few exceptions cohorts
are formed by the species included at a particular CoP.
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later years. Note that for consistent estimates of cohort-speci�c e�ects, the

number of species per cohort has to be su�ciently large. Intuitively, in the

extreme case of only one species listed per cohort (year), estimates would

su�er from an incidental parameter problem and could not be estimated

consistently.

To sum up, allowing for cohort-speci�c e�ects of CITES is pushing the

variation in our unbalanced panel to such an extent that precise identi�ca-

tion becomes di�cult. Still, at least for some cohorts, CITES has signi�cant

and positive e�ects on population sizes.

4.4 Species-type speci�c treatment e�ects

We have seen that CITES is e�ective in countries that properly enforce

it, but its e�ect occurs mostly with a 16 to 20 year lag. We now explore

whether treatment e�ects di�er across di�erent types of species. For ease

of exposition, we only include the last treatment dummy (τ > 20) in these

regressions instead of the full set of lags. We estimate separate e�ects for

non-�Category 1� member countries (i.e., where CITES is poorly imple-

mented or enforced) and for �Category 1� countries (i.e., where CITES is

e�ectively implemented or enforced). We present results in Appendix Table

6. We consider the following di�erent groups of species:

Intentionally-used species.�Some species have a direct economic value

as they are used for human consumption, and as a consequence they are

intentionally harvested with potential negative e�ects on their population

sizes. We create an indicator variable for species with intentional use,

i.e., where the species is the target of economic activity. Population size

increases for species listed in CITES for �Category 1� countries only. We

estimate a negative coe�cient for the interaction term, but due to the lack

of precision, it is not statistically signi�cant, see column (1).

Vulnerable species.�The IUCN Red List provides an evaluation of the

extinction risk of species using di�erent categories. We identify species that

are classi�ed as either �critically endangered�, �endangered�, or �vulnerable�

by the IUCN Red List as vulnerable species and create the according inter-

action term, see column (2). We �nd that CITES only increases population

size in �Category 1� member countries. The interaction term for vulnerable
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species is not precisely estimated.

Highly-studied species.�Some species receive more funding for their

conservation and hence are more studied by researchers (see, e.g., Bram-

billa et al., 2013; Colléony et al., 2017). This may be because some species

are more well-known and have particularly desirable features in the view of

the general public, e.g., the �cuteness� of koalas (Phascolarctos cinereus).45

CITES' e�ectiveness may be di�erent for these highly-studied species. Our

population data contain information about the scienti�c study that is the

data source for a speci�c population's size over time. We therefore count

the number of studies per species and year and create a dummy variable

for those species for which the number of studies is larger than the sample

average. We present results in column (3). We do not �nd evidence that

CITES e�ectiveness changes for highly-studied species.

Well-known species.�The number of scienti�c studies may not fully

re�ect how well-known a species is in the general public. We therefore use a

more direct proxy by using data from the citizen science project iNaturalist.

Contributors to iNaturalist can identify the species of the animal they have

seen using their smartphone and have the possibility to corroborate the data

by con�rming the species identi�ed by other users in the iNaturalist app.

Di�erent users should agree more often on a species the more well-known it

is. We calculate the average number of identi�cation agreements by species

and year. We interpret a higher than average number of agreements as an

indication that a species is well-known. Column (4) shows that CITES'

e�ectiveness does not depend on how well-known a species is.

Large species.�We consider species-type speci�c treatment e�ects for

�charismatic megafauna� as a species' charisma may be a function of its

physical size (see Metrick and Weitzman, 1996). We create a variable

for large species as a dummy that equals one for those species with a

higher than average body mass in our sample, and zero otherwise.46 Ac-

cording to our results in column (5), CITES increases population size in

�Category 1� member countries for both large and other species. In non-
45More generally, the less similar a particular taxonomic order is to humans (i.e., the

larger its phylogenetic distance), the lower the number of scienti�c studies on this species
(Martín-López et al., 2009).

46In this group, our sample includes species that are well-known under their common
names bu�alo, elephant, gira�e, hippopotamus, manatee, rhino, walrus, and whale.
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�Category 1� member countries, CITES increases the population size only

of large species. As these species are more readily recognizable by enforcing

agencies such as customs, the enforcement of CITES' regulations for these

species may be easier. It may also re�ect that these species are particularly

salient for the international community and member countries with weak

enforcement therefore focus their e�orts on these species.

While our results show that species with di�erent characteristics do

not seem to bene�t di�erently from CITES,47 we �nd clear evidence of

heterogeneous treatment e�ects across countries as CITES is only e�ective

in countries with strong enforcement. We therefore explore the impact

of unobserved time-varying country-level confounding factors in the next

section.

4.5 Controlling for country-speci�c time-varying con-

founding factors

Our results have shown the importance of country characteristics for CITES'

e�ectiveness. Countries' enforcement e�orts, their attitudes towards pro-

tecting wildlife, the size of their wildlife populations, and voting in favor of

listing further species at one of the CoPs are likely correlated. Over time,

these attitudes may change due to changes in countries' governments as

well as changes in societal attitudes and awareness concerning environmen-

tal issues. These and other time-varying country-speci�c factors that a�ect

both the probability of a species' listing in CITES and its population size

may bias our results. For example, the occurrence of (civil) wars correlates

with wildlife decline (see Daskin and Pringle, 2018). The extent of agricul-

tural production also varies across countries, and increases in agricultural

production are a key driver of habitat loss and subsequent wildlife decline

(see Green et al., 2005).

To control for these and other unobserved country-speci�c time-varying

factors, in a �rst step, we include country-speci�c trends by augmenting

Equation (3) with δct. To check robustness, we consider several speci�-

cations that account for di�erent functional forms of the country-speci�c
47Excluding large species, as CITES is e�ective for large species in non-�Category 1�

member countries.
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time trends. Following Neumark et al. (2014), we consider polynomials

of orders 2 to 5 for country-speci�c trends, and we compare results with

our main speci�cation (i.e., without country-speci�c trends). Results in

Appendix Table 7 show the robustness of our baseline results. Across all

speci�cations, pre-trends are not signi�cant. For all speci�cations, we ob-

tain a positive and signi�cant e�ect of CITES on population sizes 16 to 20

years after species' listing. We also obtain a positive and signi�cant e�ect

of CITES after 11 to 15 years of listing the species in CITES at a 10%

of signi�cance level for all speci�cations, except for our main speci�cation

(i.e., without country-speci�c trends).

In a second step, instead of country-speci�c time trends, we include

country-year �xed e�ects into our model to control for arbitrary shocks

across countries and time, e.g., time-varying enforcement and compliance

patterns over CITES signatory and non-signatory parties.

Figure 8 displays results for our event study speci�cation augmented

with the country-speci�c linear trends (in the left panel) and country-year

�xed e�ects (in the right panel). Obtained results are consistent with our

main �ndings and con�rm that listing species in CITES has a positive

e�ect on species population size. Again, this e�ect is lagged and starts to

be signi�cant from 16 to 20 years after listing.

4.6 Are estimates of CITES' e�ectiveness driven by

domestic regulation?

In our analysis, we have considered species listed in Appendices I and II, i.e.,

those species which have been listed after approval by the CITES member

countries. The previous section controls for country-year speci�c drivers

of CITES listings, e.g., country-speci�c lobbying e�orts in favor or against

CITES listings. At the same time, particularly range countries may lobby

for the protection of speci�c species. More generally, some countries may

protect their wildlife populations by domestic regulations, independent of

whether a species is included in CITES. One may think that our estimates

for the e�ectiveness of CITES simply pick up the e�ectiveness of such

domestic regulations, and wrongly attribute their e�ect to CITES. The

multilateral listing decision occurs in the same year for all populations of
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Figure 8: E�ect of CITES on population size, including country-speci�c
trends, or country-year FEs (species listed in CITES)
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This �gure shows coe�cient estimates from an event study speci�cation, i.e., a panel
regression of log of population size on a set of dummy variables indicating the years
since a species' entry into CITES, along with a set of population �xed e�ects. The left
panel shows the coe�cient estimates of a speci�cation that includes country-speci�c time
trends. The right panel shows the coe�cient estimates of a speci�cation that includes
country-year �xed e�ects. 95% con�dence intervals are displayed around each point
estimate. Standard errors are clustered at the species level. Number of observations:
119538 (left panel) and 118106 (right panel).

a species across all countries, whereas domestic regulations that protect

particular species that are unrelated to CITES can be implemented at

any point in time. Our identi�cation strategy uses this timing of listing

decisions that is the same for all populations of a species but that varies

across species and correlates it with population sizes over time.

It is di�cult to identify whether there exists domestic regulation that

protects a particular species in a country in a given year for the large list

of species and populations in our dataset. However, a particular feature

of CITES' appendices allows us to proxy for such e�orts at the species-

country-year level.

Appendix III is di�erent from Appendices I and II. Whereas inclusion

into Appendices I and II occurs only after a positive vote by a two-thirds

majority of the member countries, members unilaterally can list into Ap-

pendix III native species not included in Appendices I and II that they

protect through domestic regulation. These inclusions have to be submit-
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ted to the Secretariat. To qualify, species have to be native to the country,

have to be protected by domestic policies, and require control of their in-

ternational trade.48

To investigate whether our estimates of the e�ectiveness of CITES are

driven by species-speci�c domestic policies, we create a dummy variable

(domestic regulation)sct that is 1 if country c has in place domestic regula-

tion that protects species s in year t, and 0 otherwise. We proxy this by a

listing of the species in Appendix III by the respective country.49 We then

estimate the following model:

lnNslt = µsl + ηct + β(in CITES)st
+δ(domestic regulation)sct + εslt. (4)

We present results in Table 3. In column (1), we estimate a restricted

version of Equation (4) by including the dummy for domestic regulation,

but not the CITES listing dummy. The estimate is negative and not signi�-

cant. In column (2), we only include our regressor of interest, (in CITES)st.

Note that column (2) in Table 3 is similar to column (1) in Table 2 but

now includes country-year �xed e�ects instead of only year �xed e�ects

to control for unobserved country-speci�c factors that may vary over time

as in Section 4.5. The estimate is positive, signi�cant, and similar to its

counterpart in Table 2. In column (3), we add our control for domestic

regulation. Whereas the e�ect of CITES remains signi�cant and barely

changes, the e�ect of domestic regulation remains not signi�cant. This is

not surprising, given the low correlation between the two regressors of 0.07.

We then reestimate the event speci�cation from the right panel of Figure

8 but add the control variable �domestic regulation�. We present results

in Figure 9. While domestic regulation is again not signi�cant, the point

estimates of the e�ects of CITES are virtually unchanged.50

48See CITES Article II(3) in combination with Conf. 9.25 (Rev. CoP18) �Implemen-
tation of the Convention for species in Appendix III� and its predecessor Conf. 5.22,
and Favre (1989).

49A caveat is in order, though: Countries may have domestic regulation that protects
a particular species but not list it in Appendix III. In this case, our proxy does not
measure domestic protection accurately.

50We present point estimates of the event study with and without controls in Appendix
Table 8.
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Table 3: E�ect of CITES on population size controlling for domestic regu-
lation

(1) (2) (3)

domestic regulation −0.112 −0.215
(0.226) (0.218)

in CITES 0.211 0.212
(0.061) (0.061)

N 118106 118106 118106

Notes: Table 3 reports estimated regression coe�cients from a panel regression of log of pop-
ulation size on a set of regressors along with a set of population and country-year �xed e�ects.
Standard errors are in parentheses and are clustered at the species level. Column (1) estimates a
regression in which the treatment dummy equals one for populations of species located in countries
with domestic regulation protecting the respective species (i.e., for countries listing the species in
Appendix III). Column (2) includes a dummy equal to one for species listed in Appendix I or II,
i.e., the same regressor as in column (1) in Table 2. Column (3) includes both treatment dummies
simultaneously.

In sum, we �nd that domestic regulation is not driving our results that

CITES has a positive e�ect on wildlife populations.

4.7 Is CITES e�ective because it bans wildlife trade

or because it enables sustainable wildlife trade?

We have established that inclusion into CITES leads to an increase in the

size of wildlife populations. Until now, our analysis has remained silent on a

key debate concerning CITES. The main way how CITES o�ers protection

for species is via inclusion into either its Appendix I or Appendix II. These

two appendices represent two di�erent approaches to wildlife conservation.

Species listed in Appendix I cannot be traded internationally for commer-

cial purposes, i.e., it imposes an international trade ban. Species listed in

Appendix II can be traded internationally as long as this trade is sustain-

able and does not endanger the survival of the species (�sustainable use�).

Which of these two approaches is more e�ective in protecting wildlife is

debated among conservationists, policy makers, and the wider community.

Economic theory as well as case studies provide con�icting arguments.

On the one hand, prohibiting trade may have negative e�ects as it

reduces the (international) legal value of wildlife to zero, reducing economic

incentives to protect wildlife. Also, enforcing wildlife trade bans is di�cult.

Bans reduce the legal supply of goods from wildlife, but do not directly

a�ect demand. At the same time, bans may stigmatize the purchase and
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Figure 9: E�ect of CITES on population size controlling for domestic
regulation
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This �gure shows coe�cient estimates from an event study speci�cation, i.e., a panel
regression of log of population size on a set of dummy variables indicating the years
since a species' entry into Appendix I or II of CITES, along with a set of population and
country-year �xed e�ects. It also includes a dummy that equals one for populations of
species located in countries with domestic regulation protecting the respective species
(i.e., for countries listing the species in Appendix III). 95% con�dence intervals are
displayed around each point estimate. Standard errors are clustered at the species level.
Number of observations: 118106.

possession of goods derived from endangered species, and hence may reduce

demand as well, see Fischer (2004).

On the other hand, sustainable use of species listed in Appendix II

allows local communities to generate income from their legal use in the long

run (Rivalan et al., 2007; Challender et al., 2015). However, it may increase

demand by legitimizing the consumption of wildlife goods. Consumers may

interpret labels that assure goods are produced in accordance with CITES

as a go-ahead without any negative environmental consequences. It may

also allow poachers to launder illegally harvested specimens in the legal

market, see Fischer (2004).

Trade bans create incentives for poaching and diversion (or �leakage�) to

illegal channels, rendering bans ine�ective. While these leakage concerns

are likely more important for trade bans as their cost of compliance is

higher, sustainable use restrictions impose costs on traders and therefore
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Figure 10: Distribution of year of �rst entry into CITES' Appendix I and
Appendix II

0

50

100

150

N
um

be
r o

f s
pe

ci
es

1975 1985 1995 2005 2015
Year of entry into CITES' Appendix I

0

50

100

N
um

be
r o

f s
pe

ci
es

1975 1985 1995 2005 2015
Year of entry into CITES' Appendix II

Figure depicts the distribution of the year a species entered into Appendix I (left panel)
and Appendix II (right panel) in our data.

also can lead to illegal wildlife trade. As we use full wildlife population

data, not trade or production data, we circumvent these issues.

To disentangle which mechanism, trade bans or sustainable use, dom-

inates the positive e�ect of CITES on wildlife population sizes, we distin-

guish species listed in Appendix I and species listed in Appendix II. In

Equation (3) we have de�ned tCITES
s as the year when a species s is in-

cluded in either Appendix I or II for the �rst time, whichever year comes

�rst. We now distinguish whether a species has ever been listed in Ap-

pendix I or Appendix II. We show the distribution of years when a species

in our sample is �rst listed in one of the two appendices in Figure 10. There

has been a movement away from Appendix I in recent years and species

now enter CITES via its Appendix II.51

51Note that the number of species entering into any of CITES' appendices depicted
in Figure 1 is not the sum of species entering in Appendix I and Appendix II as species
can have been uplisted or downlisted over time. For example, the Mauritius kestrel
(Falco punctatus), a falcon from Mauritius, was included into Appendix II in 1975 and
uplisted to Appendix I in 1977, hence it appears in both the left and right panel of
Figure 10, but only once in Figure 1. In addition, in a given year, a (sub)species may
be listed in one appendix, but a subspecies of the same species may be listed in another
appendix, so that the species appears in both appendices in one year. For example,
di�erent subspecies of the brown bear (Ursus arctos) were listed in either Appendix I
or II in 1975.

45



Figure 11: E�ect of CITES on population size (App. I vs. App. II),
including country-year FEs (species listed in CITES)
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The left panel shows coe�cient estimates from an event study speci�cation, i.e., a panel
regression of log of population size on a set of dummy variables indicating the years
since a species' entry into CITES' Appendix I. The right panel shows coe�cients from a
separate estimation where dummy variables indicate the years since entry into CITES'
Appendix II. Both regressions include population and country-year �xed e�ects. 95%
percent con�dence intervals are displayed around each point estimate. Standard errors
are clustered at the species level. Number of observations: 118106.

We show the results of two regressions in Figure 11. The left panel

shows coe�cients of an event study where we de�ne treatment as the year

when a species is listed in Appendix I. The right panel shows the results for

a regression where we de�ne treatment as the year when a species is listed

in Appendix II. We �nd that population sizes of species included into either

Appendix I or II increase by similar amounts. However, the positive e�ect

on wildlife population sizes is signi�cant after 6 to 10 years of inclusion into

Appendix II, whereas we �nd a positive and signi�cant e�ect for species

included into Appendix I after 16 to 20 years.

Some species may move from Appendix II to Appendix I (they get �up-

listed�) or from Appendix I to Appendix II (they get �downlisted�). The

previous regressions ignored these dynamics. We therefore take into ac-

count a species' history of being uplisted or downlisted as a robustness

check. For example, the bald eagle (Haliaeetus leucocephalus) was down-

listed from Appendix I to Appendix II in 2005, while the African elephant

(Loxodonta africana) was �rst listed in CITES' Appendix II in 1977, and
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uplisted to Appendix I in 1990. Listings in CITES appendices can occur

at any taxonomic level, i.e., either individual (sub-)species are included in

an appendix or a whole taxonomic group (genus, family, order) is included,

i.e., groups of related species. The sturgeon, the source of sought-after

caviar, is a good example. The common name sturgeon refers to 27 species

which are part of the family Acipenseridae, which itself is part of the larger

order Acipenseriformes. In 1975, the species Acipenser oxyrinchus was in-

cluded in Appendix I. In 1979, this species was downlisted to Appendix

II. In 1998, the whole order Acipenseriformes was included in Appendix II.

The family Lemuridae, a group of primates found primarily in Madagascar,

was included in Appendix I in 1975, except the probably best known lemur

species, the ring-tailed lemur (Lemur catta), which was included in Ap-

pendix II. Lemur catta was then uplisted into Appendix I in 1977. We take

into account changes like these in Figure 12, where we drop populations of

species that have ever been listed in both Appendix I and Appendix II dur-

ing the period available for those populations in the sample (�switchers�).52

Figure 12 con�rms that trade bans and sustainable use are both e�ective

in the long-run. We �nd signi�cant positive e�ects on wildlife populations

of incentivizing sustainable use six to ten years after inclusion into Ap-

pendix II. However, it seems that identi�cation of positive e�ects for trade

bans, i.e., Appendix I, in Figure 11 stems mostly from �switchers�. The low

precision of the e�ect of Appendix I listings implies that we cannot rule
52Speci�cally, we drop from our regressions 4707 observations that correspond to

populations of 46 (sub-)species. Their common names are: Addax, African ele-
phant, American alligator, American crocodile, Bald eagle, Black caiman, Black
rhinoceros, Bonobo, Brown bear (Grizzly and Kodiak bear), Chimpanzee, Common
spider tortoise, Dalmatian pelican, Dugong, Fin whale, Flatback turtle, Forest ele-
phant, Green turtle, Grey wolf, Guadalupe fur seal, Gyrfalcon, Iberian lynx, Indus
blind dolphin, Insular �ying-fox, Irrawaddy dolphin, Leatherback turtle, Loggerhead
sea turtle, Markhor, Mauritius kestrel, Mongolian saiga, Morelet's crocodile, Nile
crocodile, Northern elephant seal, Olive ridley, Peregrine falcon, Red-necked ama-
zon, Ring-tailed lemur, Saltwater crocodile, Samoa �ying fox, Sei whale, Southern
white rhinoceros, Tiger, Vicuna, and Yellow-shouldered amazon. Of these, 9 were
downlisted from Appendix I to Appendix II of CITES: American alligator, Bald ea-
gle, Black caiman, Mongolian saiga, Morelet's crocodile, Nile crocodile, Northern ele-
phant seal, Southern white rhinoceros, and Vicuna; di�erent populations of 7 (sub-)
species were listed in di�erent CITES' appendices (I and II) the same year: Dugong, Fin
whale, Grizzly bear, Markhor, Red-necked amazon, Sei whale, and Yellow-shouldered
amazon. For example, all populations of Dugong were listed in Appendix I in 1975,
except those of Australia that were listed in Appendix II. The remaining (sub-)species
correspond to species that were uplisted from Appendix II to Appendix I of CITES.
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Figure 12: E�ect of CITES on population size (App. I vs. App. II),
including country-year FEs (species listed in CITES), excluding �switchers�
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The left panel shows coe�cient estimates from an event study speci�cation, i.e., a panel
regression of log of population size on a set of dummy variables indicating the years
since a species' entry into CITES' Appendix I. The right panel shows coe�cients from a
separate estimation where dummy variables indicate the years since entry into CITES'
Appendix II. Both regressions include population and country-year �xed e�ects. 95%
percent con�dence intervals are displayed around each point estimate. Standard errors
are clustered at the species level. Number of observations: 113556.

out positive e�ects of trade bans in the early years after their imposition.

One of the reasons for this may be the relatively low number of a�ected

species who are not �switchers� in Appendix I.

5 Conclusion

Wildlife is in decline. One driver of this decline is international wildlife

trade. CITES is the international environmental agreement whose goal is

to protect endangered species from extinction either by restricting their

international trade to sustainable levels or by banning their international

trade altogether. We provide the �rst global assessment of CITES' e�ec-

tiveness. We combine geo-referenced panel data on wildlife population sizes

for 11054 vertebrate populations across 185 countries with the history of

their species' inclusion into CITES and of countries' CITES membership.

We �nd that CITES is e�ective: Wildlife populations increase by 20% after

their species' inclusion into CITES. This e�ect accrues slowly over time.
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We �nd signi�cant and positive e�ects 16 to 20 years after species are listed

in CITES.

While our results show that CITES does prevent wildlife decline, our

approach remains silent on whether other approaches would be more e�-

cient to protect wildlife than regulating wildlife trade via CITES. Neither

does our approach determine whether the e�ect of CITES is strong enough

to prevent the eventual extinction of a population or of the whole species,

or whether CITES merely postpones its extinction. Wildlife decline is

not only caused by the harvesting and consumption of endangered species,

the focus of CITES. The production of merchandise goods for foreign con-

sumption in biodiversity hotspots has been shown to have large detrimental

e�ects on wildlife due to its impact on habitat loss, see Lenzen et al. (2012).

Identifying and monitoring the e�ects of international merchandise trade

on wildlife may well be needed to e�ectively prevent the extinction of en-

dangered species. Irrespective of the speci�c drivers of wildlife decline, our

research highlights that e�orts to create detailed, time-varying indicators

of the vulnerability of wildlife at the population level should be increased,

as our knowledge of the state of wildlife populations is still inadequate.

Our results reveal that CITES is e�ective at protecting wildlife, but

only in member countries that properly enforce its rules. We also docu-

ment that CITES mainly protects populations in high-income countries,

which may indicate lack of funding for proper enforcement in low-income

countries. Focusing on mechanisms, we �nd that both wildlife trade bans

and restrictions that incentivize sustainable use of endangered species in-

crease wildlife.

In light of these results, it seems that much of the ongoing focus on

the relative merits of trade bans versus sustainable use of wildlife is at

least partly misguided. International wildlife trade regulation can be a

tool for e�ective wildlife protection�if it is properly enforced, and prop-

erly funded. More generally, CITES demonstrates that international envi-

ronmental agreements can be e�ective. However, mere membership in an

agreement is not enough; instead, an agreement is e�ective if its members

commit to its rules and enforce them. Therefore, empirical evaluations of

international environmental agreements should take into account not only

whether countries sign up to them but also the level of de facto enforcement
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of their rules.
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For Online Publication

Appendix for �International Environmental Agree-

ments and Imperfect Enforcement: Evidence

from CITES�

A Determinants of CITES listings

We provide evidence that di�erent types of species are not selected ran-

domly to be listed in CITES, creating a selection bias. We investigate a

number of factors that may a�ect the probability of a particular species

being listed into CITES. For example, more charismatic species that are

well-known and studied more often, or species with a higher extinction risk

may have a higher probability of being listed.

We use the LPI data in combination with the CITES listing data, data

on the average body mass of a species from the EltonTraits 1.0 dataset, as

well as IUCN Red List extinction risk data, data on whether a species is

used intentionally, and whether the species is threatened by �shing, both

intentionally (the species is the target of the �shing activity) or uninten-

tionally (e.g., by-catch). Data sources are described in detail in the main

text in Section 2.3.

As regressors, in addition to including dummies for the taxonomic class

(mammal, bird, reptile, and amphibian; �shes are the baseline category),

we consider whether the species is vulnerable (vulnerable) and whether

there is intentional biological resource use of the species (the species is

the target), i.e., including hunting and collection of terrestrial animals,

�shing and harvesting aquatic resources (intentional use). We also include

separately any direct threat of �shing, which includes unintentional e�ects,

i.e., the species is not the target (�shing). The last regressor is the log of

the average of the body mass of the species (log of body mass).

We present results of an OLS regression in which the dependent variable

is a dummy variable that equals one when the species has ever been listed

in CITES and zero when the species has never been listed in CITES in

Appendix Table 1. As regressors, we use the variables described above.

Columns (1) to (4) show that mammals, birds, and reptiles are more likely
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Appendix Table 1: Determinants of CITES listings (cross-section)

(1) (2) (3) (4) (5)

mammal 0.416 0.353 0.346 0.308 0.053
(0.025) (0.024) (0.023) (0.024) (0.023)

bird 0.123 0.116 0.167 0.136
(0.011) (0.012) (0.013) (0.014)

reptile 0.246 0.228 0.276 0.244
(0.034) (0.038) (0.037) (0.038)

amphibian −0.014 −0.039 0.019 −0.012
(0.009) (0.014) (0.015) (0.016)

vulnerable 0.280 0.231 0.227 0.195
(0.023) (0.023) (0.023) (0.033)

intentional use 0.162 0.184 0.131
(0.016) (0.019) (0.034)

�shing −0.097
(0.020)

log of body mass 0.038
(0.004)

R2 0.16 0.22 0.25 0.25 0.27
N 3622 2838 2838 2838 1647

Notes: Appendix Table 1 reports estimated regression coe�cients from an OLS regression of a dummy variable
that equals one when the (sub-)species has ever been listed in CITES (and zero when it has never been listed
in CITES) on a number of variables a�ecting the probability of being listed. Standard errors are in parentheses
and are clustered at the species level. Data are for a cross-section of the subsample of species from the LPI data
for which the IUCN Red List reports information on threats. Regressions in columns (1)-(4) include dummies
for the taxonomic class of the species: mammal, bird, reptile, and amphibian; �shes are the baseline category.
Columns (2)-(5) include variables that measure whether the species is vulnerable and whether the species is used
intentionally. Column (4) also includes a variable that measures whether there is any threat of �shing. Column
(5) includes a variable for body mass of the species. Data on body mass is only available for mammals and birds,
therefore column (5) includes a dummy for the taxonomic class mammals only; birds are the baseline category.

to be listed in CITES than �shes. This is consistent with Metrick and

Weitzman (1996) who analyze listing decisions for the Endangered Species

Act in the United States. A species is more likely to be listed if it is more

vulnerable, i.e., it has a higher extinction risk, see columns (2) to (5); if

a species is used intentionally, see columns (3) to (5); and it is less likely

to be listed if there is any direct threat of �shing, see column (4). Finally,

column (5) shows that large species (i.e., with a higher body mass) are

more likely to be listed.53

B Baseline results for non-contentious species

53Because data on body mass is only available for mammals and birds, this regression
only includes a dummy for the taxonomic class mammals; birds are the baseline category.
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C Separate e�ects for species listed in 1975

and after

Appendix Figure 1: E�ect of CITES on population size (species listed in
CITES). Species listed in 1975 vs. species listed after 1975
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This �gure shows coe�cient estimates from Equation (3), i.e., a panel regression of log
of population size on a set of dummy variables indicating the years since a species' entry
into CITES, along with a set of population and year �xed e�ects. The left panel shows
the coe�cient estimates of dummy variables indicating the years since entry into CITES
interacted with a variable indicating whether the species was listed in CITES in 1975.
The right panel shows the coe�cient estimates of dummy variables indicating the years
since entry into CITES interacted with a variable indicating whether the species was
listed in CITES after 1975. 95% con�dence intervals are displayed around each point
estimate. Standard errors are clustered at the species level. Number of observations:
119538.

D E�ect of CITES: subsample analysis and

matched sample
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Appendix Table 4: Covariate balance summary statistics for the matched
sample of species

Standardized Variance
di�erences ratio

raw matched raw matched

mammal 0.777 -0.000 2.320 1.000
bird -0.145 0.000 0.957 1.000
reptile 0.223 -0.000 2.231 1.000
amphibian -0.352 -0.000 0.063 1.000
vulnerable 0.777 -0.000 2.457 1.000
intentional use 0.724 -0.000 1.257 1.000
�shing -0.334 -0.000 0.338 1.000
Notes: Appendix Table 4 shows the standardized di�erences and variance
ratios for the covariates used to identify the matched species for the nearest
neighbor covariate matching used to preprocess the data before calculating
the regressions reported in Appendix Table 5.

Appendix Figure 2: Balance plot for the matched sample of species
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Balance plot

This �gure shows a balance plot for the raw data and the matched sample of species
where the propensity score, i.e., the probability that a species is listed in Appendix I or
II of CITES at some point in time, is estimated using a logit model and using the same
covariates as in column (4) of Appendix Table 1. We use this propensity score for the
caliper to preprocess the data before calculating the regressions reported in Appendix
Table 5. Density plots use an optimal Epanechnikov kernel. Note that the estimated
propensity score lies strictly within [0;1] for all species (minimum value is 0.006). The
apparent occurrence of values < 0 is only due to the smoothing behavior of the kernel
density estimator and does not a�ect the matching parameter estimates.
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E Separate e�ects for species listed in the �rst

three cohorts (1975, 1977 or 1979), exclud-

ing species listed in CITES in other years

Appendix Figure 3: E�ect of CITES on population size (species listed in
CITES in 1975). Excluding species listed in CITES in other years
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This �gure shows coe�cient estimates from Equation (3), i.e., a panel regression of log
of population size on a set of dummy variables indicating the years since a species'
entry into CITES, along with a set of population and year �xed e�ects. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 109923.
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Appendix Figure 4: E�ect of CITES on population size (species listed in
CITES in 1977). Excluding species listed in CITES in other years
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This �gure shows coe�cient estimates from Equation (3), i.e., a panel regression of log
of population size on a set of dummy variables indicating the years since a species'
entry into CITES, along with a set of population and year �xed e�ects. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 100092.
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Appendix Figure 5: E�ect of CITES on population size (species listed in
CITES in 1979). Excluding species listed in CITES in other years
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This �gure shows coe�cient estimates from Equation (3), i.e., a panel regression of log
of population size on a set of dummy variables indicating the years since a species'
entry into CITES, along with a set of population and year �xed e�ects. 95% con�dence
intervals are displayed around each point estimate. Standard errors are clustered at the
species level. Number of observations: 107194.
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F Species-type speci�c treatment e�ects

Appendix Table 6: E�ect of CITES on population size. Species-type
speci�c treatment e�ects for species listed in CITES in CITES' member
countries

(1) (2) (3) (4) (5)

for non-�Category 1� member countries

(1) (2) (3) (4) (5)

> 20 years later −0.006 −0.067 −0.170 −0.154 −0.203
(0.150) (0.183) (0.093) (0.082) (0.102)

...for species with intentional use −0.126
(0.178)

...for vulnerable species −0.049
(0.208)

...for highly-studied species 0.178
(0.105)

...for well-known species 0.124
(0.074)

...for large species 0.323
(0.154)

N 103429 100712 119538 119538 119538

for �Category 1� member countries

(1) (2) (3) (4) (5)

> 20 years later 0.389 0.377 0.268 0.309 0.333
(0.106) (0.088) (0.060) (0.069) (0.077)

...for species with intentional use −0.157
(0.130)

...for vulnerable species −0.213
(0.118)

...for highly-studied species 0.140
(0.095)

...for well-known species 0.061
(0.045)

...for large species −0.039
(0.116)

N 103429 100712 119538 119538 119538

Notes: Appendix Table 6 reports coe�cient estimates of a regression which uses lnNslt as the dependent variable and includes separate treatment dummies that indicate
populations of species listed at least 21 years in CITES' appendices and located in member countries classi�ed as non-�Category 1� countries and �Category 1� countries,
as well as interaction terms of these dummies with species-level dummies which identify di�erent types of species. Column (1) estimates the regression including an
interaction term of the separate treatment dummies with a dummy variable that equals one for species with intentional use. Column (2) includes an interaction for
vulnerable species, i.e., when they are classi�ed as either �critically endangered�, �endangered�, or �vulnerable� by the IUCN Red List. Column (3) includes an interaction
with highly-studied species, i.e., with a higher than average number of studies per species and year. Column (4) includes an interaction with well-known species, i.e., with
a higher than average number of identi�cation agreements by the users of iNaturalist per species and year. Column (5) includes an interaction with large species, i.e.,
with a higher than average body size. All regressions contain population and year �xed e�ects. Standard errors are in parentheses and are clustered at the species level.
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G Alternative speci�cations for country-speci�c

trends

Appendix Table 7: E�ect of CITES on population size

(1) (2) (3) (4) (5) (6)

6-10 years before 0.030 0.053 0.053 0.079 0.084 0.079
(0.099) (0.087) (0.087) (0.088) (0.089) (0.089)

1-5 years before −0.056 −0.016 −0.016 0.019 0.029 0.023
(0.121) (0.102) (0.102) (0.102) (0.102) (0.102)

year of listing in CITES −0.073 −0.041 −0.041 −0.002 0.003 −0.003
(0.122) (0.113) (0.113) (0.113) (0.113) (0.113)

2-5 years later −0.002 0.032 0.033 0.057 0.063 0.056
(0.121) (0.107) (0.107) (0.108) (0.108) (0.108)

6-10 years later 0.104 0.161 0.162 0.167 0.174 0.165
(0.127) (0.108) (0.109) (0.109) (0.109) (0.110)

11-15 years later 0.158 0.222 0.222 0.236 0.241 0.234
(0.140) (0.116) (0.116) (0.115) (0.116) (0.116)

16-20 years later 0.271 0.337 0.337 0.364 0.368 0.362
(0.150) (0.120) (0.120) (0.121) (0.121) (0.120)

≥ 20 years later 0.461 0.512 0.512 0.541 0.544 0.539
(0.165) (0.123) (0.123) (0.123) (0.123) (0.123)

N 119538 119538 119538 119538 119538 119538
order of polynomial of time 0 1 2 3 4 5

Notes: Appendix Table 7 reports estimated regression coe�cients and standard errors in parentheses. Standard errors are clustered at the species level. Dependent variable
lnNslt. All regressions contain population and year �xed e�ects. For comparison, column (1) presents results of Equation (3). Columns (2)-(6) include country-speci�c
(non-)linear trends modelled as polynomials of order 1 to 5 of time, respectively.
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H E�ect of CITES controlling for domestic

regulation

Appendix Table 8: E�ect of CITES on population size controlling for
domestic regulation

(1) (2) (3) (4) (5)

domestic regulation -0.112 −0.215 −0.199
(0.226) (0.218) (0.194)

in CITES 0.211 0.212
(0.061) (0.061)

6-10 years before 0.086 0.086
(0.098) (0.098)

1-5 years before 0.041 0.041
(0.105) (0.105)

year of listing in CITES 0.012 0.013
(0.112) (0.112)

2-5 years later 0.075 0.075
(0.106) (0.106)

6-10 years later 0.167 0.168
(0.111) (0.111)

11-15 years later 0.244 0.245
(0.119) (0.119)

16-20 years later 0.408 0.408
(0.122) (0.122)

>20 years later 0.579 0.579
(0.126) (0.126)

N 118106 118106 118106 118106 118106

Notes: Appendix Table 8 reports detailed results of regressions controlling for domestic regulation presented in the main text. Standard
errors are in parentheses and are clustered at the species level. Columns (1) to (3) are shown for comparison only and are identical to
columns (1) to (3) in Table 3 in the main text, i.e., they present results of panel regressions of log of population size on a set of dummy
variables indicating the years since a species' entry into Appendix I or II of CITES, along with a set of population and country-year
�xed e�ects, as well as a dummy that equals one for populations of species located in countries with domestic regulation protecting
the respective species (i.e., for countries listing the species in Appendix III). Column (4) presents point estimates underlying the event
study graph presented in the right panel of Figure 8, i.e., not controlling for domestic regulation. Column (5) presents point estimates
underlying the event study graph presented in Figure 9, i.e., controlling for domestic regulation.
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