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1 Introduction

Expectations play a central role in asset pricing. Asset prices are essentially forward-

looking, implying that expectations about the asset’s future payouts and future prices

would determine the equilibrium today. The predominant modelling approach assumes

rational expectations (RE). Under RE, investors’ expectations are tied down by the true

underlying law of motion that generates future asset payouts (Sargent, 2008). This paper

proposes an asset pricing model built on relaxing two main features of the RE approach.

First, recent empirical evidence suggests investor expectations deviate from the RE

paradigm. Among others, investor expectations tend to be extrapolative, in the sense that

their expectations are positively correlated with current or past prices (see e.g., Haruvy

et al., 2007; Greenwood and Shleifer, 2014). This is at odds with RE models with a

unique forward-looking equilibrium where history does not matter for equilibrium prices

and hence for expectations. In this respect, this paper starts by uncovering a novel fact:

this extrapolative behaviour varies over time. Figure 1 plots the path of the coefficient

obtained by a time-varying parameter regression of survey (excess) return expectations on

the price-dividend (PD) ratio. A visual inspection suggests a time-varying mapping from

observed PD ratio to return expectations, that is, the way investors map observations to

expectations seems to be time-varying.1

Second, RE assumes that agents retain full memory of all past events. However, this

standard assumption is not only conceptually implausible but also rejected by both empir-

ical and experimental evidence (see e.g., Jonides et al., 2008). Indeed, the limited memory

assumption has been embedded in the recent finance and macroeconomics literature (See

Section 1.1 for a brief review).

These considerations motivate the construction of an asset-pricing model in which

agents feature: (i) a time-varying expectation formation process and (ii) limited memory.

We show that a mechanism based on these two features generates endogenous stochastic

volatility, which existing asset pricing models usually need to assume exogenously to

match the empirical asset pricing behaviour. Embedding this mechanism in the standard

1This is confirmed by the Hansen (1992) stability test. Section 6.4 presents a detailed discussion of
this TVP estimation.
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Figure 1: Time-varying parameter estimations
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The Figure plots the coefficient in a time-varying parameter regression of survey expected excess return
on log PD ratio, see Section 6.4 for details. Dashed lines show the 95% probability intervals standard
error bands for the coefficient.

Bansal and Yaron (2004) long-run risks asset pricing model without stochastic volatility,

the resulting model is able to not only quantitatively reproduce a variety of stylized asset

pricing facts, but also produce plausible expectations in light of survey data on investor

expectations, such that this mechanism is empirically very encouraging.

We explore two forms of memory constraint: (i) decay memory, whereby historical

data’s influence on expectations gradually fades over time as it recedes into the past; (ii)

finite memory, whereby a past data point does not influence agents’ expectations after a

given period of time.2

Despite this arguably minor deviation from RE from a theoretical point of view, the

limited memory assumption opens up a very different world from the point of view of the

admissible dynamics. As a consequence of limited memory, backward-looking solutions

of an explosive system are no longer explosive; hence the typical saddle-point dynamic

system admits infinite possible solutions. In other words, once we perturb the original

Muth (1961) RE solution with the limited memory assumption, there is an infinite number

of bounded solutions. Hence, Blanchard and Kahn’s (1980) stability criterion to select

2In both cases, we assume that the agent does not internalize the memory constraints, that is, the
agent at t does not anticipate that time t+ 1 will have experienced some loss of memory of the data that
she knows at time t.
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the unique stable solution of a saddle-point dynamic system is not applicable and Muth’s

(1961) original problem of the multiplicity of solutions remains. This raises the question

of how to select the equilibrium path among all bounded solutions.

As in the literature on indeterminacy of RE equilibria, we appeal to the existence of a

sunspot shock to choose one among all these stable paths, modelling our sunspot shock as

in Ascari et al. (2019).3 This sunspot shock has an appealing economic interpretation as

it generates a time-varying expectation formation process, i.e., it generates changes over

time in the way the agents weight past data to calculate their expectations, as suggested by

the survey evidence (Figure 1). As a result, the equilibrium asset price switches randomly

among the infinite limited memory equilibria as agents modify how they combine past

data to calculate their expectations. Moreover, this approach has two other attractive

properties. First, as explained by Ascari et al. (2019), this sunspot is a multiplicative

sunspot, rather than an additive one. Hence, it generates both a time-varying parameter

solution and endogenous stochastic volatility. Second, this approach encompasses the

usual RE equilibrium as a special case.

Introducing limited memory and time-varying expectations into an asset pricing model

makes both a time-varying equity premium and stochastic volatility arise endogenously.

Specifically, in our model, the representative agent has Epstein and Zin (1989) recursive

preferences, and there is a small predictable component in the consumption and dividend

growth process - i.e., the long-run risk in Bansal and Yaron (2004). Our mechanism affects

the risk premium through two channels. First, the expectation shocks carry an additional

source of risk different from the fundamental ones, generating a higher equity premium.

Second, as the expectation shock enters non-linearly in the solution, it also affects the

risk premium agent demands for the long-run risk in a time-varying way. This second

channel also gives rise to stochastic volatility. Hence, in contrast with the Bansal and

Yaron (2004) model, we do not need to assume stochastic volatility, which instead arises

endogenously through the time-varying expectation formation process. Moreover, it is

3Ascari et al. (2019) generalizes RE solutions to accommodate temporarily unstable paths. They build
solutions that randomly jump between all the admissible RE paths, both stable and unstable. There is
an important distinction between their framework and ours. In their framework, time variation in the
solution allows temporary walks on unstable RE trajectories, and they thus need to impose an exogenous
force for the system to eventually converge to the unique stable solution. In our framework, instead, the
limited memory assumption provides such stabilizing force and the expectation will never explode.
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important to stress that the assumed time-varying expectation formation process imposes

some theoretical structure on stochastic volatility. Despite this constraint imposed by the

theoretical structure, our model quantitatively outperforms the Bansal and Yaron (2004)

model that assumes an unconstrained exogenous process for stochastic volatility, implying

that the assumed expectation process seems corroborated by the data. Our mechanism

also produces realistic price dynamics. The expectation process induces “momentum” on

stock prices, while the limited memory assumption entails “mean reversion” over long

horizons to stable fundamentals. As such, the model naturally generates boom-and-bust

dynamics.

Based on the simulated method of moments (SMM) approach, the model can quan-

titatively replicate a host of key asset-pricing features, including equity premium, ex-

cessive volatility and persistence of PD ratio, without yielding counterfactual high-level

correlation between returns and fundamentals. In addition, the model could match the

counter-cyclical realized excess returns - i.e., actual excess returns negative correlate with

lagged PD ratios. The model passes a formal econometric test for the overall fit.

Furthermore, we compare our theory’s predictions with survey evidence on expec-

tations. First, using the estimated parameters from SMM, we show that our model is

statistically consistent with the evidence about the extrapolative behaviour in the for-

mation of investors’ expectations, that is, expected excess market return is positively

correlated with lagged price-dividend ratios. Second, the solution of our model implies

that this link between the PD ratio and expected return is time-varying, as suggested by

the predictive regression based on the UBS/Gallup survey data (see Figure 1).

Finally, we compare our model with other leading alternatives, the long-run risk model

by Bansal and Yaron (2004) and the learning model by Adam et al. (2016).

The structure of the paper is as follows. After the next subsection that briefly re-

views the relevant literature, Section 2 features a simple example to explain our approach

to modelling limited memory and time-varying expectations. Section 3 describes how

we incorporate the time-varying expectation formation process in the Bansal and Yaron

(2004) asset-pricing model. Section 4 derives analytical results that explain the model

potential to replicate the dynamics of the PD ratio and the equity premium. Section 5
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describes the data sources and the estimation method. Section 6 presents the quantitative

results. Section 7 discusses the comparison with the models in Bansal and Yaron (2004)

and Adam et al. (2016). Finally, Section 8 concludes.

1.1 Literature Review

Many key features of asset markets are puzzling from the perspective of theoretical models.

Among others, these include the equity premium puzzles (see, e.g., Mehra and Prescott,

1985) and asset price volatility puzzles (see, e.g., Shiller, 1980). An extensive literature

has developed since then, introducing additional dynamics in investors’ stochastic dis-

count factor and made progress in better matching stock price behaviour. For example,

Campbell and Cochrane (1999) add external habits (past consumption) as an extra state

variable in the stochastic discount factor. Bansal and Yaron (2004) introduce fluctua-

tions in the economy’s long-run growth prospects and the level of economic uncertainty

(or stochastic volatility). Several extensions to the Bansal and Yaron’s (2004) long-run

risk framework aiming at providing micro-foundations to the time-varying uncertainty

include Bansal and Shaliastovich (2010) and Bansal and Shaliastovich (2011). Our pa-

per expands on this literature showing that stochastic volatility can also arise from the

time-varying expectations formation process. Specifically, in our model, the variation in

the expectation formation process is due to an exogenous sunspot shock, hence, one may

argue we do not provide a micro-foundation of time-varying uncertainty. However, this

is not left completely unconstrained, because our modelling assumptions regarding both

limited memory and Muth’s (1961) type of solutions provide an economic interpretation of

the reason why stochastic volatility arises, and a theoretical microstructure that imposes

certain restrictions on the way stochastic volatility can affect the model variables.

Our model also shares some elements with asset pricing models with time prefer-

ence shocks. For example, Albuquerque et al. (2016) stress the importance of demand

shocks coming from stochastic changes in agents’ rate of time preference in resolving the

correlation puzzle (see Cochrane, 2009, for the discussion on correlation puzzle). As ex-

plained later, despite being very different in terms of assumptions and modelling, our

time-varying expectation shock has some similarity regarding economic intuition with the
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valuation shock in Albuquerque et al. (2016). In particular, both models yields stochastic

changes in agents’ valuation of assets, which in turn determines the equilibrium distribu-

tion of prices. However, Albuquerque et al. (2016)’s valuation risk comes from changes in

agents’ rate of time preference and it alters the valuation of assets in the absence of any

shocks to the fundamentals. In our model, instead, the existence and the magnitude of

the change in valuations would depend crucially on the history of fundamental shocks.

Although the variant of consumption-based RE models has been the benchmark of

asset pricing models, they are incapable of answering questions such as what drives the

periodical boom and bust in the financial market? Why subjective excess returns ex-

pectations (from survey data) are virtually unrelated to dividend growth but strongly

positively correlate with price levels? These motivate a recent literature deviating from

full rationality and developing alternative theoretical frameworks. Adam et al. (2016)

argue that past price increases generate optimism about future capital gains and thus

a further rise in asset prices. Another strand of literature that deviates from RE in-

volves some form of learning where investors use observed data to form expectations

about future payouts or prices. Learning about the underlying process of assets’ payouts

can contributes to variations in expected payouts and hence to price volatility. Early

literature includes Timmermann (1993, 1996). Models in which investors have memory

constraints are closely related to our modelling assumption. Nagel and Xu (2021) studied

asset price behaviour in an economy where agents learn about the asset dividend growth

with fading memory. The fading memory in the Bayesian framework produces perpetual

learning, which induces substantial long-run uncertainty. However, in their model, agent

holds subjective beliefs only about exogenous objects (i.e., exogenous payouts) that are

independent of agent’s beliefs, therefore, the dynamic feedback from past price changes

to future prices is absent. Other theoretical models and discussions on learning from

experience (see, e.g., Malmendier and Nagel, 2016) is generally based on the notion that

memory of past data is lost. On top of the behavioural finance literature, limited memory

and memory constraints are also been embedded in macroeconomics (see, e.g., Woodford,

2018; Angeletos and Lian, 2021).

Our paper is also related to the empirical findings from survey data which show that
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investors’ belief tends to be extrapolative. Haruvy et al. (2007) shows that extrapolation

shows up in data on expectations of participants in experimental bubbles, where subjects

can be explicitly asked about their expectations of returns. Greenwood and Shleifer (2014)

analyzes time series of investor expectations of future stock market returns from six data

sources between 1963 and 2011 and find strong evidence of extrapolation - i.e., investors’

expected returns are positively correlated with the PD ratio. Adam et al. (2017) show

that this is robust to a range of surveys (see also Nagel and Xu, 2021). Based on the

survey evidence, many works investigate theoretical models based on extrapolation (see,

e.g., Hirshleifer, 2015; Barberis et al., 2018; Cassella and Gulen, 2018).

2 Time-Varying Expectations

This section presents our approach to model expectations. It modifies the standard RE

assumption by introducing two features: 1) limited memory; 2) time-variation in expec-

tation formation as in Ascari et al. (2019).

We use a simple forward-looking equation to explain the basic intuition

yt = θEtyt+1 + εt, (1)

where εt is an i.i.d shock ∼ N(0, σ2
ε) and Et yt+1 = E(yt+1|It) is the expected value of

yt+1 conditional on the information set at time t. Here εt can be interpreted as the asset’s

dividend and yt as its price.

Any forward-looking equation as (1) implies a fundamental degree of freedom, and an

infinite number of solutions, because one can find an infinite number of pairs (yt,Et yt+1)

that satisfy it. To see this, recall that Muth’s (1961) RE seminal idea assumes agents form

their expectations so that the expected forecast error cannot be systematic or predictable,

i.e., Et−1(ηt) = 0, where ηt = yt − Et−1 yt is the forecast error. The RE requirement,

however, is generally not enough to pin down a unique solution, as it is evident by rewriting

(1) using conditional expectations ξt = Et(yt+1) as

ξt = θ−1 (ξt−1 − εt + ηt) . (2)

7



Any process ηt such that Et−1(ηt) = 0 defines a different solution to (2).4 Any forecast

error of the form

ηt = bεt + ζt, (3)

then yields a RE solution, where ζt is a mean zero non-fundamental/sunspot disturbance,

uncorrelated with the fundamental one. Equation (3) shows that there are two main

degrees of freedom in the admissible solutions: the parameter b and the disturbance ζt.

The point was evident in Muth’s (1961) original formulation that looks for solutions

for equation (1) expressed as a weighted sum of past, current and expected future values

of the structural shocks (hence, abstracting from sunspot disturbances)

yt =
∞∑
j=1

ujεt−j + bεt +
∞∑
j=1

cj Et εt+j , (4)

where uj , b and cj are coefficients to be determined. Plug (4) back into (1), and use the

undetermined coefficient method to derive the set of admissible solutions as

yt = (b− 1)
∞∑
j=1

1

θj
εt−j + bεt + b

∞∑
j=1

θj Et εt+j = (b− 1)
∞∑
j=1

1

θj
εt−j + bεt, (5)

given that Et εt+j = 0, ∀j > 0.5 Equation (5) shows that all the infinite solutions of

equation (1) that are a function only of the history of the structural shocks can be

parameterized by a free parameter b ∈ (−∞,+∞) . A particular value of b defines a

particular solution. Following the terminology used by Blanchard (1979), two important

solutions often considered in the literature are: (i) the pure forward looking solution cor-

responding to b = 1 : yFt = εt; (ii) the pure backward looking solution, corresponding to

b = 0 : yBt = −
∑∞

j=1 θ
−jεt−j = θ−1(yBt−1 − εt−1). Moreover, Muth (1961) stressed that b

has a natural interpretation: it defines the way agents form their expectations. This is

4One could interpret the error of expectations ηt as a martingale difference process, and the re-
quirement of a zero expected error simply implies that the solution is characterized up to an arbitrary
martingale.

5Without loss of generality we assume that expected future shock are zero. Appendix A contains all
the derivations for the equations in this Section.
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easy to see by writing the implied expected value of yt+1 at t as (assuming b 6= 0)

Et yt+1 = (b− 1)
∞∑
i=1

(
1

bθ

)i
yt+1−i, (6)

which shows that agents combined past value of the observable variable, {yt, yt−1, yt−2, . . .},

to form their expectation about its future value, Et yt+1.6 The weights on past values are

determined by b. First, b measures the extent to which past observations matter for ex-

pectations in absolute terms. If b = 1, for example, past values have no effect; this is

the forward-looking solution. Second, b determines the relative weight ( 1
bθ ) put on the

past data when agents form their expectations. Hence, any given value of b pins down a

particular way that agents combine past data to form their expectations, thus leading to

one particular RE solution.

In other words, there is a multiplicity of solutions satisfying the rationality condition,

meaning that additional conditions must be placed in order to pick a unique equilib-

rium. Blanchard and Kahn (1980) famously proposed the stability (i.e., boundedness)

of the solution as such a condition. In the case where θ < 1 and the agent has full

information and retains full memory of the past history of the shocks (i.e., the agent

knows ht = {εt, εt−1, . . .}), the backward-looking component in the solution (5) is ex-

plosive. Therefore, the stability condition pins down the pure forward-looking solution

(corresponding to b = 1, yt = εt, Et yt+1 = 0), which is indeed the unique bounded one.

1. Limited Memory. We twist this framework and deviate from the usual RE in one

fundamental way. As in Muth’s (1961) original formulation, we look for solutions for

equation (1) expressed as a weighted sum of past, current and expected future values

of the structural shocks, but we assume limited memory. We investigate two different

specifications of limited memory: (i) finite memory; (ii) decay memory. In both cases, we

assume that the agent does not internalize the memory constraints, that is, the agent at

t does not anticipate that at time t + 1 she will experience some loss of memory of the

6One of the purpose of Muth (1961) original paper is to write the expectation at time t as an expo-
nentially weighted average of past observations - as in the adaptive expectations or constant gain learning
framework - because he showed in a previous paper - Muth (1960) - that, under some assumptions, this
is the optimal estimator.
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data known at time t.

(i) Finite Memory. We assume the agent remembers the past structural shocks only

up to T period ago. In other words, a past data point does not influence agent expectations

after an extended period of time. Under this specification, the expectation can only

condition on a subset of structural shocks in the past: It = {εt, εt−1, . . . , εt−T+1, εt−T }.

Then, denoting the expectations under limited memory as Ē, we guess the solution has

the following formulation

yt =
T∑
j=1

ujεt−j + bεt +
∞∑
j=1

cjĒtεt+j . (7)

The above equation (7) is similar to equation (4) but with an additional memory con-

straint. Following the same procedure to determine uj , b and cj yields the following

solution

yt = (b− 1)
T∑
j=1

1

θj
εt−j + bεt + b

∞∑
j=1

θjĒtεt+j = (b− 1)

T∑
j=1

1

θj
εt−j + bεt, (8)

that mirrors Muth’s equation (5), and again admits infinite solutions parameterized by b.

(ii) Decay Memory. We assume the agent progressively loses memory of past

structural shocks at a rate λ, that is, historical data’s influence on expectations gradually

fades over time as it recedes into the past. The solution conditions on the decayed

memory of structural shocks in the past: It = {εt, λεt−1, λ
2εt−2, . . .}. Following Muth

(1961)’s formulation, we are going to look for a solution where (4) becomes

yt =

∞∑
j=1

ujλ
jεt−j + bεt +

∞∑
j=1

cjĒtεt+j , (9)

The solution has a similar form as (5) but with a constant decay rate on past shocks.

yt = (b− 1)
∞∑
j=1

(
λ

θ

)j
εt−j + bεt + b

∞∑
j=1

θjĒtεt+j = (b− 1)
∞∑
j=1

(
λ

θ

)j
εt−j + bεt, (10)

Despite these apparently minor differences with respect to the original RE formulation,

the assumption of limited memory has a major implication for the stability property of
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the differential equation (1). Under limited memory, the backward-looking solution might

not be explosive anymore even in the case where θ < 1. Hence, any linear combination

(i.e., any given b) of the backward and forward-looking solutions is an admissible solution

according to the stability criterion of Blanchard and Kahn (1980) . The original pure

backward looking solution, corresponding to b = 0, is now equal to yBt = −
∑T

j=1 θ
−jεt−j

from (8) in the finite memory case or to yBt = −
∑∞

j=1

(
λ
θ

)j
εt−j from (10) in the decay

memory case. In the former case, yBt is always bounded. In the latter case, where λ > θ,

yBt is explosive so that the stability criterion pins down the unique stable solution, which

is the forward-looking one, i.e., b = 1. In the case where λ < θ, however, the Blanchard

and Kahn’s (1980) stability condition can no longer select a unique solution, because (10)

is always bounded for any value of b. It follows that, in the finite memory case or whenever

the degree of memory decay is sufficiently high in the decay memory case, the original

problem of the multiplicity of solutions remains, even when the RE solution would be

saddle point stable, i.e., θ < 1. As a result, b is no longer constrained by the stability

condition, and thus can take any value.

In the limited memory case, b has the same interpretation as in RE: it pins down a

particular way that agents combine past data to form their expectations. In the decay

memory case, for example, future expectation obeys

Ētyt+1 = (b− 1)

∞∑
i=1

(
1

θb

)i
λi−1yt+1−i, (11)

which carries the same intuitive interpretation as equation (6), though now agents form

their expectations conditional on a fraction of past observations, i.e., It = {yt, λyt−1,

λ2yt−2, . . .}. As b is not constrained to be equal to one by the stability condition, past

observations matter for expectations even in the case pure forward-looking equation as

(1). The value of b would determine how agent maps discounted past observations to

form their expectations. Given that b is now a free parameter, this raises the following

question: how to deal with the limited memory assumption since there are many (or

infinite) admissible bounded solutions?
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2. Time-varying Expectation Formation Process. As in the macroeconomic lit-

erature on indeterminacy, we appeal to the existence of a sunspot shock to choose one

among all these stable paths. Following the approach in Ascari et al. (2019), we assume

that bt is time-varying, so that bt follows a random walk, bt = bt−1 + σbξt, with ξ ∼

i.i.d N(0, 1), being the sunspot shock. This assumption is convenient and has a natural

interpretation. As said above, there is an infinite number of possible ways agents could

combine (the memory of) past observations mimicking the RE. All of them are admissible

and they are parameterized by bt. The sunspot shock hence captures the fact that our

agent can change over time how to combine past data to form her expectations. Any

given value of bt picks up a particular solution. Two brief comments follows. First, as

explained by Ascari et al. (2019), this sunspot is a multiplicative sunspots, rather than an

additive one. Hence, it generates both a time-varying parameter solution and endogenous

stochastic volatility. Second, this setup encompasses the standard RE equilibrium as a

special case, corresponding to bt = 1,∀t.

Therefore, the solution is randomising among different admissible stable equilibria.

Appendix A shows that under these assumptions, in the finite memory case the solution

with time-varying expectations is

yt =
T∑
j=1

(
1

θ

)j
(bt − 1)εt−j + btεt (12)

and in the decay memory case is

yt =

∞∑
j=1

(
λ

θ

)j
(bt − 1)εt−j + btεt. (13)

2.1 How Price Expectations are Updated

This section derives the implication of our approach for the updating of expectations -

for brevity we just focus on the decay memory case. Corresponding to (6) or (11), the

expectation in the decay memory case with time-varying bt is

Ētyt+1 = (bt − 1)

∞∑
i=1

(
λi−1

θi
∏i−1
j=0 bt−j

)
yt+1−i, (14)
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which can be written recursively as

Ētyt+1 =
1

θ

[
νt
νt−1

λĒt−1yt + νt
(
yt − λĒt−1yt

)]
, (15)

where νt = bt−1
bt
. This expression reminds the updating implied by constant gain learning,

employed by, e.g., Adam et al. (2016) and Nagel and Xu (2021), that is

Ētyt+1 = Ēt−1yt + ν
(
yt − Ēt−1yt

)
, (16)

where ν is the gain parameter. The gain parameter measures how much agents will

update their expectation accordingly to the previous period expectation error, as well as

the weight on the last observed data point.

The comparison between (15) and (16) highlights the three differences between our

approach and constant gain learning. These three differences come first from starting

from the RE assumption, and then from twisting it with both limited memory and time-

varying expectation. First, the updating rule (15) is multiplied by 1/θ, because under

RE agents take the model into account in formulating their forecasts. In other words, the

agent knows the objective underlying law of motion. Combining (2) and (3) yields the

updating rule under RE as 7

Etyt+1 =
1

θ
[Et−1yt + ν (yt − Et−1yt)] where ν =

b− 1

b
. (17)

The updating rule under RE is similar to constant gain learning, but the updating is

multiplied by 1/θ and the constant gain is given by ν = b−1
b . Second, the term λ appears

in front of the past expectation in (15) as a result of the decay memory assumption.

Agents discount the previous period expectation by a factor λ, because they partially lose

memory of past expectations. Third, the time-varying expectation assumption makes

not only the gain parameter to be time-varying, νt, but it also changes the way past

expectation affects current expectation, i.e., the term νt
νt−1

. As clear from (14), a change

in bt reshuffles the weights agents use for past data in forming their expectations - thus

7From (3) yt − Et−1yt = ηt = bεt, abstracting for simplicity from the additive sunspot shock ξt.
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agents also change the weight of the last observation, i.e., the gain parameter.8

3 An Asset Pricing Model with Time-varying Expectations

This Section presents an asset-pricing model that embeds the assumption on time-varying

expectation formation and limited memory described above in a structure based on the

seminal model of Bansal and Yaron (2004).9

The representative agent has Epstein and Zin (1989) recursive preference, so the utility

function satisfies

Vt = [(1− δ)C1−1/ψ
t + δ(Et V 1−γ

t+1 )
1−1/ψ
1−γ ]

1
1−1/ψ ,

where Ct is consumption, γ is the coefficient of risk aversion, ψ is the intertemporal

elasticity of substitution (IES), and δ is the discount factor. From the Euler equation,

the asset pricing equation for gross return from any asset i (Ri,t+1) is

Et[δθG
− θ
ψ

c,t+1R
−(1−θ)
a,t+1 Ri,t+1] = 1, (18)

where θ = 1−γ
1−1/ψ , Gc,t+1 = (Ct+1/Ct), and Ra,t+1 is the unobservable return on an asset

that delivers aggregate consumption as its dividends each period, or the so-called ‘return

on the wealth portfolio’. This is the usual asset pricing equation Et [Mt+1Ri,t+1] = 1,

where Mt+1 = δθG
− θ
ψ

c,t+1R
−(1−θ)
a,t+1 is the stochastic discount factor (SDF) for Epstein and

Zin (1989) preferences. In logs10

mt+1 = θ log δ − θ

ψ
gc,t+1 + (θ − 1)ra,t+1. (19)

Process for consumption and dividends. As in Bansal and Yaron (2004), the

consumption growth, i.e., gc,t, and the dividend growth gd,t, processes contain a small

predictable component xt - the so-called long run risk in Bansal and Yaron (2004) - with

8Note that with a constant b and no decay memory, λ = 1, then (14) becomes (17). Moreover, when
θ < 1 and b = 1 we get the usual RE forward-looking solution Etyt+1 = 0, ∀t.

9Appendices B.1 and C.1 contains all the derivations for the equations in this Section.
10Lower case variables indicates logs. So for example, gc,t+1 = logGc,t+1 = log(Ct+1/Ct).
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xt evolving according to a AR(1) process, so that

xt+1 = ρxt + ϕeσet+1, (20)

gc,t+1 = µ+ xt + σηt+1, (21)

gd,t+1 = µd + φxt + ϕdσut+1, (22)

The exogenous shocks et+1,ut+1 and ηt+1 are white noise and mutually independent, ρ

is the persistence of the expected growth rate process. ϕd > 1 captures the fact that

the evolution of dividend observed is much more volatile than that of consumption, while

φ implies that the persistent component xt induces correlation between consumption

and dividend growth. However, in contrast to Bansal and Yaron’s (2004) model, we

do not assume stochastic volatility a priori11, because it arises endogenously through our

assumptions on expectations, as we will show later. The stochastic volatility in our model

is not unconstrained as in Bansal and Yaron (2004), but it obeys the restrictions imposed

by the time-varying expectation formation process.

The solution method involves two steps. First, as Bansal and Yaron (2004) and

Albuquerque et al. (2016) among others, we solve the model using the approximation

proposed by Campbell and Shiller (1988), which involves linearizing the expressions for

the returns and exploiting the properties of the log-normal distribution. Second, we

assume relevant state variable for deriving the solution and then apply the undetermined

coefficient method using the assumptions explained in the previous section - decay memory

and time-varying expectations.

Solution for the return on the wealth portfolio. We first solve for the log return

on the wealth portfolio ra,t+1, as it determines the SDF and therefore the market portfolio

return ri,t+1 given (18). Applying the log-linear approximations in Campbell and Shiller

(1988), the (approximated) log return on the wealth portfolio can by written as

ra,t+1 = κ0 + κ1zt+1 − zt + gc,t+1 (23)

11In Bansal and Yaron’s (2004) model, they model the variance follows an exogenous AR(1) process.
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where zt = log(PC,t/Ct) is the log of the price-consumption (PC) ratio of this asset that

delivers aggregate consumption as its dividends each period, PC,t = is the price of this

asset, and the κ’s are the following approximation coefficients

κ0 = log(1 + exp(z̄))− κ1z̄; κ1 =
exp(z̄)

1 + exp(z̄)
. (24)

To find the solution for zt, we use the method of undetermined coefficient, as described

in Section 2. Guess that the solution for z is a linear function of the past, present

and expected future values of the endogenous state variable x, but subject to memory

constraints and a time-varying parameter, indicated by bt. In the case of finite memory

zt = A0,t +

(
1− 1

ψ

)[ T∑
j=1

uj,txt−j + btxt +

∞∑
j=1

cj,t Et xt+j

]
, (25)

while in the case of decay memory

zt = A0,t +

(
1− 1

ψ

)[ ∞∑
j=1

uj,tλ
jxt−j + btxt +

∞∑
j=1

cj,t Et xt+j

]
. (26)

The time-varying expectation parameter follows the random walk process bt = bt−1 +σbξt,

where ξt ∼ i.i.d N(0, 1) is assumed to be uncorrelated to all other fundamental shocks in

the model. The parameters A0,t, uj,t and cj,t are coefficients to be determined. Substi-

tuting the above equation (25) or (26) into the Euler equation (18) yields, respectively

zt = A0,t +

(
1− 1

ψ

)[ T∑
j=1

(
1

κ1

)j
(bt − 1)xt−j + btxt + bt

∞∑
j=1

(κ1ρ)jxt

]
, (27)

or

zt = A0,t +

(
1− 1

ψ

)[ ∞∑
j=1

(
λ

κ1

)j
(bt − 1)xt−j +

bt
1− κ1ρ

xt

]
. (28)

Given the solution for zt, equation (23) yields the log wealth return ra,t+1, which in

turn yields the log of the SDF from (19).12

Solution for the market return. The same procedure solves for the market return,

12To avoid repetitions, we present only the decay memory case in what follows. Similar expressions
holds for the finite memory case, see Appendix C.1 and C.2 for this and next Section respectively.
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which has the analogous expression as equation (23), that is

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1, (29)

where κm’s are coefficients as in (24) consistent with the average PD ratio z̄m. Similarly

to (26), the guess for zm,t is

zm,t = A0,m,t + (φ− 1

ψ
)

[ ∞∑
j=1

uj,tλ
jxt−j + btxt +

∞∑
j=1

cj,t Et xt+j

]
, (30)

where the parameters A0,m,t, uj,t, and cj,t are coefficients to be determined by substituting

the conjectured equation (30) into the Euler equation (18). The solution for zm,t is

zm,t = A0,m,t + (φ− 1

ψ
)

[ ∞∑
j=1

(
λ

κ1,m

)j
(bt − 1)xt−j +

bt
1− κ1,mρ

xt

]
. (31)

The solution (31) has the property that the PD ratios are constant, absent uncertainty

on the consumption process, i.e., σ = 0 and thus xi = 0, ∀i. This property follows that

the expectation parameter bt enters into the solution in a multiplicative way.

Appendix B.1 presents the expressions for A0,t, A0,m,t and the solution for the risk-

free rate rf,t+1. Finally, (28) and (31) show that zt and zm,t are bounded, for any given

bounded level of bt, whenever, λ < κ1 and λ < κ1,m, respectively. Hence, as explained

in the previous Section, the decay memory assumption implies a multiplicity of bounded

solutions, and a given value of bt pins down a particular solution among the infinite

admissible ones.13

4 Analytical Results

This section derives analytical results that provide the intuition why the asset pricing

model with time-varying expectation formation process and limited memory can be po-

tentially consistent with many asset pricing puzzles. In particular, subsection 4.1 shows

that the PD ratio can persistently deviate from the stable fundamentals. Moreover, these

13The same applies to the finite memory case because the backward-looking summations are finite.
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persistent deviations are often associated with high price volatility. Subsection 4.2 shows

that the model could generate a higher and time-varying equity premium as a result of

the expectation formation process. Again we focus mainly on the decay memory case to

avoid repetitions, but similar arguments apply to the finite memory case.14

4.1 Price-Dividend Ratio

The fundamental RE solution in standard asset-pricing models has difficulty matching

the high price volatility in the data. It is immediate to obtain the RE solution for the log

of the PD ratio in our model by imposing bt = 1 in (31)

zREm,t = A0,m +
φ− 1

ψ

1− κ1ρ
xt. (32)

The volatility of the PD ratio equals roughly the volatility of dividend growth, inherited

by the long-risk process through the term, φxt. For the PD ratio to feature stochastic

price volatility - an important empirical observation - Bansal and Yaron (2004) add an

exogenous stochastic component in the volatility of the growth rate of dividends (again

common to the long-run risk).

To highlight how our model solution for zm,t deviates from the standard RE solution,

we can write (31) as a combination of usual RE solution and a bounded backward-looking

component15

zm,t = bt

(
A0,m +

φ− 1
ψ

1− κ1,mρ
xt

)
︸ ︷︷ ︸

fundamental eq., zREm,t

+(1− bt)

A0,m −
∞∑
j=1

(
λ

κ1,m

)j (
φ− 1

ψ

)
xt−j


︸ ︷︷ ︸

bounded backward-looking eq.

(33)

The solution encompasses the usual RE result as a special case (corresponding to bt =

1). When bt 6= 1, the asset prices deviate from the usual RE values and we can distinguish

the ‘fundamental regime’ and the ‘trend-following regime’, following the Boswijk et al.’s

14See Appendix B.2 for the derivations in this Section and Appendix C.2 for the corresponding deriva-
tions in the finite memory case.

15The time-varying components in the A0 and A0,m were abbreviated when deriving the analytical
solutions of this Section as they do not affect the main argument, but their effects were obviously considered
when doing the quantitative analysis.
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(2007) terminology. As the value of the expectation parameter bt varies, the model yields

different ways agent maps past observations to form their expectations and thus the

equilibrium price distribution. When the value of b wanders around one, the model

solution is close to the RE one and asset prices to fundamentals, so we are close to a

‘fundamental regime’. When b differs from 1, the model enters a ‘trend-following regime’,

where persistent under-and over-valuations of asset prices appear but are compatible with

stable economic fundamentals. To see this, define ẑm,t as the deviation from the usual

RE solution, i.e., ẑm,t = zm,t − zREm,t , then, for bt 6= 1,16

ẑm,t+1 =
λ

κ1,m

bt+1 − 1

bt − 1
ẑm,t + (bt+1 − 1)

(
φ− 1

ψ

)
1

1− κ1,mρ
ϕeσet+1

+ (bt+1 − 1)

(
φ− 1

ψ

)
1

1− κ1,mρ
(1− λ) ρxt︸ ︷︷ ︸

Due to memory loss, approach to zero as λ→ 1

. (34)

ẑm,t+1 positively depends on the deviation in the last period when bt and bt+1 on the same

side relative to 1. Given that bt is a persistent process, it follows that persistent under- and

over-valuations of asset prices arise. Moreover, even if expectations about stock prices are

very high at a given point in time, the PD ratio has the tendency to return to fundamentals

in absence of fundamental shocks as λ/κ1,m < 1. In other words, the expectation formation

process affects the response to the fundamental shocks, through bt, and its persistence

induces “momentum” on stock prices, while the decay memory assumption, through λ,

entails “mean-reversion” over long horizons to stable fundamentals. Together, the model

is able to explain the periodical boom and bust in the financial market.

Equation (35) also shows that our model provides a micro-structure for stochastic

volatility, that arises from the time-variation in bt. Stochastic volatility is one desirable

feature in the asset pricing literature. However, such stochastic volatility is often disen-

tangled from the fundamentals. For example, Bansal and Yaron (2004) model stochastic

volatility by adding fluctuations in economic uncertainty, which are completely free in the

16In the finite memory case (34) is given by

ẑm,t+1 =
(bt+1 − 1)

κ1,m(bt − 1)
ẑm,t + (bt+1 − 1)

(
φ− 1

ψ

)(
1

1− κ1,mρ
ϕeσet+1 −

1

κT1,m
xt−T

)
.
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sense that they follow an independent process which is unrelated to any of the fundamen-

tals. In contrast, in our model stochastic volatility arises as a by-product of time-variation

in bt and thus it is tight to the particular assumptions about the expectation formation

process. This implies certain restrictions on the stochastic volatility due to the structure

of the assumed expectation process - one stochastic expectation formation parameter bt

governs both the level and volatility of the PD ratio at once. Formally, both in the de-

cay and in the finite memory case, the conditional variance of zm,t+1 (assume ρ = 0 for

simplicity, the full derivation for ρ 6= 0 can be found in the Appendix B.1) is equal to

Vart(zm,t+1) =

(
zm,t − zREm,t
bt − 1

)2

σ2
b +

(
φ− 1

ψ

)2

(btϕeσ)2, for bt 6= 1, (35a)

Vart(zm,t+1) =

(
φ− 1

ψ

)2

ϕ2
eσ

2, for bt = 1. (35b)

Our model implies that the time variation in expectations affects not only the level of

the conditional variance of the PD ratio directly through σ2
b as a new source of risk,

but it also induces time-variation in how the variance of structural shocks feed into PD

volatility because the coefficients that multiply σ2 depend on bt. The reason why it is

evident from (33) that shows that bt affects both the level (i.e., intercept) of the PD ratio

- i.e., it changes the weight given to the discounted sum of past xt−j ’s - and the slope

of the PD ratio - i.e., it changes the way the PD ratio reacts to a given new realisation

xt.
17 Moreover, from equation 35, the volatility of the PD ratio increases when the price

dividend ratio is deviating from the fundamental solution, or in other words, the price

volatility increases in a bubbly market, a phenomenon often observed in the data.

4.2 Equity Premium

In our framework, the model can generate a higher and time-varying equity premium as

there are now two sources of systemic risk: the first relates to fluctuations in expected con-

sumption growth; the second relates to fluctuations in the expectation formation process.

17Note that this nothing else that the application to the asset pricing model of the implication of the
solution (13) in the simple example.
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Appendix B.2 shows that the innovation to the pricing kernel, i.e., the SDF, is

mt+1 − Etmt+1 = −λm,ησηt+1 − λm,e,t+1σet+1 − λm,ξ,t+1σbξt+1, (36)

where λm,η, λm,e,t+1 and λm,ξ,t+1 capture the pricing kernel’s exposure to the consumption

growth shocks, ηt+1, to the long-run risk shock, et+1, and to the time-varying expectation

shock, ξt+1, respectively, and they are equal to

λm,η = −
(
− θ
ψ

+ θ − 1

)
= γ, (37a)

λm,e,t+1 =(1− θ)κ1

(
1− 1

ψ

)
bt+1

1

1− κ1ρ
ϕe, (37b)

λm,ξ,t+1 =(1− θ)κ1

(
1− 1

ψ

)[ ∞∑
j=1

(
λ

κ1
)jxt+1−j +

1

1− κ1ρ
ρxt

]
. (37c)

The pricing kernel’s exposure to long run risk λm,e,t+1 rises with the persistence parameter

ρ or as agents are more forward-looking (higher bt+1). The pricing kernel’s exposure to

the expectation risk λm,ξ,t+1 rises with the difference between the expected pure forward

looking solution - when bt+1 = 1 - and the pure backward looking solution - bt+1 = 0, as

can be shown by rewriting (37c) as (see (28))

λm,ξ,t+1 = (1− θ)κ1(1− 1

ψ
)

(
Et (zt+1|bt+1 = 1)︸ ︷︷ ︸

Etzft+1

−Et (zt+1|bt+1 = 0)︸ ︷︷ ︸
Etzbt+1

)
. (38)

It is instructive to look at the comparison with the standard RE case (i.e., bt+1 = 1 and

σb = 0), where (36) would correspond to the Bansal and Yaron’s (2004) model without

stochastic volatility (see equation (6) at p. 1486 therein). The Bansal and Yaron’s (2004)

model with stochastic volatility delivers an expression that has three terms, as in (36),

where the last term would capture the fact that the innovation to the pricing kernel

responds to the assumed shock to the volatility of consumption (see equation (10) at p.

1487) rather than the shock to expectation formation as in our model.

Similarly, the innovation in the market return is given by

rm,t+1 − Et rm,t+1 = βm,uσut+1 + βm,e,t+1σet+1 + βm,ξ,t+1σbξt+1, (39)
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where βm,u, βm,e,t+1 and βm,ξ,t+1 are time-dependent convolutions given in Appendix B.2.

The conditional equity premium for the market portfolio rm,t+1 is equal to Et(rm,t+1 −

rf,t) = −cov(mt+1 − Etmt+1, rm,t+1 − Et rm,t+1)− 0.5Vart(rm,t+1), which yields

Et(rm,t+1 − rf,t) = ϑe,tσ
2 + ϑξ,tσ

2
b − 0.5Vart(rm,t+1), (40)

with

ϑe,t = (1− θ)
(

1− 1

ψ

)
κ1bt

1− κ1ρ

(
φ− 1

ψ

)
κ1,mbt

1− κm,1ρ
ϕ2
eσ

2, (41a)

ϑξ,t =
ϑe,t

b2tϕ
2
eσ

2

(1− κ1ρ)
∞∑
j=1

(
λ

κ1
)jxt−j + xt

(1− κm,1)

∞∑
j=1

(
λ

κ1,m
)jxt−j + xt


(41b)

Vart(rm,t+1) = (βm,u + βm,e,t+1)2σ2 + β2
m,ξ,t+1σ

2
b (41c)

The equity premium is determined by two sources of risk: the fluctuations in consumption

growth and the fluctuations in expectations. The second term in equation (40) says

that the equity premium must compensate for the risk due to time-varying expectation

formation process (σ2
b ). Moreover, ϑe,t illustrates that the realization of bt also determines

how equity premium compensate for consumption growth volatility (σ2). Therefore, as

for the PD ratio, the expectation formation process affects both the level of the equity

premium, i.e., the intercept of the equation for the equity premium (40), and its slope,

i.e., how it reacts to consumption growth volatility.

5 Data and Methodology

We estimate our asset pricing model with a time-varying expectation formation process

using the simulated method of moments (SMM). This Section describes first the data

sources (subsection 5.1) and then the methodology employed (subsection 5.2). Subsection

5.3 formally examines which moments should be included in the SMM, as including all

moments of interest may result in the violation of certain regularity conditions.
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5.1 Data Sources

The seasonally adjusted per-capital annual consumption growth used in this paper is from

Barro and Ursúa (2012) and was extended by the authors to 2019 using data from the

Bureau of Economic Analysis (BEA) (National Income and Product Accounts: Table 7.1

Selected Per Capita Product and Income Series). The real S&P 500 return, PD ratio and

dividend growth are from Robert Shiller’s website. The data on the annualized nominal

return to one-month Treasury bills, deflated by the CPI, is taken from Robert Shiller’s

website. We use the data from 1929 to 2018 which contains several crisis episodes in

financial markets.

5.2 Simulated Method of Moments

This paper applies the simulated method of moments (SMM) estimation to evaluate the

ability of the model to match salient features of data. The SMM approach aims to find

model parameter values that make model simulated moments match the data moments

as closely as possible.

In this application, the moments of interest include: the mean, standard deviation

and the first-order autocorrelation of consumption growth; the mean, standard deviation

and the first-order autocorrelation of dividend growth; the mean, standard deviation

and the first-order autocorrelation of PD ratio; the mean and standard deviation of real

stock return; the contemporaneous correlation between consumption growth and dividend

growth; the contemporaneous correlation between stock return and consumption growth;

the correlation between stock returns and one-period lagged consumption growth; the

mean and standard deviation of the risk-free rate. Moreover, we include also excess

return predictability, that is, the coefficient c2 and the R2 in the following regression:

rs,t+n − rf,t = c1
n + c2

n log(PDt) + ut,n (42)

where the dependent variable (rs,t+n − rf,t) is the observed real excess return of stocks

over bonds from t to t + n years (here we consider five-year horizon, n = 5), and un,t is

the regression residual.
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There are 11 parameters we are trying to estimate, namely: the coefficient of relative

risk aversion γ; the elasticity of intertemporal substitution ψ; the rate of time preference

δ; the drift in the log consumption and in the dividend growth processes µ; the persistence

of the expected growth rate process ρ; the volatility of innovation σ; the volatility of the

persistent component of the growth process (i.e., the LRR) ϕe; the elasticity of dividend

growth to the persistent component of the growth process φ; the volatility of dividend

growth process ϕd; the volatility of the innovation in expectation formation process σb;

the decay rate of memory λ (or the limit period of memory T in the case of finte memory).

We summarise these parameters in the vector θ = {γ, ψ, δ, µ, ρ, σ, ϕe, φ, ϕd, σb, λ (or T )}.

Formally, the SMM entails the following. Let (y1, ..., yN ) be the observed data sample

with size N . The sample moments is defined as M̂N ≡ 1
N

∑N
t=1 h(yt) for a given moment

function h. Some of the statistics of interests we considered here are functions of moments

so that ŜN ≡ S(M̂N ). We base our SMM estimates and test on matching the statistics

ŜN . Let ŜN ∈ Rs denote a vector of statistics that will be matched in the estimation

given the N observations in the data. S̃(θ) is a vector of moments implied by the model

for some parameter value θ. The SMM parameter estimate θN is formally defined as

θ̂N ≡ arg min
θ

[ŜN − S̃(θ)]′Σ̂−1
S,N [ŜN − S̃(θ)]. (43)

The SMM estimates θ̂N then choose the model parameter such that the model moments

S̃(θ) fit the observed moments ŜN as closely as possible in terms of a quadratic form

with weighting matrix Σ̂−1
S,N . In our paper, we create 1000 synthetic time series using

the Monte Carlo procedure, each length equal to our sample size.18 S̃(θ) that enters the

criterion function is the mean value of the sample moments across the synthetic time

series for a given parameter vector of θ ∈ Θ.19 Let νi denote a realization of shocks

drawn randomly from their known distributions, and let (y1(θ, νi), . . . , yN (θ, νi)) denote

the random variables corresponding to a history of length N generated by the model for

18We assume the agent makes decisions on a monthly basis and we compute model moments at an
annual frequency.

19An unconstrained minimization of the objective function over the parameter space Θ can be nu-
merically unstable and computationally costly. Therefore, additional restrictions have been imposed on
Θ. These restrictions can only deteriorate the model’s empirical performance so that the goodness of fit
results presented in the next section represent a lower bound on what the model can achieve.
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shock realization νi and parameter value θ. Then, the model statistics S̃(θ) are computed

as

S̃(θ) ≡ 1

K

K∑
i=1

S(MN (θ, νi)) =
1

K

K∑
i=1

S

(
N

N∑
t=1

h(yt(θ, ν
i))

)
(44)

where we use K = 1000. In other words, S̃(θ) is an average across a large number of

simulations of length N of the statistics S(MN (θ, νi)) implied by each simulation.

The weighting matrix in our estimation Σ̂−1
S,N is the inverse of variance-covariance ma-

trix of the empirical moment conditions ŜN , as required for efficient SMM estimation. The

weighting matrix is estimated using the Newey-West estimator - which is heteroskedas-

ticity and autocorrelation consistent - with a lag of 3.20

The SMM approach also allows a formal econometric test to evaluate individual and

overall goodness of fit based on asymptotic distribution. Under the null hypothesis of the

test that the model is correct, we have

ŴN ≡ N [ŜN − S̃(θ̂N )]′Σ̂−1
S,N [ŜN − S̃(θ̂N )]→ χ2(s− n) as N →∞, (45)

where convergence is in distribution. In addition, t-statistics can be conducted based on

the asymptotic distribution for each element of the deviations ŜN − S̃(θ̂N ) to evaluate

how close each individual moment is to the data moment.

5.3 Which Moments to Match?

The validity of the SMM requires certain regularity conditions, as documented by Adda

and Cooper (2003) and Davidson et al. (2004). As some components of the moment

functions listed above are not sample moments but nonlinear functions of sample mo-

ments, this paper is concerned with violating one of the regularity conditions of standard

SMM, that is, the non-singularity of the covariance matrix of the moment vector. The

violation of the singularity requirement would result in the test ŴN varying greatly with

small model changes or testing procedures. Moreover, the maximization algorithm as

the non-singularity condition is violated would be nearly unstableas evident in equation

20We follow a common practice that specifies the lags as the smallest integer greater than or equal to
(T 1/4).
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(45) - the formula for ŴN nearly divides zero by zero, the objective function is nearly

undefined, and the asymptotic distribution may not be a good approximation to the true

distribution of the test statistic. Therefore, to make sure that Σ̂S,N is invertible, we need

to carefully select statistics so they do not give rise to multicollinearity. To decide which

statistics to use, following Adam et al. (2016) and Adam et al. (2017), we exclude some

moments from the estimation that are nearly redundant. The idea is to compute the vari-

ability of each statistic that cannot be explained by a linear combination of the remaining

statistics, similarly to the R2 coefficient of a regression of each statistic on all the other

statistics. The regression coefficients and the ensuing R2 are computed from Σ̂S,N in a

standard manner. We exclude those statistics with R2 < 0.04 as they are nearly redun-

dant. Specifically, they are the R2 of the excess return predictability regression (42) and

the first-order autocorrelation of consumption growth, ρ∆c/c,−1 (for which R2 = 0.0283

and R2 = 0.0140, respectively). After we drop these two statistics, the weighting matrix

is non-singular. Moreover, even though we drop these two statistics, the model is able to

match them.21

6 Quantitative Results

This Section presents the results for both the finite memory model and the decay memory

model. Table 1 reports our parameter estimates along with standard errors. The esti-

mated parameters are very close between the two different specifications of our models.

First, the coefficient of risk aversion, γ, is estimated to be 3.67 for the finite memory model

and 3.9 for the decay memory one. These values are smaller than the value of 10 used in

Bansal and Yaron (2004) to generate the observed equity premium but larger than the

value of 1.5 estimated by Albuquerque et al. (2016) in their benchmark model. Second,

the IES, ψ, is precisely estimated to be 1.115 in both models. This value is larger than

one, and close to the value of 1.5 calibrated by Bansal and Yaron (2004) and estimated

(1.46) in Albuquerque et al. (2016). Third, the parameter ρ, which governs the persistence

of the long-run risk that affects both consumption and dividend growth, is very high at

21This applies to both the decay memory and finite memory case.
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Table 1: Parameter Estimates

Parameter Finite Memory Decay Memory

γ 3.6721 3.9015
(0.0026) (0.1551)

δ 0.9965 0.9961
(0.0003) (0.0003)

ψ 1.1150 1.1148
(0.001) (0.0085)

ρ 0.9941 0.9915
(0.0013) (0.0020)

ϕe 0.1097 0.0788
(0.0012) (0.0121)

σ 0.003 0.004
(0.0003) (0.0002)

µ 0.0017 0.0016
(0.0001) (0.0001)

φ 2.5317 2.5344
(0.1212) (0.1851)

ϕd 9.7109 6.2188
(1.4423) (0.5413)

σb 0.0123 0.0245
(0.0014) (0.0051)

T = 6.8750 λ = 0.9419
(2.0583) (0.0016)

The table presents estimated parameter values for the finite
memory and decay memory models (with standard errors re-
ported in parentheses). The model simulates on a monthly ba-
sis and appropriately compounds to the annual frequency. The
Simulated Method of Moment method is used to obtain the
estimates.

0.99, but consistent with the value used by Bansal and Yaron (2004) of 0.979. Fourth, the

memory limit is similar between the two specifications. The finite memory is estimated

to be 6.87 years (equal to 83 months) and the parameter of memory decay is 0.94 per

month, implying that the memory weight after 83 months is around 0.006. Finally, the

parameter φ that measures the effect of the long-run risk on dividend growth is close to

the calibrated value in Bansal and Yaron (2004) of 3. The main difference between the

finite and decay specifications is the estimated variance of the sunspot shock, which is

larger for the latter case.

The estimated model closely matches the data moments, and the model’s performance

is robust across the two specifications for limited memory. Table 2 reports data moments

(with standard errors reported in parentheses) and model moments (with t-statistics for
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each moment reported in parentheses) under the two specifications. Taking sampling

uncertainty into account, the model moments are all statistically indistinguishable from

the US data moments at 5% significance level.22 In particular, both models closely match

the observed main asset pricing moments: level and volatility of the stock returns, the

PD ratio, the risk-free rate, and the dividend yield, without yielding unrealistic strong

correlations between stock returns and measurable fundamentals. The model also succeeds

in replicating the return predictability and the autocorrelation of the consumption process

even though these two statistics are not included in the set of moments to be matched.

The p-value of the Wald test, a measure of the model’s overall performance, indicates that

both models cannot be rejected at 5% significance level, even though the finite memory

model is only marginally so.

6.1 The Equity Premium

Both the finite and the decay memory models are capable of producing a large equity

premium (around 5%) with a relatively moderate estimated degree of risk aversion (γ =

3.67 or 3.90). The intuition behind this is that the model requires additional compensation

for expectation risks on top of fundamental risks. This compensation for expectation risks

- estimated by setting the variance of the time preference shock in the model to zero and

bt = 1 for ∀t - accounts for around 1.49% of the total 5.25% equity premium in the decay

memory case and to 0.48% of the total 4.95% in the finite memory case.

Notably, in our model, the compensation for expectation risks increases as the gap

between the expected forward-looking solution and the expected backward-looking solu-

tion widens. As the gap increases, the change in the relative weights (expectation shock)

on those two solutions can induce large price fluctuations, which increases the agent’s

desire to hedge the risk. Moreover, the estimated values of risk aversion and of the IES

imply θ < 1, so that γ > 1/φ which Epstein et al. (2014) shows to be the condition for a

preference for early resolution of uncertainty. Hence, as in standard long-run risk models,

long-run risks are penalized more heavily than current risks in our model, because they

22The t-statistics based on formal asymptotic distribution are all at or below two in absolute value,
with the only exceptions of the mean of the PD ratio and the standard deviation of bond return for the
finite memory model.

28



Table 2: Quantitative Model Performance

U.S. Data Finite Memory Decay Memory

Mean stock return Ers 7.79 6.00 6.27
(1.83) (0.99) (0.83)

Mean bond return Erb 0.45 1.05 1.05
(0.49) (-1.20) (-1.23)

Mean PD ratio EPD 32.05 35.84 34.80
(1.43) (-2.47) (-1.91)

Mean dividend growth E∆D/D 1.74 2.77 2.56

(1.12) (-0.97) (-0.73)
Std. dev. stock return σrs 18.71 19.05 19.26

(0.94) (-0.36) (-0.56)
Std. dev. PD ratio σPD 16.40 17.91 17.68

(2.05) (-0.69) (-0.62)
Std. dev. Dividend Growth σ∆D/D 10.67 11.29 11.08

(1.60) (-0.40) (-0.25)
Std. dev. bond return σrb 3.91 2.70 3.28

(0.43) (2.48) (1.46)
Autocorrel. PD ratio ρPD,−1 0.90 0.85 0.80

(0.12) (0.41) (0.74)
Mean consumption growth E∆C/C 2.01 2.15 2.00

(0.32) (-0.46) (0.03)
Std. dev. consumption growth σ∆C/C 2.96 2.79 2.93

(0.32) (0.56) (0.08)
Autocorrel. consumption growth ρ∆C/C,−1 0.61 0.80 0.62

(0.12) (-0.07) (-0.00)
Autocorrel. dividend growth ρ∆D/D,−1 0.24 0.31 0.79

(0.37) (-0.09) (-0.08)
Corr. corr∆C/C,∆D/D 0.47 0.55 0.50

(0.13) (-0.58) (-0.25)
Predictability βPD -0.0110 -0.0098 -0.0090

(0.003) (-0.38) (-0.70)
Predictability R2 0.1327 0.0804 0.0756

(0.086) (0.60) (0.66)
Contemporaneous correlation between 0.03 0.07 0.24

stock return and consumption growth (0.11) (-0.31) (-1.88)

Correlation between stock return -0.13 0.52 0.10
and one-period lag consumption growth (0.27) (-0.53) (-0.45)

Test statistic ŴN 10.5926 7.7713

p-value of ŴN 6.01% 16.93%

The table compares the asset-pricing moments from the US data (column 2, with standard errors reported
in parentheses) with the one implied by the finite memory and decay memory models (column 3 and 4,
respectively, the t-ratios for each moment are reported in parentheses). The t-ratios are calculated as
(data moment - model moment)/(estimated standard deviation of the model moment). The measure of

the overall goodness of fit ŴN , defined as (45), and the corresponding p-value are reported in the last two
rows of the table.
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are resolved in the distant future. In the CRRA case (θ = 1), the equity premium is

not affected by the two sources of risks, both the consumption and expectation risk, i.e.,

ϑe,t, ϑξ,t = 0 in equation (40).

From an a analytical point of view, equations (28) and (31) help to explain why the

model embodies a compensation for expectation risk and that is particularly pronounced

for stocks relative to bonds. Equations (28) and (31) show that the solution for the price-

consumption ratio and the price-dividend ratio, respectively. First, from Table 2, the

parameter φ > 1, which implies that dividends are more sensitive both to changes in the

long-run risks, x′s, and in the expectation formation, bt, (i.e., see (28) and (31)). Second,

under our parameter estimates, κ1 < κ1,m ≈ 1, which implies that the price-dividend

ratio is more sensitive to changes in expected future price-dividend ratio, and thus any

changes in expectation formation process would have a leveraged impact on the current

price-dividend ratio.

Our expectation risk shares a certain similarity with the ‘valuation risk’ in Albu-

querque et al. (2016) in that both risks are due to stochastic changes in agents’ valuation

of assets in the absence of changes in fundamentals. Albuquerque et al. (2016) introduces

a time preference shock that changes agents’ relative valuation of present consumption

against future consumption. A shock that increases agents’ valuation of the present rel-

ative to the future would drive down the asset price, as they want to sell stocks and

consume more. In our model, expectation sunspot shocks also change agents’ valuation

of assets. In particular, assume an agent that buys an asset at a certain date and then at

a later date changes her expectations such that, say, she expects the future price is lower

than she initially expected. Since the shock is common to all agents (who are identical),

they sell their assets (both stocks and bonds) and drive down the prices.

However, there is a fundamental difference between our expectation shock and the val-

uation shock. Our sunspot process creates uncertainty on the future valuations, because

it changes the way agents form expectations, that is, the weight between the backward

and forward-looking solution, and bonds and stocks are exposed differently to this risk.

As such, this expectation shock interacts with the fundamental shocks, increasing the

risk and inducing stochastic volatility. Here, we insert it in the Bansal and Yaron (2004)
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model of long-run risk without stochastic volatility. Albuquerque et al.’s (2016) valuation

shock is a state variable of the model and it is a fundamental demand shock to time

preference, that exhibits exogenous stochastic volatility.23 In principle, one could embed

the expectation shock in a model with a (demand) valuation shock rather than a (supply)

long-run risk shock. The expectation shock would then amplify a different fundamental

shock. In other words, our shock interacts with fundamental shocks amplifying the risks

connected to fundamentals. As such it creates stochastic volatility, but, contrary to a

valuation shock, our model would not imply an equity premium in absence of uncertainty

on the consumption process, i.e., σ = 0.

Finally, a problem with some explanations of the equity premium is that they imply

counterfactually high levels of volatility for the risk-free rate (for example, Boldrin et al.

2001). Table 2 shows that the volatilities of the risk-free rate and the stock market returns

implied by our model are similar to the ones in the data.

6.2 The Correlation Puzzle

As well documented by Albuquerque et al. (2016), the correlation and covariance between

stock returns and measurable fundamentals, especially consumption growth, are weak. To

simultaneously account for the equity premium and the correlation puzzle is challenging

for models with all uncertainty being loaded to the supply side, such as Bansal and

Yaron’s (2004) long-run risk models. Albuquerque et al. (2016) consider this problem

as one of their main motivation for introducing a valuation risk from the demand side.

Our long-run risk model, augmented by the expectations risk, does relatively well at

matching the correlation between stock returns and consumption growth in the data

(both contemporaneous and with one-period lagged consumption). The intuition for this

result is related to the ability of our model to generate boom-and-bust bubbly behaviour,

as explained in Section 4 and shown in the next Section.

23Moreover, both the growth rate of consumption and dividends are affected by the innovation to the
persistent component of the time-preference shock.
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Figure 2: Simulated Price-Dividend Ratio
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(b) Decay memory

The figure shows the simulated PD ratio using the estimated model from Table 1. The simulated time
series is able to generate booms and busts, as observed in the data.
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6.3 Price Dividend Ratio

In Table 2, we show that the model matches the mean, volatility, and persistence of the

PD ratio very well. Indeed, the model is capable of generating ample boom-and-bust

type of movements, one of the main characteristics of the behaviour of the PD ratio in

the data. Figure 2 shows a particular realisation of the PD behaviour from simulating

both model specifications. Both simulations exhibit a clear boom-bust cycle. This kind

of behaviour appears as the PD ratio persistently deviates from the fundamental one, as

evident in equation (34). The fact that our sunspot shock is very persistent is key for

generating “momentum” on stock prices, while the limited memory assumption entails

“mean reversion” over long horizons to stable fundamentals. The fact that the PD ratio

drifts away persistently from its fundamental RE value - temporarily delinking stock prices

from fundamentals - also explains why the model is able to match the low correlation

between the fundamentals, i.e., consumption growth, and stock returns, as we discussed

in the previous paragraph.

Moreover, another important feature observed in the financial market is that the PD

ratio volatility increases in a bubbly market. Figure 2 suggests that the model is able

to replicate this feature. Equation (35a) conveys the analytical explanation behind this,

because it shows that the conditional variance of zm,t+1 increases in the deviation of the

PD ratio, zm,t, from its fundamental value, zREm,t .

Finally, another well-known feature of the data is the predictability of excess returns

from lagged PD ratios. Following Albuquerque et al. (2016), Table 3 reports the results of

regressing real excess returns on equity over holding periods of one, three, and five years

on the lagged price-dividend ratio, that is

rs,t+n − rf,t = c1
n + c2

n log(PDt) + ut,n (46)

where the dependent variable rs,t+n− rf,t is the observed real excess return of stocks over

bonds from t to t + n years, and un,t is the regression residual. The second column in

Table 3 reports the slope coefficients c2
1, c

2
3 and c2

5, while the sixth column reports the

R2’s. The slope coefficients are all negative, signalling that high PD ratios is associated
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Table 3: Predictability of excess returns

Slope coefficient R2

Data Finite
memory

Decay
Memory

Data R2 Finite
memory

Decay
Memory

c2
1 -0.0022 -0.0019 -0.0019 R2

1 0.0391 0.0208 0.0235

(0.0010) (-0.27) (-0.36) (0.0375) (0.49) (0.42)

c2
3 -0.0062 -0.0059 -0.0054 R2

3 0.0890 0.0544 0.0553

(0.0025) (-0.14) (-0.34) (0.0872) (0.53) (0.52)

c2
5 -0.0110 -0.0098 -0.0090 R2

5 0.1327 0.0804 0.0756

(0.0034) (-0.33) (-0.58) (0.0872) (0.60) (0.66)

The table reports the results of regression excess return over holding periods of one, three,
and five years on the lagged price-dividend ratio based on the parameter estimates in Table 1.
c2(n) and the R2(n) in the table represents the coefficients and the R−squared’s, respectively,
in the following regression: Xt,n = c1n + c2nPDt + ut,n, where Xt,n is the observed real excess
return of stocks over bonds from t to t + n years. The standard error (for estimated data
moments) and t-ratios (for model implied moments) are reported in parentheses.

with lower future excess returns. The other columns in Table 3 show the same results

by running this regression over our simulated data. Our model matches both the slope

coefficients and the R2’s of the regression, and the t−statistics are all well within the

significance level.

6.4 Implication for Expectations

Traditional rational expectation models give rise to an important counterfactual predic-

tion for the behaviour of investors’ return expectations. Reflecting the data feature we

just saw in Table 3, the rationally expected return should correlate negatively with the

PD ratio. However, the available survey data on investors’ return expectations suggest

the opposite. Based on the UBS Survey, the CFO survey and the Shiller individual in-

vestor survey, Adam et al. (2017) concludes a positive correlation between the PD ratio

and survey expected returns, despite the fact that actual returns is negatively correlated

to the PD ratio. Nagel and Xu (2021) shows that the conclusion holds true for both in-

dividual investors and professional forecasters. Although the previous literature studied

the positive correlation between price-dividend and expected returns, there is much less

formal evidence on the stability of this correlation. This is important for us because our
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model implies time variation in expectation formation, and hence time variation in this

correlation, as stressed in the Introduction. Therefore, in this section, we first confirm

the well-documented facts that the PD ratio plays a role in investors’ future return ex-

pectations. Then, we use econometric tests to show that how agent maps observed PD

ratios to calculate their return expectation is time-varying.

We use the UBS/Gallup Survey data, which is based on a representative sample of

approximately 1,000 US investors who own at least US$10,000 in financial wealth. We

use the data from February 1999 onwards when the survey was conducted on a regular

monthly basis until April 2007. After data cleaning, there are about 600 observations

per month. Figure 3 contains the cross-sectional average of investors’ one-year ahead

expected return on the market portfolio, on respondents’ own portfolio and the PD ratio

at the time when investors were asked to report their expectations. Notice that: (i) the

expected return on own portfolio one year ahead is very close to the expected market

return over the same period; (ii) the price-dividend ratio and the expected returns are

generally positively correlated. As evident from the Figure, the UBS survey changed

its survey questions over time. Before 2003 the respondents reported both the return

expectations on their own portfolio and expectations on market return one year ahead,

while from 2003 onwards, respondents report only the return they expect on their own

portfolio one year ahead.

To test our two hypothesis - (i) PD ratio plays a role in investors’ future returns

expectations; (ii) the mapping from PD ratio to expectations is time-varying - we consider

the following regression as in Nagel and Xu (2021) and Adam and Nagel (2022)

Êtrs,t+1 − rf,t = β0 + βt log(PDt) + εt, t = 1, . . . , T (47)

where Êtrs,t+1 is the survey expected market return of one-year ahead at time t. Following

the Nagel and Xu’s (2021) approach, we imputed the market return expectations by

regressing expected market returns on own portfolio expectations using the part of the

sample where both are available and using the fitted value from this regression when the

market return expectation is not reported.
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Figure 3: PD ratio and expected return one year ahead
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The figure contains the cross-sectional average of investors’ one-year ahead expected return
on the market portfolio and on respondents’ own portfolio as well as the actual PD ratio at
the time when investors were asked to report their expectations.

The first hypothesis can be tested by assuming βt = β for all t. Table 4 indicates that

the estimated coefficient of log PD ratio (i.e., β) is around 0.0269. We estimate the same

regression on model-generated data and the result is remarkably close. As Table 4 shows,

the model implied regression coefficient is 0.0240.24

Table 4: Survey Return Expectations and PD ratio

Data Moment Model

Estimate (SE) Mean 5% 95%

log PD 0.0269 (0.009) 0.0240 0.0112 0.0368

R2 0.08 0.22

The table

To test the parameter stability, we follow the methodology proposed by Nyblom (1989)

and Hansen (1992). We extend the standard regression model and allow the regression

24The regression coefficient for finite memory model is 0.0148. Both are calculated as the mean of 1000
simulations.
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coefficients to evolve randomly over time, specifically,

βt = βt−1 + νt (48)

where εt and νt are uncorrelated. νt is i.i.d N(0, τ2G) (where G is assumed to be known),

so that the coefficient βt follows a random walk and thus evolves smoothly but randomly

over the sample period. When εt is i.i.d N(0, σ2
ε), this is refereed as the “time-varying

parameter” model (see e.g., Cooley and Prescott, 1976). Under the null hypothesis βt = β

for all t. A rejection of the null hypothesis implies the parameter is unstable, and thus

investors’ way of forming expectations based on past price-dividend ratio is time-varying.

The Kalman filter is then applied, where βt is the unobserved state vector, (48) the state

equation, and (47) the measurement equation. Figure 1 plots the estimation of βt. Figure

4 plots the actual value of expected excess return versus the fitted value from constant

parameter regression and the smoothed value from TVP regression. It is evident that the

smoothed expected excess return from the TVP regression fit much better to the actual

data, which further suggests the rejection of a constant β.

Figure 4: Actual and fitted expected excess return

E
x
p

e
c
te

d
 e

x
c
e

s
s
 r

e
tu

rn

2000 2002 2004 2006 2008

0
2

4
6

8 Expected excess return

Smoothed value from TVP regression

Fitted value from constant parameter

We apply a formal test for time-varying coefficient βt = β following Hansen’s (1992)
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approach, the Lagrange Multiplier is estimated to be Li = 0.985 > cv0.05 = 0.470 and is

greater than the critical value, therefore, we reject the null hypothesis that βt is constant

at 5 percent confidence level.

7 Comparison with Alternative Models

This section compares our model results with two other leading alternatives: the long-run

risk model in Bansal and Yaron (2004) (see subsection 7.1) and the learning model in

Adam et al. (2016) (see subsection 7.2).

7.1 Comparison with the Long-run Risk Model in Bansal and Yaron

(2004)

This subsection discusses the relation between our model and the long-run risk model

pioneered by Bansal and Yaron (2004). Both models feature low-frequency fluctuations

in consumption growth and stochastic volatility, which induce changes in the agent’s

SDF. In contrast to our model, Bansal and Yaron (2004) assumes RE and an exogenous

AR(1) process for stochastic volatility, σ2
t+1 = σ2 + ν1(σ2

t −σ2) +σwwt+1, where σ2 is the

unconditional variances of consumption and ν1 is the persistence of the volatility process.

Consequently, the pricing kernel is affected by the volatility shock wt+1

mt+1 − Etmt+1 = λ′m,ησtηt+1 − λ′m,eσtet+1 − λ′m,wσwwt+1 (49)

and the equity premium in the presence of time-varying volatility becomes

Et(rm,t+1 − rf,t) = β′m,eλ
′
m,eσ

2
t + β′m,wλ

′
m,wσ

2
w − 0.5Vart(rm,t+1) (50)

A few observations follow. While Bansal and Yaron (2004) introduces time-varying

consumption volatility, we introduce a time-varying expectation formation process. Com-

paring the equity premium equations (50) and (40), it is clear that both specifications

can induce a time-varying compensation for the long-run risk. Despite this similarity,

the two models are not observationally equivalent. First, they have different implications

38



Table 5: LRR Parameter Estimates

Parameter Bansal and Yaron (2004)’s Estimated
original calibration value

γ 10 12.6277
(6.0513)

δ 0.9989 0.9999
(1.0119)

ψ 1.5 1.0890
(0.9666)

ρ 0.975 0.8763
(0.7481)

ϕe 0.0373 0.1085
(0.8499)

σ 0.0072 0.0065
(0.9980)

µ 0.0015 0.0020
(1.0034)

µd 0.0008 0.0020
(-)

φ 2.5 3.0579
(1.1576)

ϕd 5.96 5.1702
(1.2144)

ν1 0.999 0.9236
(0.9616)

σw 2.4e-06 2.4569e-06
(1.0042)

The table presents Bansal and Yaron’s (2004) original parameter values
in column 2 (however, as their parameters were calibrated based on period
1929 to 1998, we slightly adjusted their original calibration to better match
the data moments in this paper) and the estimated parameter values in
column 3 (with standard errors reported in parentheses). The SMM is
used to obtain the estimates. The model simulates on a monthly basis
and appropriately compounds to the annual frequency.

for the correlation between observed consumption growth and asset returns. In our case,

the changes in the compensation to expected consumption growth are driven by the ex-

pectation formation parameter bt, so that the correlation between consumption growth

and asset returns is relatively weak, as observed in the data. Second, in Bansal and

Yaron’s (2004) setting, the compensation for the volatility shock is constant. In contrast,

the compensation for the expectation formation shock varies over time and positively

correlates with the deviation of current prices from the fundamental one. Moreover, our

time-varying component arises endogenously from the time-varying expectation formation

process, whereas the time-varying volatility in Bansal and Yaron (2004) is exogenous.

Despite this, the next subsection ?? shows that our model have better quantitatively

performance than the Bansal and Yaron’s (2004) one.
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Table 6: LRR model performance

U.S. Data Calibrated Model Estimated Model

Mean stock return Ers 7.79 5.26 5.31
(1.83) (1.43)

Mean bond return Erb 0.45 0.45 -1.16
(0.49) (2.11)

Mean PD ratio EPD 32.05 33.13 35.60
(1.43) (-0.71)

Mean dividend growth E∆D/D 1.74 2.16 3.20

(1.12) (-1.82)
Std. dev. stock return σrs 18.71 18.26 14.64

(0.94) (2.23)
Std. dev. PD ratio σPD 16.40 5.47 3.24

(2.05) (3.42)
Std. dev. Dividend Growth σ∆D/D 10.67 11.29 12.76

(1.60) (-0.79)
Std. dev. bond return σrb 3.91 0.94 1.25

(0.43) (3.59)
Autocorrel. PD ratio ρPD,−1 0.90 0.56 0.17

(0.12) (7.66)
Mean consumption growth E∆C/C 2.01 1.85 2.50

(0.32) (-1.44)
Std. dev. consumption growth σ∆C/C 2.96 2.79 2.70

(0.32) (0.42)
Autocorrel. consump. growth ρ∆C/C,−1 0.61 0.80 0.14

(0.12) (0.31)
Autocorrel. dividend growth ρ∆D/D,−1 0.24 0.31 0.03

(0.37) (0.45)
Corr. corr∆C/C,∆D/D 0.47 0.55 0.18

(0.13) (1.96)
Predictability βPD -0.0110 -0.0098 -0.0145

(0.003) (0.9524)
Predictability R2 0.1327 0.0804 0.0348

(0.086) (1.0622)
Contemporaneous correlation between 0.03 0.07 0.14

stock return and consumption growth (0.11) (-0.95)

Correlation between stock return -0.13 0.52 0.03
and one-period lag consumption growth (0.27) (-0.59)

Test statistic ŴN 558

p-value of ŴN 0

The table compares the asset-pricing moments from the US data (column 2, with standard errors reported in
parentheses) with the one implied by the calibrated and estimated Bansal and Yaron’s (2004) model (column
3 and 4, respectively, the t-ratios for each moment are reported in parentheses). The t-ratios are calculated
as (data moment - model moment)/(estimated standard deviation of the model moment). The measure of the

overall goodness of fit ŴN , defined as (45), and the corresponding p-value are reported in the last two rows of
the table.
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Estimation Result. In evaluating the quantitative performance of the LRR model, we

first focus on Bansal and Yaron’s (2004) original calibration.25 Then, for a fair compar-

ison, we also utilize the SMM method described in the previous section to estimate the

model. The parameter values in both cases are reported in Table 5. In the estimation, we

assume that the agent’s decision interval is monthly and then appropriately compounded

to match the annual data. Notice, however, that the structural parameters in this case are

estimated less precisely, especially the risk-aversion factor and the IES. The larger stan-

dard errors point out difficulties in the estimation, as well documented in the literature

(Bansal et al., 2016).

The model moments are reported in Table 6. Columns 3 and 4 display the model

moments under calibration and the ones obtained by estimating the model using the

SMM, respectively. It turns out that our model outperforms the LRR in terms of both

individual moments and overall fitness. In particular, despite the LLR model matching

relatively well the levels of equity-premium and price-dividend ratio, the model falls short

of the data on some dimensions - the high volatility of price-dividend ratio and market

returns as well as the high persistence in the price-dividend ratio (of which t-ratios greater

than 2). This might be explained by the fact that the LLR model loads all the uncertainty

onto the supply side and thus the price fluctuations only come from fluctuations in the

fundamentals, which is considerably small in the data.

7.2 Comparison with the Learning Model in Adam et al. (2016)

This section shows that our key results hold even in a simple version of the Lucas (1978)

model. Adam et al. (2016) use this model to show that a departure from RE - in the

form of a learning model - enables even such a simple asset pricing model to reproduce a

variety of stylized asset pricing facts quantitatively. We then embed our deviation from

RE in such a model. We show that our expectation shock in this paper improves the

replication of both individual moments and the overall goodness of fit with respect to the

learning mechanism in Adam et al. (2016).

25In Bansal and Yaron (2004)’s original calibration, their parameters were originally calibrated based
on the period 1929 to 1998; therefore, we slightly adjusted their original calibration to better match the
data moments in this paper.
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Model Description. The representative agent has standard time-separable CRRA

preference. Hence, the problem of the agent is to choose (Ct, St, Bt) to maximize the

intertemporal utility function

max
{Ct≥0,St,Bt}∞t=0

E0

∞∑
t=0

δtu(Ct) = E0

∞∑
t=0

δt
(Ct)

1−γ

1− γ
(51)

subject to the budget constraint

Ct + PtSt +Bt ≤ (Pt +Dt)St−1 + (1 + rt−1)Bt−1 + Yt, (52)

where Ct denotes the agent’s consumption, Pt the competitive price of stock, St the stock

hold by the representative agent, Bt the bond holding and Yt the endowment of income

that the agent receives each period. Utility maximisation yields

C−γt Pt = δ Et[C−γt+1Pt+1] + δ Et[C−γt+1Dt+1] (53)

C−γt = δ(1 + rt)Et[C−γt+1] (54)

As in Adam et al. (2016), the dividend is assumed to evolve according to Dt
Dt−1

= αεdt ,

where log εdt ∼ i.i.d N(0, σ2
d) and α ≥ 1. This implies Et(εdt ) = 1, E4D

D
≡ E

(
Dt−Dt−1

Dt−1

)
=

α − 1, and σ2
4D
D

≡ var
(
Dt−Dt−1

Dt−1

)
= α2(es

2
d − 1). The consumption growth process

is modelled as Ct
Ct−1

= αεct , where log εct ∼ i.i.d N(0, σ2
c ) and (log εct , log εdt ) are jointly

normal. Moreover, the standard deviation of consumption growth is set to be sc = 1
7s
d to

capture the lower volatility observed in consumption growth than in dividend growth; the

correlation between log εct and log εdt is set ρc,d = 0.2 to capture the correlation between

dividend and consumption growth.

Adam et al. (2016) then assume agents to think that the process for risk-adjusted

stock price growth contains both a transitory and a persistent time-varying component

(
Ct
Ct−1

)−γ Pt
Pt−1

= bt + εt and bt = bt−1 + ξt, (55)
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where εt and ξt are i.i.d white noise also jointly i.i.d. with εct and εdt . The agents then face

a learning problem that consists in optimal filtering out the two unobserved components

from the realizations of risk-adjusted stock price growth.

Instead, we apply our expectation shock and limited memory assumptions to this

setup. First, rewrite the Euler Equation (53) as an expectational difference equation

linking the current and expected future value of the PD ratio as

Pt
Dt

= δ Et

[(
Ct+1

Ct

)−γ Dt+1

Dt

Pt+1

Dt+1

]
+ δ Et

[(
Ct+1

Ct

)−γ Dt+1

Dt

]
. (56)

Then, applying the approach described in Section 2, we can rewrite the solution for the

PD ratio as (details can be found in Appendix D)

Pt
Dt

= (bt − 1)

 ∞∑
j=0

(
λ

δ

)j ( j∏
i=0

ηt−i

)−1

ηt−j

+ bt
δα1−γρε

1− δα1−γρε
, (57)

where

ηt+1 ≡
(
Ct+1

Ct

)−γ (Dt+1

Dt

)
= α1−γ (εct+1

)−γ
εdt+1, (58)

and

ρε = Et[(εct+1)−γεdt+1] = eγ(1+γ)
s2c
2 e−γρc,dscsd . (59)

The standard stable RE solution (corresponding to bt = 1) is PDF
t = δα1−γρε

1−δα1−γρε
.

Estimation Results. To facilitate the comparison of the quantitative performance of

the two models, we use the data are from Adam et al.’s (2016) database. The data

is quarterly US stock market data from 1925Q4 to 2012Q2. The model moments are

reported on a quarterly frequency, as in Adam et al. (2016).26 For comparability, we

set the risk aversion coefficient to γ = 5 as in Adam et al. (2016), then there are 4 free

parameters to estimate, namely the growth rate of dividend α, the standard deviation of

dividend innovations σ, the standard deviation of the expectation parameter σb, and the

26The data are available at https://www.klaus-adam.com/published-und-forthcoming/. The original
data was downloaded from the Global Financial Database. As they consider the return predictability
at the five-year horizon, the effective sample is up to 2007Q1, and due to the seasonal adjustment, the
effective starting date is 1927Q2. All data are in real terms. Details can be found in Appendix A of Adam
et al. (2016).
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memory constraint parameter (T in the finite memory case or λ in the decay memory

case). Again for comparability, we do not include all the above moments in the estimation

for this application, but only the one used in Adam et al. (2016), that is

(Êrs , ÊPD, σ̂rs , σ̂PD, ρ̂PD,−1, R̂
2
5, Ê4D/D, σ̂4D/D). (60)

The Adam et al.’s (2016) model does not match the mean bond return Êrb , so they drop it

from the estimation in their favourite specification. Moreover, they also drop ĉ2
5 to avoid

the near-singularity issue of the Σ̂S,N matrix. Nonetheless, they report the model implied

mean bond return Êrb and ĉ2
5 based on the estimated parameters. Hence, we proceed in

the same way, again for comparability.

Table 7 reports the results. Column 1 displays the data moments (standard errors

in parenthesis), column 2 the corresponding estimated moments in Adam et al. (2016)

(see Table III therein). Columns 3 and 4 display the moments from the estimated finite

memory model and decay memory model, respectively (t-statistics in parenthesis). Again,

there is very little difference between the finite memory and the decay memory model.

Both specifications closely match both the mean and the standard deviation of stock

return, whereas the learning mechanism in Adam et al. (2016) is not able to match. None

of the models is able to match the mean bond return pointing to the limitation of the

CRRA setup regarding the risk-free rate puzzle. Leaving aside the mean bond return, all

the t-statistics for the estimated moments in our limited memory setup have an absolute

value less than one, suggesting that the individual model moments can match the data

moments pretty well, with the only marginal exception of R2
5 for the finite memory case

equal to -1.03. Note that R2
5 is the only statistic for which the t-statistics is lower for the

Adam et al.’s (2016) model, while our model matches quite well the standard deviation

of dividend growth in contrast to Adam et al. (2016). Indeed, the overall goodness of fit

test strongly favours our model that displays p-values of 16.7% and 20.1% for the finite

memory and decay memory specifications, respectively, so that both are not rejected well

above the 10% significance level.
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Table 7: Comparison with Adam et al. (2016)’s learning model

U.S. Data Adam et al. (2016) Finite Model Decay Model

Quarterly mean stock return Ers 2.25 1.32 2.24 2.23
(0.37) (2.50) (0.04) (0.07)

Quarterly mean bond return Erb 0.15 1.09 1.98 1.98
(0.19) (-4.90 ) (-9.34) (-9.52)

Mean PD ratio EPD 123.91 109.66 116.92 119.96
(21.67) (0.69 ) (0.32) (0.18)

Mean dividend growth E∆D/D 0.41 0.22 0.36 0.37

(0.17) (1.14) (0.23 ) (0.23)
Std. dev. stock return σrs 11.44 5.34 9.01 8.73

(2.71) (2.25 ) (0.90) (0.99)
Std. dev. PD ratio σPD 62.43 40.09 54.78 54.80

(17.27 ) (1.33) (0.50) (0.43)
Std.dev. dividend growth σ∆D/D 2.88 1.28 2.29 2.17

(0.82 ) (1.95 ) (0.72) (0.86)
Autocorrel. PD ratio ρPD,−1 0.97 0.96 0.97 0.97

(0.02) (0.30) (-0.03) (-0.17)
Excess return reg. coefficient ĉ5 -0.0041 -0.0050 -0.0047 -0.0044

(0.0014) (0.64) (0.40) (0.19)
R2 of excess return regression R2

5 0.2101 0.2282 0.2951 0.2890
(0.0824) (-0.22 ) (-1.03) (-0.95)

Risk aversion coefficientγ 5 5 5
Std. dev. of expect. param σb 0.084 0.085
T 6
λ 0.82
Test statistic ŴN 12.87 9.50 7.25
p-value of ŴN 2.5% 16.7% 20.1%

The table reports the US asset-pricing moments (column 2, with standard errors reported in parentheses), the
model moments from Table III in Adam et al. (2016) (column 3, the t-ratios for each moment are reported
in parentheses), as well as the moments implied by the finite memory and decay memory models (column 4
and 5, respectively, the t-ratios for each moment are reported in parentheses). Growth rates and returns are
expressed in terms of real quarterly rates of increase. The PD ratio is the price over the quarterly dividend.
A t-ratio less than 2 indicates that moments are closely matched with the data. The measure of the overall

goodness of fit ŴN and the corresponding p-value are reported in the last two rows of the table. Moreover, as

in Adam et al.’s (2016), we also exclude the mean risk free rate Êrb and c25 from the estimation and set γ = 5
in both models for consistency.
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8 Conclusions

We propose a novel mechanism for asset pricing models based on two features: (i) limited

memory; (ii) time-varying expectations. The first assumption guarantees that the model

is stable over long horizons, but opens up the possibility of many different temporary

equilibria. The second assumption borrows from Ascari et al. (2019) the idea of modelling

a multiplicative sunspot shock to select one equilibrium among all admissible ones. This

sunspot shock has an appealing economic interpretation as a time-varying expectation

formation process, because it entails a change in the way agents combine past data to

calculate their expectations.

These two assumptions allow for the possibility of temporary explosive trajectories

and boom-and-bust behaviour typical of asset price dynamics. Intuitively, our persistent

sunspot shock can induce “momentum” on stock prices, while the limited memory as-

sumption implies “mean reversion” over long horizons to stable fundamentals. We thus

embed this mechanism in the standard Bansal and Yaron (2004) model of long-run risk,

featuring Epstein-Zin preferences and a persistent predictable component in long-run risk.

However, contrary to Bansal and Yaron (2004), we do not assume stochastic volatility,

because our mechanism generates it endogenously.

The resulting model is able to quantitatively reproduce a variety of stylized asset

pricing facts, such as the equity premium, excessive volatility and persistence of price-

dividend ratio, the relatively weak correlation between returns and fundamentals and the

observed predictability of excess returns by lagged price-dividend ratios. Moreover, de-

spite the assumed time-varying expectation formation process imposes some theoretical

structure on the stochastic volatility, the quantitative performance of our model outper-

forms the Bansal and Yaron (2004) model, implying that the expectation process seems

corroborated by the data.

Furthermore, the model also generates empirical plausible subjective expectations.

We use the UBS/Gallup Survey data to show that there is a positive correlation between

the PD ratio and survey expected returns. Our model is able to replicate very closely the

regression coefficient of expected one-year ahead survey market return on the PD ratio.
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Although the previous literature studied the positive correlation between price-dividend

and expected returns, we uncover a novel fact showing that this relationship varies over

time, as implied by the time-varying expectation formation process in our model. This

empirical fact was one of the main motivation to introduce this process in our model in

the first place.

Finally, we show that the improvement in the quantitative performance of our model

is quite robust, because most of the results continue to hold even when applying to the

simplest version of the Lucas (1978) model with time separable preferences and standard

stochastic driving processes as in Adam et al. (2016). In this context, our mechanism

outperforms the learning model in Adam et al. (2016).
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Appendix

A The simple example: derivations

Muth’s (1961) original formulation states that the RE solution should be a function
of all the past, present and expected future structural shocks as described in (4). Plug
this back to the expectation difference equation (1) we have

∞∑
j=1

ujεt−j+bεt +
∞∑
j=1

cj Et εt+j =

θEt(
∞∑
j=1

ujεt+1−j + bεt+1 +

∞∑
j=1

cj Et+1 εt+1+j) + εt

(A1)

where uj , cj and b are coefficients to be determined. Equal coefficients of εt−j gives the
expression for u’s:

εt : b = θu1 + 1⇒ u1 =
1

θ
(b− 1);

εt−1 : u1 = θu2 ⇒ u2 =
1

θ
u1;

...

εt−T : uT = θuT+1 ⇒ uT+1 =
1

θ
uT ;

...

and solve for c’s:

εt+1 : c1 = θb

εt+2 : c2 = θc1

...

εt+T : cT = θcT−1

...

The coefficients u’s and c’s can be represented by the parameter b, and thus the set
of solution can be parameterized by b

yt =
∞∑
j=1

(
1

θ
)j(b− 1)εt−j + bεt +

∞∑
j=1

bθj Et εt+j (A2)

For white noise shocks, the solution becomes

yt =

∞∑
j=1

(
1

θ
)j(b− 1)εt−j + bεt

Model (1) has an infinite number of solutions (each one corresponds to a particular
value of b) due to the presence of the forward-looking component. In fact, the expectation
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term in that model, under the rational expectations hypothesis, is a conditional mean that
can be written as a weighted average of the past observations (see Muth (1961))

Et yt+1 =
∞∑
i=1

Viyt+1−i =
∞∑
i=1

(b− 1)

(
1

θb

)i
yt+1−i (A3)

Proof. Without loss of generality we assume white noise shocks. From the solution

yt =
∞∑
j=1

(
1

θ

)j
(b− 1)εt−j + bεt (A4)

The expectation is then

Et yt+1 = Et

 ∞∑
j=1

(
1

θ

)j
(b− 1)εt+1−j + bεt+1

 =
∞∑
j=1

(
1

θ

)j
(b− 1)εt+1−j

=

(
1

θ

)
(b− 1)εt +

(
1

θ

)2

(b− 1)εt−1 +

(
1

θ

)3

(b− 1)εt−2 + . . .

=

(
1

θb

)
(b− 1)

[
bεt +

(
1

θ

)
bεt−1 +

(
1

θ

)2

bεt−2 +

(
1

θ

)3

bεt−3 + . . .

]

=

(
1

θb

)
(b− 1)

 bεt +
(

1
θ

)
(b− 1)εt−1 +

(
1
θ

)2
(b− 1)εt−2 +

(
1
θ

)3
(b− 1)εt−3 + . . .

+
(

1
θ

)
εt−1 +

(
1
θ

)2
εt−2 +

(
1
θ

)3
εt−3 + . . .


=

(
1

θb

)
(b− 1)yt +

(
1

θb

)
(b− 1)

[(
1

θ

)
εt−1 +

(
1

θ

)2

εt−2 +

(
1

θ

)3

εt−3 + . . .

]

=

(
1

θb

)
(b− 1)yt +

(
1

θb

)2

(b− 1)

 bεt−1 +
(

1
θ

)
(b− 1)εt−2 +

(
1
θ

)2
(b− 1)εt−3 + . . .

+
(

1
θ

)
εt−2 +

(
1
θ

)2
εt−3 + . . .


=

(
1

θb

)
(b− 1)yt + (b− 1)

(
1

θb

)2

yt−1 + (b− 1)

(
1

θb

)2
[(

1

θ

)
εt−2 +

(
1

θ

)2

εt−3 + . . .

]

= (b− 1)
∞∑
i=1

(
1

θb

)i
yt+1−i

Finite memory
Under finite memory and the time-varying expectation formation process, the original
Muth (1961)’s formulation (4) becomes

yt =
T∑
j=1

uj,tεt−j + btεt +
∞∑
j=1

cj,t Et εt+j (A5)

At time t, the information set of the agent is given by It = {εt, εt−1, . . . , εt−T }. Based on
this information set, she forms her expectations

Et yt+1 =E (yt+1|It) = E (yt+1|εt, εt−1, . . . , εt−T )
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=Et

T+1∑
j=1

uj,t+1εt+1−j + bt+1εt+1 +
∞∑
j=1

cj,t+1 Et+1 εt+1+j

 (A6)

This particular form of expectation implies that the agent does not internalize the limited
memory.

Now use (A5) and (A6) to substitute for yt and Et yt+1 in the expectational difference
equation (1),

T∑
j=1

uj,tεt−j+btεt +
∞∑
j=1

cj,t Et εt+j =

θEt

T+1∑
j=1

uj,t+1εt+1−j + bt+1εt+1 +

∞∑
j=1

cj,t+1 Et+1 εt+1+j

+ εt

Again, equal coefficients to find an expression for the u’s:

εt : bt = θEt u1,t+1 + 1⇒ Et u1,t+1 =
1

θ
(bt − 1);

εt−1 : u1,t = θEt u2,t+1 ⇒ Et u2,t+1 =
1

θ
u1,t;

...

εt−T+1 : uT−1,t = θEt uT,t+1 ⇒ Et uT,t+1 =
1

θ
uT−1,t;

εt−T : uT,t = θEt uT+1,t+1 ⇒ Et uT+1,t+1 =
1

θ
uT,t;

and for the c’s:

εt+1 : c1,t = θEt bt+1

εt+2 : c2,t = θEt c1,t+1

...

εt+T : cT,t = θEt cT−1,t+1

...

Therefore, parameters uj,t and cj,t are defined by the path of bt. If b is constant, we
have uj = 1

θj
b and cj = θjb are constants as well. And the solution is

yt =

T∑
j=1

(
1

θ
)j(b− 1)εt−j + bεt +

∞∑
j=1

bθj Et εt+j (A7)

If bt follows a random walk, i.e., bt = bt−1 + σbξt, with ξt i.i.d N(0, 1), and therefore
Et bt+1 = bt. The solution for the expectational difference equation can be parameterized
by bt. To derive the solution, assume that u1,t+1 = F (bt+1), we need to find the formu-
lation of F such that bt = 1

θ Et u1,t+1 + 1 is satisfied, given the stochastic process for bt.
Guess that F is linear,

u1,t+1 = a0 + a1bt+1
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then

bt = θEt[a0 + a1bt+1] + 1

= θ[a0 + a1bt] + 1

gives

a0 = −1

θ
a1 =

1

θ

which gives ui,t+1 = −1
θ + 1

θ bt+1, bring one period backward we get ui,t = −1
θ + 1

θ bt.
Analogously, assuming u2,t+1 = F (bt+1) is linear, i.e. u2,t+1 = d0 + d1bt+1 then

u1,t = θEt[d0 + d1bt+1]

= θ[d0 + d1bt]

gives

d0 = −(
1

θ
)2 d1 = (

1

θ
)2

By the same reasoning, we can rewrite ct’s as functions of bt. Then the set of solutions
can be represented by bt.

yt =
T∑
j=1

(
1

θ
)j(bt − 1)εt−j + btεt +

∞∑
j=1

btθ
j Et εt+j . (A8)

Decay memory
Under decay memory, the original Muth (1961)’s formulation (4) becomes

yt =
∞∑
j=1

uj,tλ
jεt−j + btεt +

∞∑
j=1

cj,t Et εt+j (A9)

At time t, the information set of the agent is given by It = {εt, λεt−1, λ
2εt−2, . . .}.

Based on this information set, she forms her expectations

Et yt+1 =E(yt+1|It) = E(yt+1|εt, λεt−1, λ
2εt−2, . . .)

=Et
( ∞∑
j=1

uj,t+1λ
j−1εt+1−j + bt+1εt+1 +

∞∑
j=1

cj,t+1 Et+1 εt+1+j

)
(A10)

Now use (A9) and (A10) to substitute for yt and Et yt+1 in the expectational difference
equation (1),

∞∑
j=1

uj,tλ
jεt−j + btεt +

∞∑
j=1

cj,t Et εt+j =

θEt(
∞∑
j=1

uj,t+1λ
j−1εt+1−j + bt+1εt+1 +

∞∑
j=1

cj,t+1 Et+1 εt+1+j) + εt

Again, equal coefficients to find an expression for the u’s:

εt : bt = θEt u1,t+1 + 1⇒ Et u1,t+1 =
1

θ
(bt − 1);
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εt−1 : λu1,t = θλEt u2,t+1 ⇒ Et u2,t+1 =
1

θ
u1,t;

...

and for the c’s:

εt+1 : c1,t = θEt bt+1

εt+2 : c2,t = θEt c1,t+1

...

For constant bt = b, the coefficient for εt−j , ∀j is uj = (b− 1)
(
λ
θ

)j
, and the coefficient

for Et εt+j , ∀j is cj = bθj .

yt = (b− 1)

∞∑
j=1

(
λ

θ
)jεt−j + bεt + b

∞∑
j=1

θjEtεt+j (A11)

For bt = bt−1 + σbξt follows a random walk process, the solution is

yt = (bt − 1)
∞∑
j=1

(
λ

θ
)jεt−j + btεt + bt

∞∑
j=1

θjEtεt+j (A12)

As λ < 1, the past shocks have dampened impacts on current equilibrium just because
the memory loss. In cases where λ > θ, transversality condition gives the unique solution,
coinciding with b = 1. In the case where λ < θ, transversality condition cannot help us
pick a unique solution.

Under the time-varying expectation formation, the expectation is written as (with
white noises),

Ētyt+1 = (bt − 1)

∞∑
i=1

(
1

θ

)i i∏
j=1

bt+1−j

−1

λi−1yt+1−i (A13)

Derivation:
Start with the solution (A12) and assume Et εt+j = 0, ∀j

yt =
∞∑
j=1

(
λ

θ
)j(bt − 1)εt−j + btεt

Bring the solution one-period forward and take expectation

Ētyt+1 =Ēt

 ∞∑
j=1

(
1

θ

)j
λj−1(bt+1 − 1)εt+1−j + bt+1εt+1

 =
∞∑
j=1

(
1

θ

)j
λj−1(bt − 1)εt+1−j

=

(
1

θ

)
(bt − 1)εt +

(
1

θ

)2

λ(bt − 1)εt−1 +

(
1

θ

)3

λ2(bt − 1)εt−2 + . . .

=

(
1

θbt

)
(bt − 1)

[
btεt +

(
1

θ

)
btλεt−1 +

(
1

θ

)2

btλ
2εt−2 +

(
1

θ

)3

btλ
3εt−3 + . . .

]
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=

(
1

θbt

)
(bt − 1)

 btεt +
(
λ
θ

)
(bt − 1)εt−1 +

(
λ
θ

)2
(bt − 1)εt−2 +

(
λ
θ

)3
(bt − 1)εt−3 + . . .

+
(
λ
θ

)
εt−1 +

(
λ
θ

)2
εt−2 +

(
λ
θ

)3
εt−3 + . . .


=

(
1

θbt

)
(bt − 1)yt +

(
1

θbt

)
(bt − 1)

[(
λ

θ

)
εt−1 +

(
λ

θ

)2

εt−2 +

(
λ

θ

)3

εt−3 + . . .

]

=

(
1

θbt

)
(bt − 1)yt +

(
1

θbt

)
(bt − 1)

(
λ

θbt−1

) bt−1εt−1 + λ
θ (bt−1 − 1)εt−2 +

(
λ
θ

)2
(bt−1 − 1)εt−3

+
(
λ
θ

)
εt−2 +

(
λ
θ

)2
εt−3 + . . .

 =

=(bt − 1)

[(
1

θbt

)
yt +

(
1

θ

)2( 1

btbt−1

)
λyt−1 +

(
1

θ

)2( 1

btbt−1

)
λ

[(
λ

θ

)
εt−2 +

(
λ

θ

)2

εt−3 + . . .

]]

= (bt − 1)
∞∑
i=1

(
1

θ

)i i∏
j=1

bt+1−i

−1

λi−1yt+1−i

For constant b, the expectation under decay memory becomes, this is equation (11)

Ētyt+1 = (b− 1)
∞∑
i=1

(
1

θb

)i
λi−1yt+1−i (A14)

B A Decay Memory Asset-pricing Model

B.1 Model derivations

Recall that the Euler condition in equation (18) implies that any asset i should satisfy
the following pricing restriction, (this is just the log form of the Euler equation (18))

Et
[
exp

(
θ log(δ)− θ

ψ
gc,t+1 + θra,t+1

)]
= 1 (A15)

where the lowercase letters refer logs.

Solution for Wealth Return ra,t+1:
Note that when substituting ri,t+1 = ra,t+1 then (A15) becomes

Et
[
exp

(
θ log(δ)− θ

ψ
gc,t+1 + θra,t+1

)]
= 1 (A16)

We start by conjecturing that the solutions for the endogenous variables zt are a linear
function of the discounted past, present and expected future values of x’s but subject to
decay memory constraint, i.e. the time t information set is It = {xt, λxt−1, λ

2xt−2, . . .}.
Guess the solution of log price consumption ratio zt = log(Pt/Ct) has the following form:

zt = A0,t +

(
1− 1

ψ

) ∞∑
j=1

uj,tλ
jxt−j + btxt +

∞∑
j=1

cj,tEtxt+j


where the parameters A0,t, uj,t, bt and cj,t are coefficients to be determined. Followed by
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that the expectation of zt+1 at time t given information set It has the form

Ētzt+1 = E(zt+1|xt, λxt−1, . . .)

= Et

A0,t+1 +

(
1− 1

ψ

) ∞∑
j=1

uj,t+1λ
j−1xt+1−j + bt+1xt+1 +

∞∑
j=1

cj,t+1Et+1xt+1+j


Armed with the endogenous variable zt and its expectation, we plug the approximation

ra,t+1 = κ0 + κ1zt+1 − zt + gc,t+1 into the Euler equation (A16). The solution coefficients
can be derived by collecting the terms on the corresponding state variables.

Using the undetermined coefficient methods as in Appendix A, the log price-consumption
ratio is given by

zt = A0,t + (1− 1

ψ
)

[ ∞∑
j=1

(
1

κ1
)jλj(bt − 1)xt−j + btxt + bt

∞∑
j=1

(κ1ρ)jxt

]
with

A0,t =
1

1− κ1

(
log(δ)− (

1

ψ
− 1)µ+ κ0 +

θ

2
(

1

ψ
− 1)2

[
σ2 − σ2

bκ1X
2
t + κ2

1

(
ϕeσ

1− κ1ρ

)2

b2t

])

where

Xt =
∞∑
j=1

(
1

κ1
)jλjxt−j +

1

1− κ1ρ
xt

Solution for Market Return rm,t+1:
When ri,t+1 = rm,t+1 the log-linearized Euler equation becomes

Et
[
exp

(
θ log δ − θ

ψ
gc,t+1 + (θ − 1) ra,t+1 + rm,t+1

)]
= 1 (A17)

Plug in the linearized expression for ri,t+1 and rm,t+1

1 = Et
[

exp

(
θ log(δ)− θ

ψ
gc,t+1+(θ−1)(κ0+κ1zt+1−zt+gc,t+1)+κ0,m+κ1,mzm,t+1−zm,t+gd,t+1

)]
(A18)

Guess that the solution for the endogenous variables zm,t are a linear function of the
discounted past, present and expected future values of x’s, i.e. the time t information set
is It = {xt, λxt−1, λ

2xt−2, ...}. Analogously, plugging the guess into the pricing equation
(A18) and equating the coefficients of the state variables and constant. Replacing the
consumption and dividend growth processes and of the price-consumption and price-
dividend ratios, and solving for the expectations, we obtain the solution for zm,t:

zm,t = A0,m,t + (φ− 1

ψ
)

[ ∞∑
j=1

(
λ

κ1,m
)j(bt − 1)xt−j + btxt + bt

∞∑
j=1

(κ1,mρ)jxt

]

Solution for the risk-free rate rf,t+1:
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To solve for the risk-free rate, we substitute Ri,t+1 = Rf,t+1 then (A15) becomes

Et
[
exp

(
θ log δ − θ

ψ
gc,t+1 + (θ − 1) ra,t+1 + rf,t+1

)]
= 1

In logarithms, the Euler equation is:

rf,t+1 =− log(Et(exp(mt+1)))

=− log

(
Et(exp(θ log δ − θ

ψ
gc,t+1 + (θ − 1) ra,t+1

)
Further solve the above expression gives

rf,t+1 =− log(δ) +
1

ψ
µ+

1

ψ
xt − (1− θ)θ

2
(

1

ψ
− 1)2σ2 − 1

2

[
(
θ

ψ
+ 1− θ)σ

]2

− 1

2
(1− θ)(1− 1

ψ
)2

[
κ2

1(
1

1− κ1ρ
)2ϕ2

eσ
2b2t − σ2

b [Xt]
2 − κ2

1σ
2
b (

1

1− κ1ρ
)2ϕ2

eσ
2

]

B.2 Analytical results: derivations

This section provides the derivation of the analytical results in the main paper.27

Price-dividend ratio:
To derive the persistence of price-dividend ratio (i.e., equation (34)), we define ẑ as the
deviation from the usual RE solution,

ẑm,t ≡zm,t − zREm,t

= (bt − 1)

 ∞∑
j=1

(
λ

κ1,m
)j(φ− 1

ψ
)xt−j +

1

1− κ1,mρ
(φ− 1

ψ
)xt

 (A19)

27The time-varying component in the A0 and A0,m were abbreviated when deriving the analytical
solutions as it does not affect the main results, but this impact was considered when doing the quantitative
analysis.
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Moving the above equation (A19) one-period forward we get,

ẑm,t+1 ≡ zm,t+1 − zREm,t+1

= (bt+1 − 1)

 ∞∑
j=1

(
λ

κ1,m
)j(φ− 1

ψ
)xt+1−j +

1

1− κ1,mρ
(φ− 1

ψ
)xt+1


= (bt+1 − 1)

 λ

κ1,m

∞∑
j=1

(
λ

κ1,m
)j(φ− 1

ψ
)xt−j +

λ

κ1,m
(φ− 1

ψ
)xt +

1

1− κ1,mρ
(φ− 1

ψ
)xt+1


[A]
= (bt+1 − 1)

(
λ

κ1,m

(
ẑm,t

(bt − 1)
− 1

1− κ1,mρ
(φ− 1

ψ
)xt

)
+

λ

κ1,m
(φ− 1

ψ
)xt +

1

1− κ1,mρ
(φ− 1

ψ
)xt+1

)
=

λ

κ1,m

bt+1 − 1

bt − 1
ẑm,t + (bt+1 − 1)

(
φ− 1

ψ

)(
ϕeσ

1− κ1,mρ
et+1 +

1

1− κ1,mρ
(1− λ) ρxt

)
[B]
≈ λ

κ1,m

bt+1 − 1

bt − 1
ẑm,t + (bt+1 − 1)

(
φ− 1

ψ

)
ϕeσ

1− κ1,mρ
et+1 as λ→ 1

[A] follows that by simply rearranging (A19)

∞∑
j=1

(
λ

κ1,m
)j(φ− 1

ψ
)xt−j =

ẑm,t
(bt − 1)

− 1

1− κ1,mρ
(φ− 1

ψ
)xt

[B] follows that as λ→ 1, the memory loss term

(bt+1 − 1)

(
φ− 1

ψ

)(
1

1− κ1,mρ
(1− λ) ρxt

)
→ 0

The stochastic volatility (35) in the text is derived as followed: for bt 6= 1, the variance
of zm,t+1

Vart(zm,t+1) = Vart

(φ− 1

ψ
)

[ ∞∑
j=1

(
1

κ1,m
)jλj−1(bt+1 − 1)xt+1−j + bt+1

1

1− κ1,mρ
xt+1

]
= Vart

(φ− 1

ψ
)

[
bt+1

 ∞∑
j=1

(
1

κ1,m
)jλj−1xt+1−j +

1

1− κ1,mρ
ρxt

+ bt+1
ϕeσ

1− κ1,mρ
et+1

]
[C]
= Vart

([
bt+1

1

κ1,m

(
zREm,t − zbm,t

)
+ bt+1(φ− 1

ψ
)

ϕeσ

1− κ1,mρ
et+1

])

=
σ2
b

κ2
1,m

(
zREm,t − zbm,t

)2
+ b2t (φ−

1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

+ σ2
b (φ−

1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

[D]
=

σ2
b

κ1,m

(
zm,t − zREm,t

1− bt

)2

+ b2t (φ−
1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

+ σ2
b (φ−

1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2
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[C] follows that

zbm,t = −
∞∑
j=1

(
λ

κ1,m
)jxt−j and zREm,t =

1

1− κ1,mρ
xt

[D] follows that

zm,t = (1− bt)zbm,t + btz
RE
m,t ⇒ zm,t − zREm,t = (bt − 1)(zREm,t − zbm,t)

Equity premium: derivations
First, stochastic discount factor is a function of ra,t+1 and gc,t+1.

mt+1 = θ log δ − θ

ψ
gc,t+1 + (θ − 1)ra,t+1

= θ log δ − θ

ψ
gc,t+1 + (θ − 1)(κ0 + κ1zt+1 − zt + gc,t+1)

Substituting the equilibrium return for ra,t+1 into the equation, it is straightforward to
show that the innovation to the pricing kernel is

mt+1 − Etmt+1 = − θ
ψ
gc,t+1 + (θ − 1)(κ1zt+1 + gc,t+1)− Et

[
− θ
ψ
gc,t+1 + (θ − 1)(κ1zt+1 + gc,t+1)

]
=

(
− θ
ψ

+ θ − 1

)
(gc,t+1 − Etgc,t+1) + (θ − 1)κ1 (zt+1 − Etzt+1)

= −
(

1− θ +
θ

ψ

)
σηt+1 − (1− θ)κ1(1− 1

ψ
)

[ ∞∑
j=1

(
λ

κ1
)jxt+1−j +

1

1− κ1ρ
ρxt

]
σbξt+1

− (1− θ)κ1(1− 1

ψ
)bt+1

ϕe
1− κ1ρ

σet+1

= −λm,ησηt+1 − λm,ξ,t+1σbξt+1 − λm,e,t+1σet+1

(A20)
where λm,η, λm,e,t+1 and λm,ξ,t+1 captures the pricing kernel’s exposure to the inde-

pendent consumption shocks, ηt+1, to the expected growth rate shock, et+1, and to the
time-varying expectation shock, ξt+1.

Equation (A20) already provides the innovation in mt+1. We now proceed to derive
the innovation in the market return. Recall that the return

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1

Then

rm,t+1 − Etrm,t+1 =κ1,m (zm,t+1 − Etzm,t+1) + (gd,t+1 − Etgd,t+1)

=κ1,m(φ− 1

ψ
)

[ ∞∑
j=1

(
λ

κ1,m
)jxt+1−j +

1

1− κm,1ρ
ρxt

]
σbξt+1

+ κ1,m(φ− 1

ψ
)

1

1− κm,1ρ
bt+1ϕeσet+1 + ϕdσut+1

=βm,ξ,t+1σbξt+1 + βm,e,t+1σet+1 + βm,uσut+1

(A21)
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where

βm,u =ϕd (A22a)

βm,ξ,t+1 =κ1,m(φ− 1

ψ
)

[ ∞∑
j=1

(
λ

κ1,m
)jxt+1−j +

1

1− κm,1ρ
ρxt

]
(A22b)

βm,e,t+1 =κ1,m(φ− 1

ψ
)

1

1− κm,1ρ
bt+1 (A22c)

Moreover, it follows that

Vart(rm,t+1) = (βm,u + βm,e,t+1)2σ2 + β2
m,ξ,t+1σ

2
b (A23)

The risk premium for any asset is determined by the conditional variance between
the return and mt+1. Thus the risk premium for the market portfolio rm,t+1 is equal
to Et(rm,t+1 − rf,t) = −cov(mt+1 − Etmt+1, rm,t+1 − Et rm,t+1)− 0.5Vart(rm,t+1). Using
the innovations in the market return and the pricing kernel, the expression for the equity
premium is

Et(rm,t+1 − rf,t) = βm,e,tλm,e,tσ
2 + βm,ξ,tλm,ξ,tσ

2
b − 0.5Vart(rm,t+1) (A24)

C A Finite Memory Asset-pricing Model

C.1 Model derivations

In this section, we follow the same steps as in Section B.1. Recognize that, in both decay
memory and finite memory, the agent has the same preferences and utility function, and
thus both model have the same log Euler equation (A15).

Solution for Wealth Return ra,t+1:
We start by conjecturing that the solutions for the endogenous variables zi are a linear
function of the finite past, present and expected future values of x’s but subject to finite
memory constraint, i.e. the time t information set is It = {xt, xt−1, xt−2, ...xt−T }.

zt = A0,t + (1− 1

ψ
)

[
T∑
j=1

uj,txt−j + btxt +

∞∑
j=1

cj,t Et xt+j

]
(A25)

where the parameters A0,t, uj,t, bt and cj,t. Under the finite memory assumption, the
expectation at time t given information set It would have the following form

Ētzt+1 =E(zt+1|xt, xt−1, xt−2, ...xt−T )

=Et

[
A0,t+1 + (1− 1

ψ
)

T+1∑
j=1

ut+1,jxt+1−j + bt+1xt+1 +

∞∑
j=1

Et+1 ct+1,jxt+1+j

]
(A26)

Approximate that ra,t+1 = κ0 + κ1zt+1 − zt + gc,t+1 , and by the same procedure as
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described in Section B.1, we get

zt = A0,t + (1− 1

ψ
)

[
T∑
j=1

(
1

κ1
)j(bt − 1)xt−j + btxt + bt

∞∑
j=1

(κρ)jxt

]

= A0,t + (1− 1

ψ
)

[
T∑
j=1

(
1

κ1
)j(bt − 1)xt−j + bt

1

1− κ1ρ
xt

] (A27)

with

A0,t =
1

1− κ1

(
log(δ) + (1− 1

ψ
)µ+ κ0 +

θ

2
(1− 1

ψ
)2

(
σ2 + κ2

1(
ϕeσ

1− κ1ρ
)2b2t − σ2

bΣ
2

))
where Σ =

∑T+1
j=1 ( 1

κ1
)jxt+1−j + ρxt

1−κ1ρ .

Solution for Market Return rm,t+1:
When ri,t+1 = rm,t+1 the log-linearized Euler equation has the same form as equation
(A17). We conjecture that the solutions for the endogenous variables zm,t are a function
of the finite past, present and expected future values of x’s but subject to finite memory
constraint, i.e. the time t information set is It = {xt, xt−1, xt−2, ...xt−T }.

zm,t = A0,m,t + (φ− 1

ψ
)

[
T∑
j=1

uj,txt−j + btxt +
∞∑
j=1

cj,t Et xt+j

]
(A28)

where the parameters A0,m,t, uj,t, bt and cj,t are coefficients to be determined. To use
the method of undetermined coefficients, we start by plugging the expressions for the two
returns (i.e., rt+1 = κ0 +κ1zt+1−zt+gc,t+1 and rm,t+1 = κ0,m+κ1,mzm,t+1−zm,t+gd,t+1)
into the above Euler equation

1 = Et
[

exp

(
θ log(δ)− θ

ψ
gt+1+(θ−1)(κ0+κ1zt+1−zt+gt+1)+κ0,m+κ1,mzm,t+1−zm,t+gd,t+1

)]
Plugging the conjectured solution of logarithm of price-dividend ratio (A28) into the

above equation and collect the terms on the corresponding state variables (i.e., the same
procedure as described in Section B.1)

zm,t = A0,m,t + (φ− 1

ψ
)

[
T∑
j=1

(
1

κ1,m
)j(bt − 1)xt−j + btxt + bt

∞∑
j=1

(κ1,mρ)jxt

]

= A0,m,t + (φ− 1

ψ
)

[
T∑
j=1

(
1

κ1,m
)j(bt − 1)xt−j + bt

1

1− κ1,mρ
xt

] (A29)

C.2 Analytical results: derivations

This section provides the derivation of the analytical results for the finite memory model.28

In general it has similar procedure as the decay memory case.

28The time-varying component in the A0 and A0,m were abbreviated when deriving the analytical
solutions as it does not affect the main results, but this impact was considered when doing the quantitative
analysis.
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Price-dividend ratio: Derivations
Notice that we can rewrite the solution for zm,t (i.e., equation (A29)) as the sum of the
usual RE result and a backward-looking component

zm,t = bt

[
A0,m +

φ− 1
ψ

1− κ1,mρ
xt

]
︸ ︷︷ ︸
usual RE model results, zREm,t

+ (bt − 1)

A0,m +
T∑
j=1

(
1

κ1,m
)j
(
φ− 1

ψ

)
xt−j


︸ ︷︷ ︸

backward-looking eq., zbm,t

(A30)

When bt = 1, the result is back to the usual RE solution, while for bt 6= 1, the asset
price can deviate from their fundamental values. Moreover, the deviation from the stable
solution is very persistent. To see this, define ẑ as the deviation from the usual RE
solution, and therefore we have

ẑm,t+1 ≡ zm,t+1 − zREm,t+1

=

T∑
j=1

(
1

κ1,m
)j (bt+1 − 1)

(
φ− 1

ψ

)
xt+1−j + (bt+1 − 1)

1

1− κ1,mρ

(
φ− 1

ψ

)
xt+1

= (bt+1 − 1)

(
φ− 1

ψ

) 1

κ1,m

T∑
j=1

(
1

κ1,m

)j
xt−j +

1

1− κ1,mρ
xt+1 +

1

κ1,m
xt

− Γt−T
=(bt+1 − 1)

(
1

κ1,m

(
1

(bt − 1)
ẑm,t −

1

1− κ1,mρ
(φ− 1

ψ
)xt

)
+

φ− 1
ψ

1− κ1,mρ
xt+1 +

1

κ1,m
(φ− 1

ψ
)xt

)
− Γt−T

=
1

κ1,m

bt+1 − 1

bt − 1
ẑm,t + (bt+1 − 1)

(
φ− 1

ψ

)
1

1− κ1,mρ
ϕeσet+1 − Γt−T

where Γt−T denotes the memory loss, and it is

Γt−T =
1

κT1,m
(bt+1 − 1)

(
φ− 1

ψ

)
xt−T

The last two steps follow that

ẑm,t ≡ zm,t − zREm,t = (bt − 1)

T∑
j=1

(
1

κ1,m
)j(φ− 1

ψ
)xt−j + (bt − 1)

1

1− κ1,mρ
(φ− 1

ψ
)xt

And simple rearrange we get

T∑
j=1

(
1

κ1,m
)j(φ− 1

ψ
)xt−j =

1

(bt − 1)
ẑm,t −

1

1− κ1,mρ
(φ− 1

ψ
)xt

The conditional variance of zm,t+1 under finite memory is given by

Vart(zm,t+1) =

[
zm,t − zREm,t
κ1,m(bt − 1)

]2

σ2
b +

[
bt(φ−

1

ψ
)

(
ϕeσ

1− κ1,mρ

)]2

σ2, for bt 6= 1
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Vart(zm,t+1) = (φ− 1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

σ2, for bt = 1

It is derived as followed: for bt 6= 1, the variance of zm,t+1

Vart(zm,t+1) = Vart

(φ− 1

ψ
)

[
T+1∑
j=1

(
1

κ1,m
)j(bt+1 − 1)xt+1−j + bt+1

1

1− κ1,mρ
xt+1

]
= Vart

(φ− 1

ψ
)

[
bt+1

T+1∑
j=1

(
1

κ1,m
)jxt+1−j +

1

1− κ1,mρ
ρxt

+ bt+1
ϕeσ

1− κ1,mρ
et+1

]
= Vart

([
bt+1

1

κ1,m

(
zREm,t − zbm,t

)
+ bt+1(φ− 1

ψ
)

ϕeσ

1− κ1,mρ
et+1

])

=
σ2
b

κ2
1,m

(
zREm,t − zbm,t

)2
+ b2t (φ−

1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

+ σ2
b (φ−

1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

=
σ2
b

κ1,m

(
zm,t − zREm,t

1− bt

)2

+ b2t (φ−
1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

+ σ2
b (φ−

1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

≈
σ2
b

κ1,m

(
zm,t − zREm,t

1− bt

)2

+ b2t (φ−
1

ψ
)2

(
ϕeσ

1− κ1,mρ

)2

Equity Premium: derivations
The derivation of the equity premium under finite memory follows the same steps as
the decay memory model. First, stochastic discount factor under finite memory can be
derived as

mt+1 = θ log δ − θ

ψ
gc,t+1 + (θ − 1)ra,t+1

= θ log δ − θ

ψ
gc,t+1 + (θ − 1)(κ0 + κ1zt+1 − zt + gc,t+1)

(A31)

Substituting the equilibrium return for ra,t+1 into the equation, it is straightforward
to show that the innovation to the pricing kernel is

mt+1 − Ētmt+1 = − θ
ψ
gc,t+1 + (θ − 1)(κ1zt+1 + gc,t+1)− Ēt

[
− θ
ψ
gc,t+1 + (θ − 1)(κ1zt+1 + gc,t+1)

]
=

(
− θ
ψ

+ θ − 1

)
(gc,t+1 − Etgc,t+1) + (θ − 1)κ1 (zt+1 − Etzt+1)

= −
(

1− θ +
θ

ψ

)
σηt+1 − (1− θ)κ1(1− 1

ψ
)

[
T∑
j=1

(
1

κ1
)jxt+1−j +

1

1− κ1ρ
ρxt

]
σbξt+1

− (1− θ)κ1(1− 1

ψ
)bt+1

ϕe
1− κ1ρ

σet+1

= −λm,ησηt+1 − λm,ξ,t+1σbξt+1 − λm,e,t+1σet+1

(A32)
The expressions λm,η, λm,e,t+1 and λm,ξ,t+1 captures the pricing kernel’s exposure to

65



the independent consumption shocks, ηt+1, to the expected growth rate shock, et+1, and
to the time-varying expectation shock, ξt+1.

The risk premium for any asset is determined by the conditional variance between
the innovations in return and the innovations in the stochastic discount factor. Thus the
risk premium for the market portfolio rm,t+1 is equal to Et(rm,t+1 − rf,t) = −cov(mt+1 −
Etmt+1, rm,t+1 − Et rm,t+1)− 0.5Vart(rm,t+1).

Equation (A32) already provides the innovation in mt+1. We now proceed to derive
the innovation in the market return.

rm,t+1 − Ēt(rm,t+1) =κ1,m(zm,t+1 − Ētzm,t+1) +
(
gd,t+1 − Ētgd,t+1

)
=ϕdσut+1 + κ1,m(φ− 1

ψ
)

 T∑
j=1

(
1

κ1,m
)jxt+1−j +

1

1− κ1,mρ
xt+1

σbξt+1

+ κ1,mbt+1
1

1− κ1,mρ
(φ− 1

ψ
)ϕeσet+1

=βm,uσut+1 + βm,e,t+1σet+1 + βm,ξ,t+1σbξt+1 (A33)

Moreover, it follows that

Vart(rm,t+1) = (βm,u + βm,e,t+1)2σ2 + β2
m,ξ,t+1σ

2
b (A34)

Using the innovations in the market return and the pricing kernel, the expression for the
equity premium is time-varying

Et(rm,t+1 − rf,t) = λm,e,tβm,e,tσ
2 + λm,ξ,tβm,ξ,tσ

2
b − 0.5Vart(rm,t+1) (A35)

The market compensation for expectation variation risks is determined by λm,ξ,tβm,ξ,t.

D Derivation of the asset pricing model in a simple Lucas
(1978) setting

This section introduces the time-varying expectation formation process with decay mem-
ory in a simple version of the Lucas (1978) model.

The usual asset pricing equation

Ēt [Mt+1Ri,t+1] = 1 (A36)

where Mt+1 is the stochastic discount factor (SDF) that in case of CRRA preferences

is given by δ
(
Ct+1

Ct

)−γ
.

We can write the asset pricing equation in terms of price

Et

[
δ

(
Ct+1

Ct

)−γ (Pt+1 +Dt+1

Pt

)]
= 1

Rearrange gives
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Pt
Dt

= Et

[
δ

(
Ct+1

Ct

)−γ (Dt+1

Dt

)(
Pt+1

Dt+1

)]
+ Et

[
δ

(
Ct+1

Ct

)−γ (Dt+1

Dt

)]
(A37)

Denote that

ηt+1 ≡
(
Ct+1

Ct

)−γ (Dt+1

Dt

)
= α1−γ (εct+1

)−γ
εdt+1

with Etηt+1 = α1−γρε. where

ρε = Et[(εct+1)−γεdt+1] = eγ(1+γ)
s2c
2 e−γρc,dscsd (A38)

The equation (A37) becomes

Pt
Dt

= δEt
[
ηt+1

(
Pt+1

Dt+1

)]
+ δEt [ηt+1] (A39)

Notice that the above equation has both the current and expected value of price-
dividend ratio, the solution of the above equation given by

Pt
Dt

= (bt − 1)

 ∞∑
j=0

(
λ

δ

)j ( j∏
i=0

ηt−i

)−1

ηt−j

+ bt
δα1−γρε

1− δα1−γρε

Derivation:
Starting from the following equation

Pt
Dt

= δEt
[
ηt+1

(
Pt+1

Dt+1

)]
+ δEt [ηt+1]

Knowing that the solution can be written as a combination of backward-looking solu-
tion and a forward-looking one, the forward-looking solution is straight forward

PDf =
δα1−γρε

1− δα1−γρε

and the backward-looking solution under decay memory is derived by moving the equation
(A39) one period backward, and under the decay memory, apply a decay factor to past
observation

λ
Pt−1

Dt−1
= δηt

(
Pt
Dt

)
+ δηt

⇒ Pt
Dt

=
λ

δηt

Pt−1

Dt−1
− 1

=
λ

δηt

(
λ

δηt−1

Pt−2

Dt−2
− 1

)
− 1

=
λ

δηt

λ

δηt−1

(
λ

δηt−2

Pt−3

Dt−3
− 1

)
− 1− λ

δηt
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. . .

=− 1− λ

δ
(ηt)

−1 −
(
λ

δ

)2

(ηtηt−1)−1 − . . .

=−
∞∑
j=0

(
λ

δ

)j ( j∏
i=0

ηt−i

)−1

ηt−j

Proof:
Plug the solution back to the differential equation

(bt − 1)

 ∞∑
j=0

(
λ

δ

)j ( j∏
i=0

ηt−i

)−1

ηt−j

+ bt
δα1−γρε

1− δα1−γρε

= δEt

ηt+1

(bt+1 − 1)

 ∞∑
j=0

(
1

δ

)j ( j∏
i=0

ηt+1−i

)−1

λj−1ηt+1−j

+ bt+1
δα1−γρε

1− δα1−γρε

+ δEt [ηt+1]

The R.H.S can be rewritten as

LHS =δEt

(bt+1 − 1)

 ∞∑
j=0

(
1

δ

)j ( j∏
i=1

ηt+1−i

)−1

λj−1ηt+1−j

+ bt+1ηt+1
δα1−γρε

1− δα1−γρε

+ δEt [ηt+1]

=δ

(bt − 1)

1

δ

∞∑
j=0

(
1

δ

)j ( j∏
i=0

ηt−i

)−1

λjηt−j + α1−γρε

+ btα
1−γρε

δα1−γρε
1− δα1−γρε

+ δα1−γρε

Thus,

(bt − 1)

 ∞∑
j=0

(
λ

δ

)j ( j∏
i=0

ηt−i

)−1

ηt−j

+ bt
δα1−γρε

1− δα1−γρε

= (bt − 1)

 ∞∑
j=0

(
λ

δ

)j ( j∏
i=0

ηt−i

)−1

ηt−j

+ (bt − 1) δα1−γρε + btδα
1−γρε

δα1−γρε
1− δα1−γρε

+ δα1−γρε

A simple calculation would give

bt
δα1−γρε

1− δα1−γρε
= (bt − 1) δα1−γρε + btδα

1−γρε
δα1−γρε

1− δα1−γρε
+ δα1−γρε

bt
1

1− δα1−γρε
= bt + bt

δα1−γρε
1− δα1−γρε

bt = bt

Q.E.D.

Risk-free rate solves
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1 = δ (1 + rt)Et

[(
Ct+1

Ct

)−γ]
Therefore the risk-free rate is given by

1 + rt =

(
δEt

[(
Ct+1

Ct

)−γ])−1

=
(
δα−γEt

[
exp

(
−γ log εct+1

)])−1

As εct+1follows a log-normal distribution, i.e., log εct+1 ∼ N
(
− s2c

2 , s
2
c

)
, which implies

that −γ log εct+1 ∼ N
(
−γs2c

2 , γ2s2
c

)
, and applying the log-normal propertiy,

Et
[
exp

(
−γ log εct+1

)]
= exp

(
−γs

2
c

2
+

1

2
γ2s2

c

)
Therefore, the risk-free rate is given by

1 + rt =

(
δα−γ exp

(
−γs

2
c

2
+

1

2
γ2s2

c

))−1
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