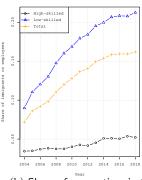
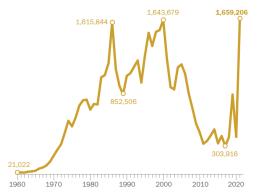

Winners and Losers of Immigration


Davide Fiaschi (University of Pisa) Cristina Tealdi (Heriot-Watt University and IZA)

> European Economic Association Bocconi University August 25, 2022

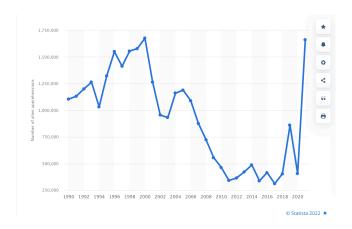
Natives and non-natives in Italian labour market

 $\begin{tabular}{ll} (a) Stock and share of foreign-born \\ workforce. \end{tabular}$



(b) Share of non-natives in the workforce by skill level.

Not only an Italian problem (I)


Migrant encounters at U.S.-Mexico border reached their highest level on record in 2021

Migrant encounters at U.S.-Mexico border, by fiscal year

Not only an Italian problem (II)

Alien apprehensions registered by the U.S. border patrol

Short-run effects of immigration in developed countries

- It is an asymmetric shock (typically immigrants are low-skilled);
- It changes the relative prices of goods/services, i.e. to decrease the prices of goods/services mainly produced by low-skilled workers;
- It tends to increase total output, raising Government revenues (taxes and social contributions);
- It creates congestion in the provision of public goods, services and pressure on the distribution of subsidies;
- It is still an open issue if immigration tends to change the relative wages, i.e. to decrease wages of low-skilled workers.

What we do in the paper

- We study the impact of immigration on wages, profits and welfare
- We develop a general equilibrium search and matching model with
 - employees with different skills (high-skilled vs low-skilled) produce two types of goods
 - unemployment benefits and public goods are financed by taxes on wages, profits and production
 - a labour market with frictions per each category of employees (high-skilled vs low-skilled and natives vs non-natives)
- We discuss the crucial role of substitutability/complementarity between consumption goods, through their relative price change induced by immigration
- We estimate the model using Italian data per each year in the period 2008-2017

Mechanisms

A large inflow of low-skilled employees has two major effects on wages and prices:

- it changes the skill composition of the workforce, with an ambiguous impact on the real wages of low-skilled employees
- by increasing the supply of the low-skilled good produced by low-skilled employees, it leads to a drop in its price, causing an increase in the real wage of high-skilled employees

Even when the wage of low-skilled employees is lower, the adverse effect on the price of the low-skilled good might induce a loss for employers who operate in the low-skilled market.

Employees maximize the following CES utility function

$$Z_{i,j} = \left[\gamma d_{h,i,j}^{\rho} + (1 - \gamma) d_{l,i,j}^{\rho}\right]^{1/\rho} + \iota \nu, \tag{1}$$

subject to the **budget constraint**:

$$p_h d_{h,i,j} + p_l d_{l,i,j} = y_{i,j} = \begin{cases} (1-t)(w_{i,j} + \tau) & \text{if worker } (i,j) \text{ is employed,} \\ b(1-t)(w_{i,j} + \tau) & \text{if worker } (i,j) \text{ is unemployed.} \end{cases}$$

Real Wages of Natives vs Not Natives

$$\tilde{w}_{i,N} = \underbrace{A_{i,N}(\theta_i)}_{>0} \tilde{p}_i x_i - \underbrace{B_{i,N}(\theta_i)}_{>0} \tilde{\tau} + \underbrace{C_{i,N}(\theta_i)}_{>0} \tilde{p}_i x_i F$$
 (2)

$$\widetilde{w}_{i,I} = \underbrace{D_{i,I}(\theta_i)}_{>0} \widetilde{p}_i x_i - \underbrace{E_{i,I}(\theta_i)}_{>0} \widetilde{\tau} + \underbrace{G_{i,I}(\theta_i)}_{>0} \widetilde{p}_i x_i F + \underbrace{K_{i,I}(\theta_i)}_{>0} W_{i,FC}
- \underbrace{H_{i,I}(\theta_i)}_{>0} \iota \nu,$$
(3)

Real Prices of High-skilled and Low-skilled goods

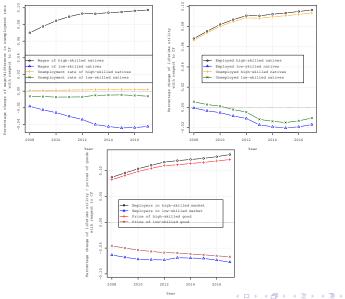
$$\tilde{p}_{h} = \left\{ \gamma^{1/(1-\rho)} + (1-\gamma)\gamma^{\rho/(1-\rho)} \left[\frac{(1-g_{l})x_{l}(e_{l,N}+e_{l,l})}{(1-g_{h})x_{h}(e_{h,N}+e_{h,l})} \right]^{\rho} \right\}^{(1-\rho)/\rho}$$
(4)

$$\tilde{\rho}_{l} = \left\{ (1-\gamma)^{1/(1-\rho)} + \gamma (1-\gamma)^{\rho/(1-\rho)} \left[\frac{(1-g_{h})x_{h}(e_{h,N}+e_{h,l})}{(1-g_{l})x_{l}(e_{l,N}+e_{l,l})} \right]^{\rho} \right\}^{(1-\rho)/\rho}$$
(5)

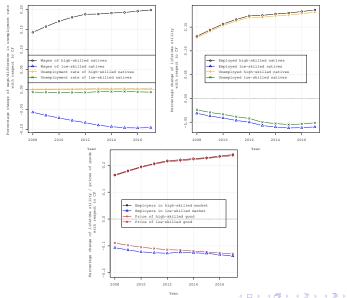
▶ Bellmans

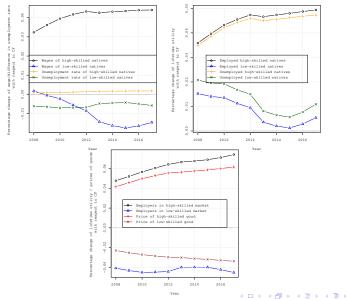
10

Estimation methodology


We match seventeen moments:

- four net wages,
- four job finding rates,
- four unemployment rates,
- the share of (non-adjusted) labour income on total gross value added,
- total real GDP,
- total real GDP per worker,
- the two shares of native unemployed in the two labour markets.


$$\hat{\omega}_{N,W_N} = \min_{\omega \in \Omega} (M_N - \tilde{M}(\omega))' W_N (M_N - \tilde{M}(\omega)).$$


Counterfactual analysis: no non-natives

Counterfactual analysis: goods are more complements

Counterfactual analysis: goods are more substitutes



Thank you for your attention!

Email: c.tealdi@hw.ac.uk

Paper available at: https://www.iza.org/publications/dp/13600/winners-and-losers-of-immigration

The search and matching model

- Continuous time infinite-horizon
- All employees supply labour inelastically, are risk neutral and discount the future at rate r
- Employees differ according to their skill level (high-skilled h vs low-skilled I) and their country of origin (natives N vs non-natives I)
- Employees can be either employed or unemployed

17

- When employed, they may lose their job at exogenous rate $\delta_{i,j}$, where $i \in \{h, I\}$ and $j \in \{N, I\}$.
- When unemployed, the probability that they find a job differs by skill level and country of origin of the worker = probability that an employee meets an employer × the probability that the match is formed
- Wages and profits are taxed at the proportional rate t
- ullet Workers receive a tax subsidy au
- Unemployed workers receive unemployment benefits which are a proportion b of their net wage

Employees maximize the following CES utility function

$$Z_{i,j} = \left[\gamma d_{h,i,j}^{\rho} + (1 - \gamma) d_{l,i,j}^{\rho}\right]^{1/\rho} + \iota \nu, \tag{6}$$

subject to the **budget constraint**:

$$p_h d_{h,i,j} + p_l d_{l,i,j} = y_{i,j} = \begin{cases} (1-t)(w_{i,j} + \tau) & \text{if worker } (i,j) \text{ is employed,} \\ b(1-t)(w_{i,j} + \tau) & \text{if worker } (i,j) \text{ is unemployed.} \end{cases}$$

The model – Employees

Demand of good *h* and good *l*:

$$d_{h,i,j} = \left(\frac{\tilde{p}_h}{\gamma}\right)^{1/(\rho-1)} \tilde{y}_{i,j},\tag{7}$$

$$d_{l,i,j} = \left(\frac{\tilde{p}_l}{1 - \gamma}\right)^{1/(\rho - 1)} \tilde{y}_{i,j},\tag{8}$$

where $\tilde{p}_i \equiv p_i/P$ is the real price of good $i \in \{h, I\}$ and $\tilde{y}_{i,j} \equiv y_{i,j}/P$ is the real income, having defined P as the aggregate price index:

$$P = \left[p_h \left(\frac{p_h}{\gamma} \right)^{1/(\rho - 1)} + p_l \left(\frac{p_l}{1 - \gamma} \right)^{1/(\rho - 1)} \right]^{(\rho - 1)/\rho}. \tag{9}$$

Non-natives

- When coming from abroad join the home labour market as unemployed;
- Can be either employed or unemployed in the labour market, or abroad;
- Can leave the labour market and go back to their country of origin;
- The possibility of unemployed not natives to go back to the foreign country caused a key asymmetry between natives and non-natives (this will be reflected in the equilibrium level of wages).

▶ Bellmans

Employers

- Employers are ex-ante homogeneous and post skill-specific vacancies to fill a job, which are open to both natives and non-natives;
- Each employer specializes in the production of one of the two goods;
- Good y_h is produced using **only high-skilled workers** h, whose value added is $p_h x_h$;
- Good y_l is produced using only low-skilled workers l, with value added p_lx_l;
- Goods are sold at price p_h and p_l ;

Employers (cont.)

- Every time a shock destroys a match, the employer is required to pay firing costs F, which are proportional to the productivity of the employee;
- A share ϕ of this cost will then be transferred to the employee as a **severance payment**, while the share $1-\phi$ is a **dead-weight loss** (red-tape cost) (Garibaldi and Violante, 2005);
- The probability that a vacancy is filled differs by skill level and country of origin of the worker = probability that an employer meets an employee × the probability that the match is formed;
- Production is taxed at rate t_p.

Employees' Bellman Equations

▶ Back

Employed

$$rW_{i,N}^{e} = Y_{i,N}^{e} + \delta_{i,N} \left(W_{i,N}^{u} + \phi \tilde{p}_{i} x_{i} F - W_{i,N}^{e} \right) \text{ and}$$

$$rW_{i,I}^{e} = Y_{i,I}^{e} + \delta_{i,I} \left(W_{i,I}^{u} + \phi \tilde{p}_{i} x_{i} F - W_{i,I}^{e} \right).$$

Unemployed

$$\begin{split} rW_{i,N}^u &= Y_{i,N}^u + \kappa_{i,N}\theta_i q\left(\theta_i\right)\left(W_{i,N}^e - W_{i,N}^u\right) \text{ and} \\ rW_{i,I}^u &= Y_{i,I}^u + \lambda\left(W_{i,FC} - W_{i,I}^u\right) + \kappa_{i,I}\theta_i q\left(\theta_i\right)\left(W_{i,I}^e - W_{i,I}^u\right). \end{split}$$

Employers' Bellman Equations

► Prices

► Employers

Filled

$$rJ_{i,N} = (1-t)(\tilde{p}_ix_i - \tilde{w}_{i,N}) + \delta_{i,N}(V_i - J_{i,N} - \tilde{p}_ix_iF) \text{ and}$$

$$rJ_{i,I} = (1-t)(\tilde{p}_ix_i - \tilde{w}_{i,I}) + \delta_{i,I}(V_i - J_{i,I} - \tilde{p}_ix_iF),$$

Vacant

$$rV_{i} = -c\tilde{p}_{i}x_{i} + \pi_{i,N}\kappa_{i,N}q(\theta_{i})(J_{i,N} - V_{i}) + (1 - \pi_{i,N})\kappa_{i,I}q(\theta_{i})(J_{i,I} - V_{i}),$$

where $\pi_{i,N}$ = share of natives who are unemployed.

Matching and equilibrium in goods markets

- Matches formed in a frictional labour market (DMP)
- Matching function $m(v_i, u_i)$
- $\theta_i \equiv v_i/u_i$ is the **labour market tightness**
- Wages are determined through a Nash bargaining mechanism
- Prices are endogenously determined by equating the demand and supply of the high-skilled and low-skilled goods.

Government

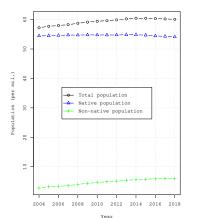
Government expenditure:

- Unemployment benefits b
- Subsidies τ
- Public consumption of good h and good l, g_h and g_l (public goods)

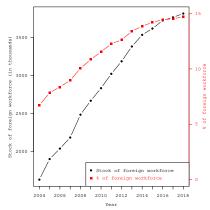
Direct taxes:

Income taxes (rate t)

Indirect taxes:


• Taxes on production (rate t_p)

In equilibrium, the **government primary surplus** is equal to **zero**, i.e., total Government expenditure= direct and indirect taxes

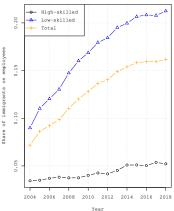


Empirical evidence

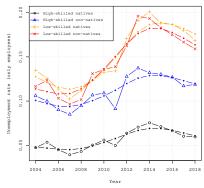
Natives and non-natives in Italian labour market

(a) Stock of native and non-native population.

(b) Stock and share of foreign-born workforce.

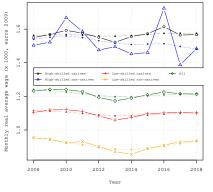

Skills: education and occupation

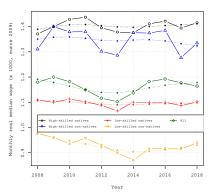
High-skilled workers


- Skill levels 3 or 4 (ILO classification)
- Occupation: Managers or professionals.
- Education: Tertiary level of education.

Low-skilled workers

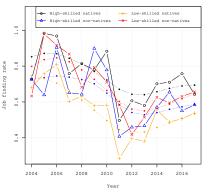
- Skill levels 1 or 2 (ILO classification)
- Occupation: Clerks, sales workers, craft workers, plant and machine operators and in elementary occupations.
- Education: Primary or secondary level of education.




(a) Share of non-natives in the workforce by skill level.

(b) Unemployment rate by country of origin and skill level.

Real wages for different employees



(a) Monthly real average net wages.

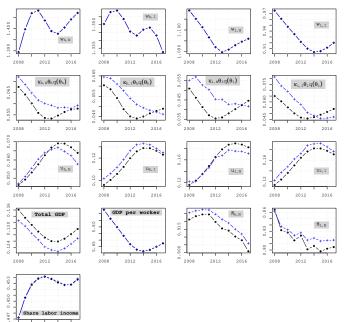
(b) Monthly real median net wages.

Job creation and job exit rates for different employees

(a) Job finding rates.

(b) Job exit rates.

Estimation procedure


Parameter	Description	Source
r	Discount rate	Della Vigna and Paserman (2005)
ϕ	Share of firing costs transferred to employees	Garibaldi and Violante (2005)
α	Elasticity of matching function with respect to unemployment	Petrongolo and Pissarides (2001)
С	Vacancy cost	Our calculation
F	Firing cost	Our calculation
$\delta_{h,N}$	Job destruction rate of high-skilled native employees	Our calculation
$\delta_{I,N}$	Job destruction rate of low-skilled native employees	Our calculation
$\delta_{h,I}$	Job destruction rate of high-skilled non-native employees	Our calculation
$\delta_{I,I}$	Job destruction rate of low-skilled non-native employees	Our calculation
χ	Mass of employers	Italian Labour Force Survey (RCFL)
$\sigma_{h,N}$	Mass of high-skilled native employees	Italian Labour Force Survey (RCFL)
$\sigma_{I,N}$	Mass of low-skilled native employees	Italian Labour Force Survey (RCFL)
$\sigma_{h,I}$	Mass of high-skilled non-native employees	Italian Labour Force Survey (RCFL)
$\sigma_{I,I}$	Mass of low-skilled non-native employees	Italian Labour Force Survey (RCFL)
g	Government expenditure in public goods as percentage of GVA	Our calculation
Ь	Unemployment benefits	Our calculation
τ	Tax subsidy	Our calculation
t _p	Indirect tax rate	Our calculation
η	Rate at which non-natives enter the country	Our calculation
λ	Rate at which non-natives exit the country	Our calculation
β_N	Bargaining power of native employees	Estimated by matching moments
β_I	Bargaining power of non-native employees	Estimated by matching moments
γ	Share of income spent on good h	Estimated by matching moments
x_h	Quantity of good h produced by high-skilled employees	Estimated by matching moments
×ı	Quantity of good / produced by low-skilled employees	Estimated by matching moments
t	Direct tax rate (income and profits)	Estimated by matching moments
$\kappa_{h,N}$	Hiring chances of high-skilled native employees	Estimated by matching moments
$\kappa_{I,N}$	Hiring chances of low-skilled native employees	Estimated by matching moments
$\kappa_{h,I}$	Hiring chances of high-skilled non-native employees	Estimated by matching moments
$\kappa_{I,I}$	Hiring chances of low-skilled non-native employees	Estimated by matching moments
$W_{h,FC}$	Utility of high-skilled employees abroad	Estimated by matching moments
$W_{I,FC}$	Utility of low-skilled employees abroad	Estimated by matching moments
ι	Elasticity of substitution between private and public goods	Set to 1 (neutral value)
ρ	Degree of congestion in accessing the public good	Set to 1 (neutral value)

Estimation methodology

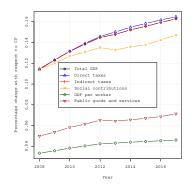
We match seventeen moments:

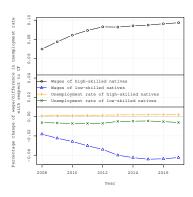
- four net wages,
- four job finding rates,
- four unemployment rates,
- the share of (non-adjusted) labour income on total gross value added,
- total real GDP,
- total real GDP per worker,
- the two shares of native unemployed in the two labour markets.

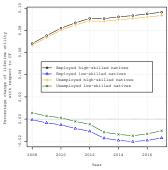
$$\hat{\omega}_{N,W_N} = \min_{\omega \in \Omega} (M_N - \tilde{M}(\omega))' W_N (M_N - \tilde{M}(\omega)).$$

2012 2016

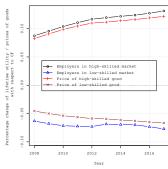
37


Counterfactual analysis


Counterfactual analysis


- Two counter-factual analyses
 - no non-natives in the economy,
 - sudden inflow of 160 thousands low-skilled non-natives (forecasted net migration for Italy in 2020)
- We calculate the new equilibrium, keeping the other parameters at their original estimated values, while allowing all endogenous variables such as wages, prices, etc. to adjust.

39

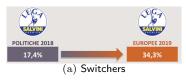

Counterfactual analysis: no non-natives

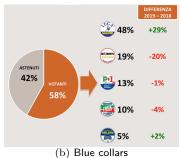
(a) Employees' lifetime utility

(b) Employers' lifetime utility and real prices of goods

Summary of results of counterfactual analysis (for 2017)

- The real wages of low-skilled and high-skilled employees were 8% lower and 4% higher, respectively, compared to the counter-factual scenario with no non-natives
- Similarly, employers working in the low-skilled market experienced a
 drop in profits of comparable magnitude, while the opposite
 happened to employers operating in the high-skilled market
- The presence of non-natives led to a 10% increase in GDP and to an increment of approximately 70 billions € in Government revenues and 18 billions € in social security contributions
- The presence of non-natives led to a 1% decrease in GDP per worker and a similar drop in the provision of public goods.

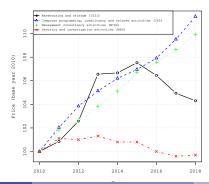

42


Thank you for your attention!

Paper available at: https://www.iza.org/publications/dp/13600/winners-and-losers-of-immigration

Email: c.tealdi@hw.ac.uk

◀ Go Back


Source: SWG 2019.

Prices in high-skilled vs low-skilled sectors

▶ Back

Sector	High-skilled
	employees
	(2017)
Security and investigation activities	0.06
Warehousing and storage	0.23
Management consultancy activities	0.78
Computer programming, consultancy and related activities	0.91
Source: Eurostat Service producer prices and Italian Labour	Force Survey (RCFL)

Source: Eurostat Service producer prices and Italian Labour Force Survey (RCFL).

