Why Bank Money Creation?

Hans Gersbach¹ Sebastian Zelzner¹

¹Chair of Macroeconomics: Innovation and Policy at ETH Zurich

August 22, 2022

Bank money creation is an important feature of our two-tier monetary system:

- Banks create deposits (i.e., new money) through lending.
- Interbank deposit flows are settled by CB reserves.

Bank money creation is an important feature of our two-tier monetary system:

- Banks create deposits (i.e., new money) through lending.
- Interbank deposit flows are settled by CB reserves.

Bank A Balance Sheet		Bank B Balance Sheet		
Assets	Liabilities	Assets	Liabilities	

Bank money creation is an important feature of our two-tier monetary system:

- Banks create deposits (i.e., new money) through lending.
- Interbank deposit flows are settled by CB reserves.

Bank A Balance Sheet		Bank B Balance Sheet		
Assets	Liabilities	Assets	Liabilities	
loans ↑ 10	deposits ↑ 10			

Bank money creation is an important feature of our two-tier monetary system:

- Banks create deposits (i.e., new money) through lending.
- Interbank deposit flows are settled by CB reserves.

Bank A Balance Sheet			Bank B Balance Sheet		
Assets	Liabilities		Assets	Liabilities	
oans ↑ 10	deposits ↑ 10	Bank money			
		creation			

Bank money creation is an important feature of our two-tier monetary system:

- Banks create deposits (i.e., new money) through lending.
- Interbank deposit flows are settled by CB reserves.

Bank A Balance Sheet			Bank B Balance Sheet		
Assets	Liabilities		Assets	Liabilities	
oans ↑ 10	deposits ↑ 10	Sank money			
		creation		deposits ↑ 10	

Bank money creation is an important feature of our two-tier monetary system:

- Banks create deposits (i.e., new money) through lending.
- Interbank deposit flows are settled by CB reserves.

Example: Agent A takes a loan of amount 10 from bank A and buys a house of price 10 from agent B with an account at bank B.

Bank A Bal	ance Sheet		Bank B Bal	ance Shee	t
Assets	Liabilities		Assets	Liabilitie	?s
oans ↑ 10	deposits ↑ 10	Bank money			
		creation			
reserves ↓ 10	deposits ↓ 10		reserves ↑ 10	deposits 1	10
					Interbank deposit flow settled by CB reserves

However:

- Some are in favor of abolishing the money creation privilege for banks (Sovereign Money, CBDC).
- Standard macro models typically depict banks as simple intermediaries of loanable funds.

However:

- Some are in favor of abolishing the money creation privilege for banks (Sovereign Money, CBDC).
- Standard macro models typically depict banks as simple intermediaries of loanable funds.

This Paper:

- Compares the economic outcomes in a money creation (MC) economy to those in a loanable funds (LF) economy.
- Provides a rationale for bank money creation.

Preview of the Model and Main Results

The Model:

- Two-period, two-sector economy with risk-neutral agents.
- Households supply capital to firms in t=1, goods are produced in t=2.
- Bank-level moral hazard in monitoring à la Holmstrom and Tirole (1997).
- Unobservable bank-heterogeneity.

Preview of the Model and Main Results

The Model:

- Two-period, two-sector economy with risk-neutral agents.
- Households supply capital to firms in t = 1, goods are produced in t = 2.
- Bank-level moral hazard in monitoring à la Holmstrom and Tirole (1997).
- Unobservable bank-heterogeneity.

Main Results:

- ⇒ The LF economy suffers from underinvestment in bank-dependent firms.
- ⇒ MC alleviates this problem, but implies less aggregate bank monitoring.
- ⇒ With suitable capital requirements set by the regulator, welfare in the MC economy exceeds welfare in the LF economy.

Related Literature

Practice of money and loan creation: Macleod (1866), Wicksell (1907), Hahn (1920), Keynes (1931), Schumpeter (1954), Gurley and Shaw (1960), Tobin (1963), McLeay et al. (2014), Donaldson et al. (2018).

Value of fiat money in a finite economy: Shubik and Wilson (1977), Dubey and Geanakoplos (1992, 2003, 2006), Shapley and Shubik (1977), Shubik and Tsomocos (1992), Huber et al. (2014).

Money creation in our two-tier monetary system:

- Skeie (2008), Wang (2019), Bolton et al. (2020), Parlour et al. (2020), Piazzesi et al. (2021), Wang (2021).
- Faure and Gersbach (2021): MC in a general equilibrium model.
 Equivalence of MC and LF in a frictionless economy without uncertainty.
- Jakab and Kumhof (2019): MC vs. LF in a DSGE model.

The Model: Macroeconomic Framework

- Two dates: t=1 (investment & banking), t=2 (product. & consumpt.).
- Two kinds of goods: capital goods (tot. amount: 1), consumpt. goods.
- Two separated productive sectors: frictionless sector, bank-dependent sector.

The Model: Macroeconomic Framework

- Two dates: t=1 (investment & banking), t=2 (product. & consumpt.).
- Two kinds of goods: **capital goods** (tot. amount: 1), **consumpt. goods**.
- Two separated productive sectors: frictionless sector, bank-dependent sector.
- Frictionless sector (FS):
 - Access to direct financing through bonds (real price of capital: R_F).
 - Total capital deployed to the FS is denoted by K_F .
 - Production technology $g(K_F)$ with diminishing returns ($\Rightarrow R_F = g'(K_F)$).

The Model: Macroeconomic Framework

- Two dates: t=1 (investment & banking), t=2 (product. & consumpt.).
- Two kinds of goods: **capital goods** (tot. amount: 1), **consumpt. goods**.
- Two separated productive sectors: frictionless sector, bank-dependent sector.
- Frictionless sector (FS):
 - Access to direct financing through bonds (real price of capital: R_F).
 - Total capital deployed to the FS is denoted by K_F .
 - Production technology $g(K_F)$ with diminishing returns ($\Rightarrow R_F = g'(K_F)$).
- Bank-dependent sector (BS):
 - Only indirect financing through bank loans.
 - Total capital deployed to the BS is denoted by K_B .
 - ullet Risky production technology, with CRS sR_B , where

$$s = \begin{cases} 1 & \text{if production is successful} \\ 0 & \text{if production fails} \end{cases}$$

Three types of agents, all risk-neutral price takers:

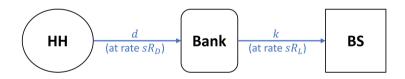
Three types of agents, all risk-neutral price takers:

• A continuum of profit-maximizing **entrepreneurs**, who run production.

Three types of agents, all risk-neutral price takers:

- A continuum of profit-maximizing **entrepreneurs**, who run production.
- A continuum of heterogeneous, profit-maximizing **bankers** indexed by $b \in [\underline{b}, \overline{b}]$, who take deposits and make loans:
 - each bank is endowed with e units of the capital good ($\hat{=}$ bank equity).
 - aggregate bank equity is denoted by $E (= (\overline{b} \underline{b})e)$.
 - banks are subject to moral hazard.

Three types of agents, all risk-neutral price takers:


- A continuum of profit-maximizing **entrepreneurs**, who run production.
- A continuum of heterogeneous, profit-maximizing **bankers** indexed by $b \in [\underline{b}, \overline{b}]$, who take deposits and make loans:
 - each bank is endowed with e units of the capital good ($\hat{=}$ bank equity).
 - aggregate bank equity is denoted by $E (= (\bar{b} \underline{b})e)$.
 - banks are subject to moral hazard.
- A continuum of identical **households**, who maximize t = 2 consumption:
 - aggregate household capital is 1 E.
 - ullet households optimally allocate capital between bonds and deposits in t=1.
 - parameters are such that there is an interior equilibrium.

The Model: Financial Friction

Bank-level moral hazard:

- Banks face a monitoring decision $\gamma_b \in \{0,1\}$ (no/yes).
- \bullet If bank b monitors, its firm's success probability is π
 - \Rightarrow exp. production returns for the firm: πR_B .
- If bank b does not monitor, this probability is only $\pi \Delta$, but the banker enjoys private benefits b per unit of lending.
- ullet Asymmetric information: Only banks know their type b.
 - ⇒ Unobservable bank-heterogeneity.

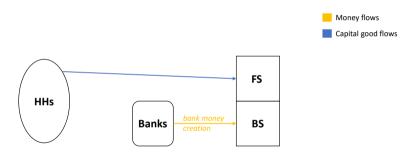
- Each bank b takes household deposits d_b (= d) at gross real rate sR_D , and
- lends k_b (= k = e + d) to bank-dependent firms at gross real rate sR_L .

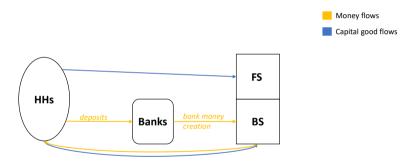
Equilibrium of the LF Economy

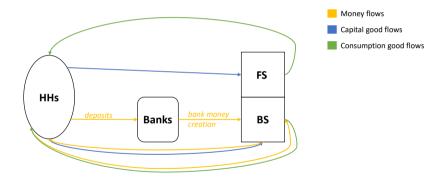
• Banks choose k so as to maximize exp. profits, s.t. HHs' incentive and participation constraint. Details

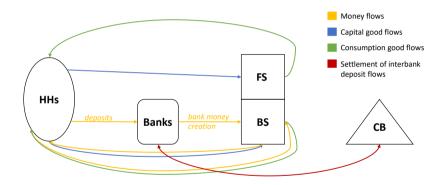
Proposition (Deficient bank-funding in the LF economy)

There is a competitive equilibrium with $\gamma_b = 1$ for all banks b. If bank equity is scarce, i.e., for


$$e < \bar{e}^{LF} := \frac{\bar{b}\left(1 - (g')^{-1}(\pi R_B)\right)}{\Delta R_B(\bar{b} - \underline{b})},\tag{1}$$


the incentive constraint is binding. The equilibrium return R_F^{LF} satisfies $R_F^{LF} < \pi R_B$ and there is underinvestment in the BS.


The Model: MC Economy


- Macroec. framework, prod. technologies, frictions as in the LF economy.
- Banking now works differently.
- Money in the model ⇒ real vs. nominal variables.
- Nominal prices of the capital and the consumption good: p_I , p_C .
- The CB policy rate for reserves is denoted by R_{CB} .
- The regulator sets a leverage constraint $\alpha \ (\geq 1)$ at the beginning of t=1.

Timeline

More formally

MC Economy: Monitoring and Leverage Constraint

Banks' monitoring decision:

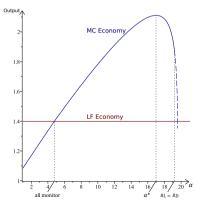
 Bank b monitors, if its additional exp. profits when monitoring exceed its priv. benefits when not monitoring. Yields:

$$\underbrace{\frac{l_b}{ep_I}}_{\text{bank leverage ratio}} \leq \frac{\Delta R_D}{\frac{p_C}{p_I} \boldsymbol{b} - \Delta (R_L - R_D)}.$$
(2)

Regulatory leverage constraint:

- Leverage constraint α sets an upper limit for banks' leverage ratios.
- Trade-off: A looser leverage constraint α promotes an efficient allocation of capital, but decreases the portion of monitoring banks.

Equilibrium of the MC Economy


Optimal Leverage Constraint in the MC Economy

- Trade-off: a looser leverage constraint α promotes a more efficient allocation of capital, but decreases the average success probability of BS production.
- **Tight leverage constraint:** if α is set such that all banks monitor, the MC economy yields the same outcomes as the LF economy.
- Optimal leverage constraint α^* : set α such that expected aggregate output is maximized.

Why Bank Money Creation?

Proposition (MC vs. LF Economy)

Under a weak set of sufficient conditions, the **MC economy** allows for a more efficient allocation of capital and **larger exp. output than the LF economy**.

We provide a **rationale for bank money creation**, using a simple model with bank-level moral hazard:

We provide a **rationale for bank money creation**, using a simple model with bank-level moral hazard:

• **LF economy:** Allocation of capital to the BS is deficient.

We provide a **rationale for bank money creation**, using a simple model with bank-level moral hazard:

- **LF economy:** Allocation of capital to the BS is deficient.
- Allowing for bank MC involves a trade-off: it alleviates the problem of BS underinvestment, but decreases banks' monitoring activity.

We provide a **rationale for bank money creation**, using a simple model with bank-level moral hazard:

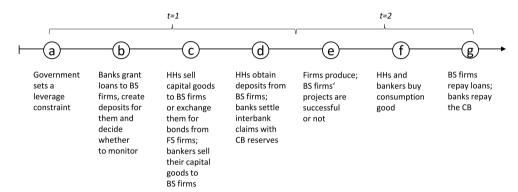
- **LF economy:** Allocation of capital to the BS is deficient.
- Allowing for bank MC involves a trade-off: it alleviates the problem of BS underinvestment, but decreases banks' monitoring activity.
 - ⇒ With a **suitable leverage constraint**, the regulator can manage this trade-off to result in **net output gains**.

Additional Material

Equilibrium of the LF Economy

• Incentive constraint: Given k, bank \bar{b} monitors if

$$\underbrace{\Delta \left[R_B k - R_D (k-e) \right]}_{\text{additional exp. profits}} \geq \underbrace{\overline{b} k}_{\text{priv. benefits from not monitoring}}$$


which can be rewritten as:

$$\underbrace{\frac{k}{e}}_{\text{bank leverage ratio}} \le \frac{R_D}{R_D - R_B + \frac{\bar{b}}{\Delta}}.$$
 (A.1)

• Participation constraint: Households provide funding to banks, if

$$\pi R_D \ge R_F. \tag{A.2}$$

MC Economy: Timeline

Interbank transactions and CB reserves:

After firms bought the capital good from HHs, there's two possible scenarios for each bank b:

•
$$\underbrace{l_b}_{\text{deposit outflows}} > \underbrace{d + \boldsymbol{e} p_I}_{\text{deposit inflows}} \Rightarrow \text{borrow } l_b - d - \boldsymbol{e} p_I \text{ from the CB}.$$

•
$$\underbrace{l_b}_{\text{deposit outflows}} < \underbrace{d + ep_I}_{\text{deposit inflows}} \Rightarrow \text{deposit } d + ep_I - l_b \text{ at the CB}.$$

Notation:

- l_b denotes bank b's (nominal) amount of lending.
- ullet denotes bank b's (nominal) amount of HH deposits.

Equilibrium of the MC Economy:

Definition (Competitive equilibrium)

Given the CB rate R_{CB} and a regulatory leverage constraint α , a competitive equilibrium is a BS capital to goods price ratio p_I/p_C , loan and deposit rates R_L and R_D , a FS capital price $\mathbf{R_F}$, individual bank monitoring decisions γ_b and lending plans l_b , such that:

- (i) given prices, l_b maximizes the expected profit of each bank b;
- (ii) given prices and l_b , each bank optimally decides on γ_b ;
- (iii) given prices, firms maximize profits and HHs optimally invest;
- (iv) aggregate demand for capital equals aggregate supply;
- (v) capital and consumption goods markets in the BS clear;

Equilibrium of the MC Economy (cont'd):

HHs' investment decision:

Investing one unit of the capital good into

- ullet the FS: yields a certain real return $oldsymbol{R}_F$.
- the BS: yields an expected real return $\mu[p_IR_D/p_C]$, with

$$\mu = \frac{\hat{\boldsymbol{b}} - \underline{\boldsymbol{b}}}{\overline{\boldsymbol{b}} - \underline{\boldsymbol{b}}} \pi + \frac{\overline{\boldsymbol{b}} - \hat{\boldsymbol{b}}}{\overline{\boldsymbol{b}} - \underline{\boldsymbol{b}}} (\pi - \Delta). \tag{A.3}$$

 \Rightarrow In interior equilibrium: $\mathbf{R}_{\mathbf{F}} = \mu R_D(p_I/p_C)$.

BS firms earn zero profits and BS market clearing:

• Yields $\mathbf{K}_{\mathbf{B}} = L_B/p_I$ and $\mathbf{R}_{\mathbf{B}} = R_L(p_I/p_C)$.

Equilibrium of the MC Economy (cont'd):

Banks' lending decision:

$$l_b = l = \alpha e p_I. \tag{A.4}$$

 \Rightarrow It follows that:

$$L_B = \alpha \mathbf{E} p_I,$$

 $\mathbf{K}_B = \alpha \mathbf{E}.$

$$\mathbf{R}_{\mathbf{F}} = g'(1 - \alpha \mathbf{E}).$$

Threshold value \hat{b} :

$$\hat{\boldsymbol{b}} = \Delta \boldsymbol{R_B} - \frac{p_I}{p_C} \left(1 - \frac{1}{\alpha} \right) \Delta R_{CB}.$$

Back to Main

(A.6)

(A.5)

Equilibrium of the MC Economy (cont'd): Equilibrium BS price ratio:

Solving

$$\mathbf{R}_{F} = \mu \frac{p_{I}}{p_{C}} R_{CB} \tag{A.7}$$

for p_I/p_C , where ${\bf R_F}$ is given by (11), μ is given by (9) and $\hat{\bf b}$ is given by (12), yields

$$\frac{p_I}{p_C} = \frac{\mu_1 - \sqrt{\mu_1^2 - 4R_F \frac{\Delta^2}{\bar{b} - \underline{b}} \left(1 - \frac{1}{\alpha}\right)}}{2R_{CB} \frac{\Delta^2}{\bar{b} - \underline{b}} \left(1 - \frac{1}{\alpha}\right)},$$
(A.8)

with

$$\mu_1 = \pi - \frac{\overline{b} - \Delta R_B}{\overline{b} - b} \Delta. \tag{A.9}$$