Visual Bias*

Giulia Caprini ${ }^{\dagger}$
(PRELIMINARY DRAFT)

Feb 12, 2022

Abstract

This paper studies the role of images in online news, showing how news providers exploit leading pictures to influence readers' processing of the issues. I document two relevant facts. First, the news' visual language is distinctive of the sources' political leaning and significantly polarized, to an extent comparable to the documented verbal polarization of Congress in recent years. For this analysis, I construct a visual vocabulary of graphic features and apply a dictionary-based method to study the visual language polarization in the leading images published in US news between December 2019 and December 2020. Second, such visual partisanship is an expression of political media bias: in a survey experiment, individuals exposed to identical news pieces but leading pictures with opposite partisanship formulate significantly different opinions, which are slanted towards the images' respective ideological poles. I find that news' visual bias causes an increase in the issue polarization of the general public. The slanting effect of images interacts with readers' prior, and audiences on both sides of the political spectrum react more distinctly to pictures aligned with their viewpoint. This pattern implies that the polarizing effect of visual bias is further exacerbated if readers' source their news exclusively from like-minded outlets.

Keywords: Media bias, language polarization, images, visual information processing, news photography L82 D91 D83

[^0]
I INTRODUCTION

"We don't see things as they are, we see things as we are"
-Anais Nin (writer), 1961

The starting point of this paper are four facts that today characterize the access to written news: first, people increasingly read their news online, finding news pieces through social media platforms or news apps (Shearer, 2021). Second, news readers first encounter these news pieces through short previews, a format consisting of a headline, a short summary text, and a leading image (FigureI): this format confers leading pictures a prominent position over other news elements. Third, people heavily rely on the content of news previews, for instance when they share the news pieces in their social media feeds without reading the full text (Gabielkov et al., 2016). Fourth, most initiatives tackling online misinformation and fake news are concerned with the analysis of written contents, and pictures largely escape systematic scrutiny. Taken together, these dynamics suggest that leading images gained large strategic importance in the communication strategy of news media, and in particular of ideologically-partisan outlets: not only the unspoken content can reach a broad audience, but the ambiguity of intended meaning in pictures allows to provide controversial hints and cues while limiting the potential backfire.

This study explores the role of leading images in the communication strategy of politically-slanted news producers, investigating the extent of political bias over and above text. The paper documents two complementary instances: on the one hand, news providers with different political leanings use systematically different visual language; on the other hand, partisan visual narratives slant readers' opinion towards the news outlets' ideological poles. Jointly, these dynamics prove that the news' visual bias is a tangible expression of political media bias (De Vreese, 2004, Groseclose and Milyo, 2005, McCombs and Reynolds, 2009, DellaVigna and Gentzkow, 2010. Prat and Strömberg 2013. Strömberg, 2015, Prat 2018).

The analysis is organized in two Sections. I first study the polarization of the news' visual language, namely the extent to which the characteristics of the leading images are distinctive of their news outlets' political leaning. I collect about 300'000 leading images from news published between December 2019 and December 2020 by the main US news outlets, and I exploit computer vision tools to extract information on the images' content (such as the subjects and objects depicted, their characteristics, and contextual aspects of the image). Drawing from existing studies in photography, semiotics, psychology, and political science, I combine this information into key measures to decode meaning from visual contents. I thus construct a "visual vocabulary", whose tokens pertain several dimensions relevant to convey political cues through graphic elements. Borrowing from textanalysis methods, I map the images in my dataset to the vector of tokens in my visual vocabulary, using this representation to analyse systematically the portrayal of subjects and compare it across pictures. To measure the partisanship of the news' visual language I employ the leave-out estimator of phrase partisanship developed by Gentzkow, Shapiro, and Taddy (2019). The results of this first analysis show that leading images chosen by liberal- and conservative- news outlets are systematically different. The news' visual language is significantly partisan and distinctive of the sources' political leaning: as a term of comparison, the visual polarization appears close to the verbal polarization that Gentzkow, Shapiro, and Taddy ibid. document in Congress sessions of recent
years. I then analyse the text of the news summaries to categorize the news pieces into seven relevant topics; I thus re-apply the polarization measure to news within each topic. The measure indicates high visual polarization in news broadly pertaining the following topics: Politics, Security, Health \mathcal{E} Covid-19 (polarized only from April 2020 onward), Entertainment and, to a lesser extent, Society.

The second Section of the paper presents a survey experiment conducted on a nationally-representative sample of 2 '000 US residents to examine the effect of visual partisanship on news readers' opinion. I test two hypotheses: whether partisan leading images distinctive of Republican/Democrat outlets effectively slant the audience towards their respective party, and whether partisan images increase the polarization of public opinion. The results indicate that individuals exposed to identical news previews but leading pictures with opposite partisan loadings formulate significantly different opinions, with the slant following that of the news outlet. The variation in leading pictures is found to increase the news previews' influence on opinion by up to 6 times, indicating that the effect of images can even dominate that of key written elements of the news previews; notably, news pieces with non partisan texts can still exert a significant slanting effect through partisan images. Exploring the factors underlying this impact, I find that readers who ex-ante hold more extreme opinions on a given issue appear more receptive to leading images compared to respondents who hold more intermediate opinions. Instead, neither the perceived issue salience nor readers' prior knowledge appear to be strong predictors of the susceptibility to leading images. Finally, and most importantly from a policy standpoint, I find that news' visual bias causes a significant increase of issue polarization in the general public: the slanting effect of images interacts with readers' prior, and audiences on both sides of the political spectrum react more distinctly to pictures aligned with their viewpoint. This pattern implies that the polarizing effect of visual bias is further exacerbated if readers' source their news exclusively from like-minded outlets.

This study seeks to contribute to the understanding of media bias in two main ways. First from a methodological viewpoint: I borrow a NLP framework originally developed for text analysis and I apply it to the study of images, designing a data-driven visual vocabulary for the systematic interpretation of pictures. This allows the joint study of a large number of characteristics and, as done in text analysis, to explore lexical semantics and syntactic relations among pictorial elements. In this respect, the paper relates to a number of works that explore the role of images in political communication by examining the relative incidence of distinct graphic characteristics across sources with opposite political stances (e.g. Peng 2018; Boxell, 2021; Haim and Jungblut, 2021). I rely on these studies to inform the construction of the visual vocabulary, so to encompass the many graphic aspects relevant for political visual framing. This study also relates to numerous analyses performing automatic bias detection in text through natural language processing methods (see, e.g. Greene and Resnik, 2009 , Yano, Resnik, and Smith, 2010 Recasens, Danescu-Niculescu-Mizil, and Jurafsky, 2013, Gentzkow, Shapiro, and Taddy, 2019). Among those, my analysis of visual polarization draws in particular from Demszky et al. (2019), who use the measure of phrase partisanship originally developed by Gentzkow, Shapiro, and Taddy (2019) to study the political polarization in the text of tweets related to mass shootings events in the US.

A second contribution of this paper consists of presenting novel evidence on the impact of leading images on news readers' opinion. I show that visual partisanship indeed constitutes a form of political bias of news media, and I document a significant causal effect of visual bias on public opinion polarization. In this respect,

FIGURE (I)
News Previews on Social Media

Notes: The Figure illustrates two examples of news previews in different social media websites. The preview's main elements, marked with letters to the sides, are: the name of the news source (A), the news' leading text (B), the news' leading image (C), and the news' header (D). Leading images occupy the largest share of the previews' area, dominating other elements in terms of visibility. Photo by Brooks Kraft for Getty Images ("The two-story Board Room in the Eccles Building, Washington, DC"). Image registered and available at shorturl.at/hnuAC.
the paper relates to several works that identified the correlation between the increasing polarization of media and the general population's political stance, underscoring the imperative to accurately detect news bias and to understand its nature (e.g. Gentzkow and Shapiro, 2010|2011, Prior, 2013).

The remainder of the paper is organized follows: I first introduce the dataset and data collection on US news (subsection $I I . A$, describe the methodology employed to study visual language (subsection $I I . B$, the measure of visual partisanship (subsection II.C), and the results on the extent of visual bias in a number of dimensions and for specific news topics (subsection II.D. In the second part of the paper I test the effect of leading images, presenting first the results on general public opinion (subsection III.B) then the results on opinion polarization by party also discussing policy implications (subsection III.C). Finally, I investigate the underlying mechanisms (subsection III.D). The paper closes with a summary of the main findings (Section IV).

II QUANTIFYING VISUAL PARTISANSHIP IN US NEWS

This Section (II) focuses on quantifying the extent of visual partisanship in US news, finding a high degree of polarization across the visual narratives adopted by news sources across the political spectrum.

I measure visual partisanship using an original large dataset of news pieces published between December 2019 and December 2020. The following paragraphs introduce the dataset and data collection, describe the methodology for the analysis, and illustrate the extent of news' visual partisanship overall and by news' topic.

II.A Data on leading images in US news

News sources. I begin by constructing a comprehensive list of the relevant news outlets from a list of the top 50 US news media by digital circulation from Similarweb.com. The circulation metric is based on the number of Unique Visitors per Month (UVM), and it indicates how many people in the U.S. market visit a website in a month ${ }^{1}$ I discard sources that do not cover political news and are exclusively focused on entertainment, celebrity news, fashion, beauty news, or local news ${ }^{2}$ I derive the sources' party affiliation through the political bias ratings from Adfontesmedia.com and Allsides.com, keeping the sources with concordant partisanship attribution; the final sample consists of 22 sources evenly divided on the two sides of the political spectrum ${ }^{3}$ Table A.1.1 presents a list of the sources as well as their partisanship scores as documented by the above mentioned sources. News data. From the Twitter accounts of the selected sources, I obtain all the news articles shared on the social media between December 1, 2019 and Dec 13, 2020. I focus exclusively on tweets sharing written news pieces (discarding links to video, voice recordings etc.), and I filter out all news pieces written by an outlet but tweeted by a different source. As sources commonly share their pieces multiple times to maximize audience, I keep only the latest version of each piece. The resulting dataset counts $298^{\prime} 850$ news pieces.

From the articles' metadata I retrieve and store the headline, description, publication outlet, publication date, and leading image; I additionally store the text of the tweet that linked to each news piece. I define an article's leading image as the main picture accompanying a news piece: loosely speaking, those correspond to the pictures displayed in the news summary when articles are shared on social media 4^{4}

Image analysis, Face detection, Face verification, and emotion recognition. I extract data on the visual content of the images by passing each picture to image analysis algorithms, via the computer vision API services by Microsoft (Microsoft cognitive services). The image analysis algorithm detects the presence of faces and assigns tags to the picture based on the depiction of "iconic", recognizable items (e.g. clothing pieces, natural elements, animals, etc.). I pass images that contain at least one human face to the face detection, description (age, gender, hair colour, eye-nose-mouth landmarks etc) and emotion recognition algorithms (Microsoft FACE). The latter classifies the emotions expressed by a face into happiness, sadness, anger, fear, contempt, disgust and surprise.

Using the subset of images containing a human face, I check whether the depicted persons are members of the US congress or prominent figures of the US recent public scene. To this purpose, I first train the face-verification algorithm on a comprehensive set of images created by manually selecting 9 pictures of each congressmen and congresswomen sitting in the $114,115,116$, and 117 th US congresses 5 Then, to record the presence of prominent public figures outside the setting of Congress (e.g. Governors, Supreme Court judges, athletes, actors etc.) I additionally pass the pictures to Microsoft's "celebrities" API, a face-verification algorithm pre-trained to recognize a wide set of celebrities.

[^1]Overall, the final set of data on the leading images extracted through the computer vision suite includes the following information: whether or not a picture contains a person, how many people it contains, whether the subjects are recognized politicians or celebrities, the coordinates within the image of each person's facial landmarks (nose, eyes, mouth, etc), details on the facial expression (emotion, mouth/eyes openness), details on the head pose (pitch, yaw, roll). In addition, whenever the picture contains a congressperson, I record her relative political leaning as measured through the first dimension of the Common Space DW-NOMINATE score from McCarty, Poole, and Rosenthal (2015) ${ }^{6}$ In the remainder of the paper, I refer to this data ensemble as to the "raw information" on leading pictures.

II.B Method: A dictionary-based approach to the study of pictures

To perform a comprehensive analysis of the leading pictures collected from US news, I adapt the dictionary-based methodology originally developed to study texts. Dictionary methods entail counting words from a predefined lexicon (the dictionary) in a big corpus, with the intent to explore or test hypotheses about the corpus itself. In practice, the essence of the method consists of transforming a document in a vector of counts or indicators for the presence of given language elements. The reference vocabularies are generally composed of unigrams, bigrams, and/or trigrams, namely series of one or two/three consecutive words (or word roots) that, once combined (and before the removal of stopwords and word suffixes/prefixes) compose the phrases of a text; these elements are commonly referred to as text tokens, or simply tokens.

I adapt this procedure to study the news' visual language and to extract computationally the meaning of the large number of leading images in my dataset. By processing the raw information described in previous section, I draft a vocabulary of graphic and content-related features which, once combined, result in the pictures' backbone. Following the parallel with text analysis, these can be considered as my set of "visual tokens". Describing dictionary methods for text analysis, Gentzkow, Kelly, and Taddy (2019) illustrate the simplifications that help reduce raw text to a representation suitable for statistical analysis:
"We typically make three kinds of simplifications: dividing the text into individual documents, reducing the number of language elements we consider, and limiting the extent to which we encode dependence among elements within documents. The result is a mapping from raw text Δ to a numerical array C. A row c_{i} of C is a numerical vector with each element indicating the presence or count of a particular language token in document i. ."

I reduce the pictures in my set to simpler representations through three steps. The first entails dividing the corpus into single documents; in my application, since the attributes of interest are defined at the single image level, I consider each picture as an individual document. The second step entails adapting the number of language elements that are considered. The purpose of my analysis is to study how the visual narrative differs among sources with different political leanings. To this extent, I consider both general graphic elements and politically-relevant cues in the pictures, as described in details in the next Section.

The third step entails encoding the dependence among elements within a document. In text analysis,

[^2]this is aided by including consecutive words/stems (bigrams and trigrams) in the vocabulary. The study of consecutive words helps the extraction of meaning from a text because words proximity proxies pertinence to the same textual object. In images, instead, the pertinence of multiple characteristics to the same portrayed object can be modelled using combinations of co-occurring features (see Subsection II.C.4. The unigrams, bigrams and trigrams in my visual vocabulary are thus represented by single graphic features, feature-pairs, and features-triplets.

II. C Building a Visual Vocabulary

The visual vocabulary is constructed starting from the raw information extracted from pictures (Subsection II.A. The following paragraphs describe how this data is processed to create meaningful entries and maximize the vocabulary's fitness for capturing politically-relevant cues in visual language.

II.C. 1 Features as "Adjectives"

With the term "adjective features", I refer to those indicating variable attributes subjects may possess in given pictures and not in others. Within pictures, they are defined at the face-level. I organize the features by their pertinence to three dimensions: size, centrality, and kinesics. The first two pertain the pictures' proxemics, i.e. the way the space is used in the portrayal, while the third concerns the dynamics and gestures portrayed.

Size. Subjects' size is relevant to image analysis primarily because higher graphic dimension induces higher visibility. As humans do not receive a picture's content through a single glance but rather through separate scans, the longer a person looks at a picture the higher the chances of marginal details to be integrated in such mental map and thus be "seen" ${ }^{7}$. As a consequence, bigger objects are more likely to be grasped by a viewer. In this sense, we can interpret the relative size of depicted objects as informative of the illustrative intent behind the choice of a picture: if an element occupies a large portion of the image, the person who chose the illustration meant to highlight that element to the viewers. Therefore, objects' size proxies a criterion of precedence among the objects portrayed in the picture. I include in my visual vocabulary three features for subjects' size: a "close-up" indicator for faces whose area is equal or greater than $1 / 6$ of the total image area, a "mid range" indicator, for faces from $1 / 6$ to $1 / 24$ of the total image area, and a "long shot" indicator for faces with size below $1 / 24$ of the total image area. I additionally use the facial area to rank the portrayed subjects in terms of visibility, as discussed in the paragraph covering subject-related features.

Centrality. I define an object's centrality in a picture as its ability to attract the viewer's attention. I measure centrality in terms of proximity to the two vertical and two horizontal parallel lines that divide a picture in three equal sections, vertically and horizontally, following the "rule of thirds" (illustrated in Figure II). Such "attention lines" have been shown to attract and guide viewers' attention within a picture (see, e.g. Koliska and Oh, 2021) and are often marked in cameras' viewfinders to aid photographers' frame choice ${ }^{8}$ For every face in a picture, its centrality is inversely proportional to the distance between the eyes-midpoint and

[^3]

The rule of thirds in "Hand in hand" by Steve McCurry
Notes: The Figure illustrates an application of the "rule of thirds", which the photographer uses to guide the viewer's attention towards the elements of interest (placed along the two vertical and two horizontal lines that divide the image in equal thirds). Picture: India, "Hand in hand" gallery by Steve McCurry. https: //www.stevemccurry.com/galleries/hand-hand.
the closest of 5 focal points (either the center of the image, or one of the four intersections of the attention lines determined through the rule of thirds).
Formally, it is expressed as:

$$
\begin{equation*}
c^{R O T C}(x, y)=\operatorname{argmax}_{i} e^{-\left(\sqrt{\left(\frac{x-x_{i}}{W}\right)^{2}+\left(\frac{y-y_{i}}{H}\right)^{2}}\right)} \tag{1}
\end{equation*}
$$

where i indicates the focal point, x and y are the coordinates of the eyes' midpoint, x_{i} and y_{i} are the coordinates of point i, and W and H express the total width and height of the image. The distances in (11) are measured in pixels, with the top-left angle of the images always marking the origin of coordinates axes. The distance between focal point i and the eyes-midpoint is normalized with respect to the image dimensions to ensure cross-pictures comparability. The centrality index therefore ranges in $0-1$, with higher values indicating higher proximity to a focal point.

My visual vocabulary includes four main single features relative to subjects' centrality: an indicator for high centrality (index higher than .95), medium-high centrality (index ranging in .85 and .95), medium-low centrality (index ranging in .85 and .95), and low centrality (index strictly lower than .75). I make additional
use of the centrality measure to rank the subjects portrayed in the same picture, as discussed more in details in the following paragraph covering subject-related features.

Kinesics. Kinesics is broadly defined as the study of body movements (Bowden, 2015 Furnham and Petrova, 2010, Walters, 2011). It entails any body dynamics such as gestures, facial expressions, eye behavior, or touching. It also may encompass the analysis of physical characteristics such as a subject's posture, height, weight, hair, and skin color. Some gestures, such as facial expressions or eye movements, have been shown to be important markers of the emotional and cognitive inner state of a person. The particular look on a person's face, for instance, provides reliable cues as to approval, disapproval, or disbelief (Bailenson et al., 2008; Grabe and Bucy, 2009, Lunenburg, 2010). Importantly, those elements are also relevant political cues in pictures' visual narratives: during the 2016 US election campaign, for instance, news websites of varying ideologies portrayed the two candidates displaying more positive and less negative emotions of the candidate they supported (Peng, 2018, Boxell, 2021). In line with these findings, I include in the visual vocabulary a feature for each of the seven emotions detected by the emotion recognition algorithm (happiness, sadness, anger, fear, contempt, disgust and surprise). I consider the emotion as correctly identified when the algorithm expresses a confidence level of 80% or higher (as in Peng, 2018). I additionally create a "negative emotion" indicator taking value 1 whenever the subject expresses either sadness, anger, fear, contempt or disgust. Correspondingly, I create a "positive emotion" indicator taking value 1 when the subject's face expresses happiness. The above negative- and positive-emotion indicators exclude surprise: as leading pictures often portray subjects during speeches or public appearances, the depicted persons often have their mouth open, a pose the algorithm often mistakenly associates to surprise. Whenever none of the emotion variables (including surprise) takes value 1, I code the emotion as "neutral".

While single-subject, close-up portraits focus the viewer's attention on the portrayed person's characteristics (and in this context, her emotion), shots with many subjects tend to shift the attention from an individual to a group. For this reason, the interaction of multiple persons shapes the overall emotion expressed in a picture. For the visual vocabulary to capture this aspect, and to deepen the understanding of images' emotional loading, I consider a "triggered emotion" feature: for each portrayed person, it is the average emotion of the subjects whose glance is directed towards the person. In other words, if persons X, Y and Z are portrayed in a picture, with X and Y looking towards Z, the latter's triggered emotion is the average of X and Y 's emotions (as inferred from their facial expressions). For each subject in a picture, the vocabulary additionally records the number of other people who are looking towards her, as well as whether she is looking towards someone. I use the subjects' head pose angles as proxy for where they are directing the glance and to compute their sight regions, borrowing this approach from studies on intelligent vehicle systems that rely on head poses to predict drivers' attention patterns to the road (see Parks, Borji, and Itti, 2015 Lee et al., 2018 Dari, Kadrileev, and Hullermeier, 2020, Jha and Busso, 2020). Appendix Section A.1.1 describes the details of the method.

The triggered emotionality measure rests on the assumption that glances can be used to transfer the observer's emotion to the observed person, thus that a person's facial expression is informative of the emotional evaluation of what she sees. The method is clearly limited in cases such as when individuals glance away from an emotionally triggering sight (instance plausibly more frequent with negative emotions). Nevertheless, it allows to go beyond the mere emotion-labelling of single faces, and to capture the deeper emotional loading of images with multiple
individuals. To limit the method's possible flaws, I only measure triggered emotions in images with up to 3 persons: this safeguards the accuracy of the method (the more people are portrayed, the higher number of possible glance-interactions and emotion attributions), while at the same time includes the vast majority of pictures in my sample.

The visual vocabulary captures a number of other kinesics dimensions. It encompasses indicators for each of the individual head pose angles used to construct the triggered emotionality (namely positive, neutral, or negative yaw/pitch/roll), as such angles by themselves can affect a viewer's judgement of the social relations among the depicted subjects (Ekman, 2009); Gawronski and Payne, 2011). It also contains indicators for nonverbal cues related to the mode of dress: those capture whether the portrayed subjects are wearing clothes or accessories with particular distinctive features, such as uniforms, formal dresses, suits, ties, hats, face masks, scarves, or glasses. From a visual communication perspective, individual clothing pieces -e.g. a suit- can be used to prime specific evaluations - such as success and wealth (Ekman, 2009). In addition, and particularly in the period under analysis, the presence of specific clothing or accessories -such as face masks- can per se constitute a politically and socially important signal.

Color is another dimension relevant to the images' kinesics. The visual vocabulary captures two types of color-related factors that can be used to augment or decrease the salience of a subject in a picture: the light exposure of a subject's face (measured through indicators for "normal exposure", "bright exposure", and "dark exposure") and its blur level (measured through indicators for low blurring, medium blurring, and high blurring). Importantly, there exist a number of other color-related dimensions that are certainly very relevant devices in visual communication (such as the overall color dominance in a picture, or the presence of evocative color patterns). Nevertheless, those additional dimensions are left outside the scope of the present work due to the limited related raw information extracted from the pictures (see Section II.A for a list).

II.C. 2 Features as "Subjects"

Like adjective features, "subject" ones are defined at face-level; however, differently from the former, the latter define subjects' characteristics that are fixed across all pictures in the sample (such as a person's sex or political party affiliation). The category also includes indicators that uniquely identify the portrayed subjects through their name (when their face maps to someone in the training set).

The unique identification of objects or people within an image is essential to correctly attribute the adjectives features through features' combinations. I thus create a unique identifier for all the individuals within a picture, ranking them by the weighted average of their face area share (70\%) and centrality (30\%). The higher the rank, the more a person is salient in the image ${ }^{9}$

Together with the unique identifiers, the vocabulary includes indicators for the overall saliency ranking of the individuals (positions 1 to 10, the maximum amount of depicted individuals in the same picture), indicators for the centrality ranking (from 1 to 10 , based on the index for facial proximity to the attention lines, as described in the sections above), one indicator for whether or not the person is in general well-know to the public (hence, a celebrity or a politician recognized by the algorithm), an indicator for whether the depicted person is a man or a woman, and indicators for the relative position in the political partisanship distribution (measured through

[^4]the first dimension of the Common Space DW-NOMINATE score from Poole and Rosenthal, 1985) This partisanship score originally ranges from -1 to +1 and is scaled so that the lowest scores are those of liberal Democrats and the highest scores are those of conservative Republicans; dividing the index domain into 10 equally spaced bins, I produce five vocabulary indicators to mark pro-Democratic partisanship, and other five to mark the relative pro-Republican leaning of a congress member.

II.C. 3 Other features: image context

The third and last type of features consists of indicators for the presence of specific contextual elements, varying at the image level. Previous research on political candidates' imagery has shown the communicative relevance of contextual features -such as the portrayal of many individuals together- or of structural characteristics -such as the camera angle- (see, e.g., Sutherland et al., 2013. Abele et al., 2016 Haim and Jungblut 2021). In light of the existing evidence, the visual vocabulary includes indicators for the following elements used to build the images' context: the presence of any human face in a picture; the total number of faces; the presence of a well-know person and the total number of recognized individuals; the joint presence of any two individuals from a "common subjects" lists encompassing all well-known individuals who appear in at least 50 images; the presence and total number of members of the Republican (Democratic) party sitting in at least one of the 114th-117th Congresses; the presence and number of politicians in each range of the politicians' partisanship distribution; the presence and total number of men or women in images featuring at least one human face; the relative presence of the two sexes (majority women/men/equal number); the average emotionality - neutral, positive or negative- for pictures featuring at least one human face, measured through the average emotion expressed among all faces; the number of faces expressing each of the seven emotions, in pictures with at list one recognized individual; the presence, total number, and relative frequency (majority/minority/equal number) of individuals wearing a facial mask; the overall camera angle of the picture, measured through the average head poses of the portrayed individuals. In addition to these elements, the vocabulary contains the descriptive tags that image analysis algorithms produce in relation to an image. These tags are indicators for noteworthy contextual elements of a picture, such as natural elements (e.g. fire, water, etc.), transportation means (e.g. cars, ambulances, etc.), architectural elements (e.g. skyscrapers, castles, etc.), or text content (e.g. banners, signals, etc.) ${ }^{11}$

II.C. 4 Combining the Features

As anticipated in Section II.B, text analysis vocabularies commonly include bigrams and trigrams to capture pertinence to the same textual object through words proximity. In the analysis of images, I model the pertinence of multiple characteristics to the same portrayed object using features-combinations. An example can efficiently illustrate the parallel. An hypothetical text describing a man walking a white cat and a black dog could be analysed through partition in unigrams, bigrams or trigrams; however, only the last two options would allow to extract the pets' colour attributions ("white cat", "black dog"). By the same token, an image depicting a man walking a white cat and a black dog can be analysed considering "subjects" and "adjectives" either disjointly (e.g.: presence of "man", "cat", "dog", presence of attributes "color white", "color black"), in combination of

[^5]two features (e.g.: attribute and subjects present: "white" + "cat", "black" + "dog"), or in combination of three features (e.g. presence of two subjects, one with an attribute: "man" and "white" + "cat"; "man" and "black" + "dog"). The unigrams, bigrams and trigrams in my visual vocabulary are thus represented by single, pairs, and triplets of features. To create meaningful combinations I refer to the grammatical structure used to distinguish among features identifying subjects, those characterizing their depiction, and those characterising the context and interactions between subjects. This structure is intended to help decode the meaning of images the same way disentangling adjectives, nouns, and verbs enables to extract the meaning of a text. In this way, individual features convey the lexical semantics of an image, while features' combinations are informative of their "visual syntax".

The visual vocabulary contains all possible combinations between subjects, adjective features, and context features, under the constraint that multiple adjectives and context features can be combined, but are attributed to one subject feature at a time ${ }^{12}$ The combinations are summarized in Table In the remainder of this work, I refer to vocabulary entries as token, to indicate alternatively an individual feature or a combination of features.

TABLE (I)
SUMMARY OF FEATURES COMBINATIONS.

	A	B	C	D
B	\checkmark		\checkmark	\checkmark
C				\checkmark
B*A			\checkmark	\checkmark

Notes: The Table summarizes the combinations of features, grouping the latter by category. Categories are as follows: Group $\mathbf{A}=$ Context features; Group $\mathbf{B}=$ Subject features, identifying subjects in general (e.g. person name). This group includes the political partisanship, sex, and celebrity status (being well-known); Group $\mathbf{C}=$ Subject features identifying subjects within an image (e.g. "the most salient person"). This group includes the overall rank of subjects, their centrality rank, and their centrality score; Group $\mathbf{D}=$ Adjective features. Letters in the first row and in the left column indicate the category, and the symbol " \checkmark " marks the existence of a combination between the row and column feature groups.

II.D Results: Measuring Visual Partisanship in US news

II.D. 1 Pre-processing

Following in parallel the text analysis by Demszky et al. (2019), I restrict my attention to features used at least 10 times in at least one of the 2-week periods, used in at least 10 different periods, and used at least 50 times across all periods. I remove features that appear too frequently because their use is likely not informative about the inter-party differences that I wish to measure (Gentzkow and Shapiro, 2010); similarly, I remove infrequently used features to economize on computation (Demszky et al., 2019). ${ }^{13}$ The resulting vocabulary contains $34^{\prime} 647$ unique visual tokens used a total of 21.92 million times in $298^{\prime} 850$ leading images. I analyze data at the image level and within time periods of two weeks, for a total of 26 periods between Dec 2019 and December 2020.

[^6]
II.D. 2 Visual Partisanship

I study visual partisanship in leading images by adapting the leave-out estimator of phrase partisanship by Gentzkow, Shapiro, and Taddy (2019) ${ }^{14}$ Like these authors, I define partisanship as the expected posterior probability that an observer with a neutral prior would correctly guess a picture's political leaning (i.e. whether it was published by a Republican-leaning or Democrat-leaning source) after observing a single token randomly drawn from the image. If the token is used equally in images published by Republican- and Democrat-leaning news sources, then this probability is .5 and the token is uninformative of the image's political leaning. The leave-out estimator solves the problem of finite-sample bias, which arises because the features an image could contain are many more than those present in any image leading the news. As a consequence, many pictures' features are used mostly by one party or the other purely by chance; however, naive estimators interpret such differences as evidence of partisanship, leading to a bias estimate that is much larger than the true signal in the data (see Gentzkow, Shapiro, and Taddy (ibid.).

The leave-out estimate of partisanship $\pi^{L O}$ between images from Democrat-leaning sources, $i \in D$, and images from Republican leaning sources, $i \in R$, is

$$
\begin{equation*}
\pi^{L O}=\frac{1}{2}\left(\frac{1}{|D|} \sum_{i \in D} \hat{\mathbf{q}}_{i} \hat{\boldsymbol{\rho}}_{-i}+\frac{1}{|R|} \sum_{i \in R} \hat{\mathbf{q}}_{i}\left(1-\hat{\boldsymbol{\rho}}_{-i}\right)\right) \tag{2}
\end{equation*}
$$

where $\hat{\mathbf{q}}_{i}=\mathbf{c}_{i} / m_{i}$ is the vector of empirical token frequency for image i, with \mathbf{c}_{i} being the vector of token counts for image i and m_{i} being the sum of token counts for image i; $\hat{\boldsymbol{\rho}}_{-i}=\left(\hat{\mathbf{q}}^{D \backslash i} \oslash\left(\hat{\mathbf{q}}^{D \backslash i}+\hat{\mathbf{q}}^{R \backslash i}\right)\right)$ is a vector of posterior probabilities, excluding image i and any token that is not present in least two images. Following the notation in Demszky et al. (2019), I let \oslash denote element-wise division and $\hat{\mathbf{q}}^{G}=\sum_{i \in G} \mathbf{c}_{i} / \sum_{i \in G} m_{i}$ denote the empirical token frequency of images in group G.

As described by these authors, the LO estimator captures two components of image partisanship: the difference between groups (posterior probability for each feature) and the similarity within a group (dot-product between the feature vector of each speaker and that of their group).

II.D. 3 Overall polarization

Figure III shows that in the entire period between December 2019 and Dec 2020 (with one estimate every 2-weeks) the visual language of leading images is highly polarized, with estimates ranging between .521 and .536. The partisanship estimate is the lowest in the two-weeks preceding the election, and the highest in the two weeks afterwards, following the election on Nov 3. The estimates are slightly decreasing over the months, but the decrease is not statistically significant (p -value $=0.326$). Following Demszky et al. (ibid.), I quantify the noise by calculating the leave-out estimates after randomly assigning images to parties: the values resulting from random assignment are all close to .5 , suggesting that the actual values capture a true signal in the data.

As term of comparison for the magnitude of the estimated visual polarization, Gentzkow, Shapiro, and Taddy (2019) estimated a verbal polarization of US congress members in recent years of about .53, an estimate close to the visual polarization in US news hereby highlighted. In addition, Demszky et al. (2019) estimate the

[^7]

FIGURE (III)
Visual polarization

Abstract

Notes: The Figure shows the partisanship of leading images estimated through the leave-out estimator (Gentzkow, Shapiro, and Taddy, 2019, The results indicate that the visual language of US news sources is highly polarized. The shaded region represents the 95% confidence interval of the linear regression fit to the actual values. The Figure replicates Figure 2 in Demszky et al. 2019 . Like these authors, I quantify noise by calculating the leave-out estimates after randomly assigning images to parties: the values resulting from random assignment are all close to .5 , suggesting that the actual values are not a result of noise.

verbal polarization of Twitter discussions on mass-shootings in the US; their verbal polarization measure ranges between .517 and .547 , once again a range very similar to that of the visual partisanship here estimated.

II.D. 4 Polarization by topic

I further explore the extent of visual polarization dividing the images by the topic of the news pieces they lead. I model the news' topics by analysing the text of the tweets that linked to the articles ${ }^{15}$ To this extent I use BERTopic, a topic modelling approach that operates through sentence-trasformers to create embeddings, and exploits a class-based tf-idf for clustering ${ }^{16}$ The algorithm creates the tweets embeddings using a pre-trained BERT-based model for tasks of semantic similarity in English ("Paraphrase-MiniLM-L6-v2"). It lowers the dimensionality of the tweets embeddings with UMAP, to then cluster the reduced embeddings in semantically similar groups to define the topics ${ }^{17}$

To get a sense of the words composing each topic, I extract the most important words within each cluster through their within-cluster tf-idf score ("class-based tf-idf", or c-tf-idf). The c-tf-idf score of a word is a proxy

[^8]of information density: the higher the score of a word, the more representative it should be of its topic. Hence, the list of words with the highest scores provide for each topic an easily interpretable description.

The unsupervised model identifies 75 granular topics ${ }^{18}$ By manually inspecting their descriptions, I perform a hierarchical clustering to reduce their number to something more tractable (the original topics, their descriptions, and the hierarchical clustering are summarized in Appendix Section A.1.2. This leaves me with 7 main topics roughly pertaining the following categories: environment, politics, health, economy, security, society, and entertainment. About half of the tweets eligible for the analysis by topic are assigned to a miscellaneous category: those are tweets sharing news pieces that pertain multiple topics equally, or whose topic is otherwise difficult to assign ${ }^{19}$ To preserve the internal coherence of the other main topics, I thus consider the miscellaneous category separately.

The results indicate that in the entire period under analysis there has been high polarization in the visuals leading news on politics, security, the economy, and Covid \& health (Figure IV). Similarly, the visual language of news on entertainment, society, and mixed topics has been equally polarized (Figure V). A notable exception are the news on environment, for which the polarization estimates are very low and indistinguishable from the random values. This is however not indicative of a shared visual language in climate-coverage from sources across the political spectrum. In fact, the visual vocabulary employed in this analysis (especially designed to capture politically-relevant cues) may merely contain too few of the elements relevant to characterize the depiction of natural elements ${ }^{20}$ I discuss these aspects more in details in Subsection II.E.

II.E Evaluating the Method: Perks and Pitfalls

In these last paragraphs I summarise the perks and pitfalls of the method proposed, that is, of adopting a dictionary approach to study pictures. The limitations are those typical of vocabulary methods. In fact, the ability of dictionary-based procedures to extract meaning from a corpus is always tightly linked to the design of the underlying vocabulary. This is particularly relevant in the study of pictures, where the link between symbols and meaning is less express and more context-dependent than in words, as a vast semiotics literature suggests (Peirce 1931 Cassirer 1944 Morris 1946 Knowlton 1964 and 1966 Veltrusky 1976 Eco 1979, Hołowka, 1981, Cassidy 1982 Sebeok 1985 Langer 2009). For the application in this paper, the vocabulary's design aims to interpret the political nuances of the news' visual language; hence it is possible - and likely- that other nuances of the same visual expressions remained undetected. For instance, the visual language of environment-related news could actually be very polarized, just in dimensions not captured by the dictionary used in this study (see Figure V). This suggests two observations on the method proposed in this Section.

First, inference is necessarily bounded by the "terminology" contained in the vocabulary. There are numerous possibilities to expand the dictionary developed in this paper, both in terms of lexical richness and syntactic

[^9]

FIGURE (IV)
Visual Polarization By News Topic:
Politics, Security, Economy, and Health.

Notes: The Figure shows the partisanship of leading images estimated through the leave-out estimator by Gentzkow, Shapiro, and Taddy (2019). News are divided by topic: Politics (panel A, top left); Security (Panel B, top right); Economy (Panel C, bottom left); Covid \& Health (Panel D, bottom right). The results indicate that the visual language of US news sources within each topic is highly polarized. The shaded regions represents the 95% confidence interval of a second order polynomial fit to the actual values. Random values correspond to leave-out estimates obtained after randomly assigning images to parties.

FIGURE (V)
Visual Polarization By News Topic:

Entertainment, Environment, Society, and Miscellanea.

Notes: The Figure shows the partisanship of leading images estimated through the leave-out estimator by Gentzkow, Shapiro, and Taddy (2019). News are divided by topic: Entertainment (panel A, top left); Environment (Panel B, top right); Society (Panel C, bottom left); Miscellanea (i.e. all news that were not assigned to a unique topic, Panel D, bottom right). The results indicate that the visual language of US news sources is highly polarized for news on entertainment, society, or mixed topics. Vice versa, is no evidence of a significant visual polarization in the news concerning the environment. The shaded regions represents the 95% confidence interval of a second order polynomial fit to the actual values. Random values correspond to leave-out estimates obtained after randomly assigning images to parties.
breadth (one notable opportunity: extracting additional "raw information" on color, or decoding actions from body posture; both being well known tools relevant for communication and political expressions). This Section hence illustrates a method and presents one realization of a particular visual vocabulary, with a fully replicable construction process henceforth adaptable to different use.

Second, repeating a dictionary-based analysis using a different vocabulary would lead to different results, which poses a question on the generalizability of their findings. This is not peculiar to the study of images, in fact the same is valid for text. However, scrutinies of dictionary-based text studies generally don't comment on this aspect plausibly because high-quality text vocabularies are publicly available and widely used, and there is consensus on their completeness. The same cannot be said of the visual vocabulary just constructed. In fact, the visual dictionary presented doesn't capture all language nuances of the images (or, in other words, it's not a "complete" visual vocabulary). This is necessarily beyond the scope of the present work: especially because, as mentioned, the computer vision tools used to extract "raw information" from pictures still miss several relevant aspects of visual communication. Instead, the aim of this Section is to document systematic visual language differences across the political spectrum, to then test their effect on public opinion (Section III). The analysis measures language distances using the same vocabulary for all the images and all the sources: by doing so, irrespective of the vocabulary's completeness, it produces "internally valid" results within the dictionary employed ${ }^{21}$ Adopting a dictionary method to study images, on the other hand, presents a particular advantage in terms of the interpretability of the results. As said above, in facr, one of the goals of this study was to capture both "lexical" and "semantic" aspects of the images, which is made possible through the creation of interpretable visual tokens.

To summarise, this Section (II) presents a method to explore images' content and study the relations among depicted objects, which consists of mapping images to vectors of visual tokens capturing both lexical and syntactic language elements. The application illustrated is a visual vocabulary designed to grasp politicallyrelevant nuances of language. Within this context and using these tools, I find a systematic distance between the language of liberal- and conservative-leaning US news outlets. The remainder of the paper shows that so-defined distant partisan visual narratives also have significantly different impacts on news readers' opinion. Jointly, these two pieces of evidence provide conclusive proof of the existence of political visual bias in US news.

III THE EFFECT OF VISUAL PARTISANSHIP ON OPINION

A conclusive proof of the existence of "visual bias" in US news requires leading images not only to be distinctive of Republican- or Democrat-leaning sources, but also to favor the corresponding party. This section therefore introduces a survey experiment to test two hypotheses: first, whether partisan leading images distinctive of Republican/Democrat outlets slant the audience towards their respective party; second, whether partisan images, by interacting with the audience priors, increase the polarization of public opinion. I additionally examine a number of moderating factors for the effect of leading images, such as the perceived salience of the news and the stage of opinion development on the news issue.

[^10]The Section builds on the methods and the results presented in previous Section II to identify pictures with different political partisanship, which are then employed as experimental treatments.

III. A Experimental strategy

I conduct a survey experiment on a nationally representative sample of the US population consisting of 2'000 respondents. The eligible population of the study consists of US citizens between 18 and 65 years of age. I recruit survey respondents on IPSOS's survey panel between July 2, 2021 and July 22, 2021. The experiment was approved by the European University Institute's Ethics Committee (the EUI's IRS board), and informed consent was obtained from the respondents at the beginning of the survey. The experiment and its pilot were pre-registered in the AEA RCT Registry ${ }^{22}$

Each respondent is exposed to news on five news issues, displayed sequentially. An issue is introduced through the following steps:

1. The respondent reads a short summary of the news.
2. She is asked to evaluate her knowledge of the issue and express the issue's relevance to her personal life/experience (i.e. its perceived salience) and her opinion on the issue.
3. The respondent accesses a page containing one piece of news on the issue. The piece appears in the same compact format of news previews when pieces are shared on social media, as described in the introductory Section. This preview's main elements are a brief summary-text on top (what is widely called "lead statement", an introductory text that summarizes the key details of a news piece), a leading image, a header (i.e. the title), and a byline (the line of text below the title generally providing context details). Respondents can read or skim the news pieces through a scroll-down movement, as in social media. The overall news look is that of the news previews featured on Facebook, and already illustrated in the right panel of Figure \mathbb{T}.
4. After being exposed to the news, respondents express their opinion on the issue shifting a graphic slider to provide a numeric answer.

Steps 1-4 above defined repeat five times, one for each issue ${ }^{23}$ The experiment consists of exogenously varying the images leading the news in step 3 among three alternatives: non partisan, distinctive of Democratleaning sources (hereinafter: "Democrat-leaning") or distinctive of Republican-leaning sources (hereinafter: "Republican-leaning"). Importantly, all the other aspects of the news previews (texts, headlines, bylines and graphic look) are held constant. Treatment assignment is randomized at individual level, and respondents are equally likely to be exposed to either of the three treatment branches (with treatment status for each issue being orthogonal to the status in others).

The text in the news pieces is non-partisan, i.e. it depicts facts covered by both liberal and conservative news sources without using partisan narrative frames or language ${ }^{24}$ Democratic- (Republican-) leaning images contain Democratic- (Republican-) visual features with high partisanship score (measured following the method

[^11]described in Section II.D.4, hence they depict issues in a manner that is distinctive of Democrats (Republicans) news outlets. Vice versa, non-partisan images (hereinafter "neutral" images) contain features with low partisanship scores. The pictures' partisan loadings are homogeneous to ensure cross-issues comparability. Images are congruent with the true coverage on the same issues from outlets on both political sides (news pieces sourced from WWw. allsides.com). Appendix section A.2.1 displays and describes the chosen images.

The treatment news issues pertain five news topics characterised by significant and comparable visual partisanship as described in Section II.D.4, i.e. Security, Politics, Economy, Covid \& Health, and Society. I select one recent news issue from each of those broader topics, and respectively: the debate on police budget cuts (hereinafter: "Police funds" issue); Biden's efforts to renew the 2015 US-Iran nuclear deal ("Iran deal"); the FED forecasts on inflation ("Inflation"); the anti-Covid measures implemented in March 2020 in the US ("Covid measures"); the institution of Juneteenth as Federal holiday ("Juneteenth").

I collect respondents' opinions on these issues through the following questions:

- Police funds: The total state and local government spending on police is currently about $\$ 119$ billion a year. If you were to decide the police budget, how much would you set it to? [Answers readjusted to range in $-100 \% /+100 \%$]
- Iran deal: From 0 to 100, in your opinion what is the probability for Biden to succeed in reviving the 2015 nuclear deal with Iran?
- Inflation: From 0 to 100, in your opinion what is the probability of inflation returning to pre-pandemic levels by July 2022?
- Covid measures: From 0 to 100, how much do you approve of the pandemic handling by public health experts in March last year?
- Juneteenth: From 0 to 100, how much do you support the creation of a new federal holiday for Juneteenth?

The outcome variable of interest is the respondent's opinion on an issue after being exposed to the news.
For each news issue, I estimate the following specification through OLS:

$$
\begin{equation*}
Y_{i}=\beta_{0} N_{i}+\beta_{1} D_{i}+\beta_{2} R_{i}+\beta_{3} X_{i}+\epsilon_{i} \tag{3}
\end{equation*}
$$

where Y_{i} is the post-treatment opinion expressed by respondent i on a given issue, N_{i} is an indicator for exposure to news led by neutral-leaning images, and D_{i} and R_{i} are similar indicators for exposure to news led by Democrat-leaning or Republican-leaning leading images, for the given issue. Finally X is a vector of demeaned control variables uncorrelated with the treatment indicators, to aid the precision of the estimates 25

Appendix Table A.2.1 summarizes the main variables of the study, and Appendix Tables A.2.3 to A.2.7 display the balance of observables characteristics across treatment branches for the 5 treatment news issues. As

[^12]expected by virtue of randomization, for all the treatment news issues the respondents in the three treatment branches are balanced in terms of observable characteristics, and the standardized difference is always below the critical threshold of 0.25 suggested by Imbens and Rubin (2015).

III.B Do partisan images affect public opinion?

I investigate the extent to which Democrat- and Republican- leaning images shift public opinion by testing, for each news issue, the significance and the equality of treatment coefficients β_{1} and β_{2} in (3). The analysis presented in this Section excludes survey respondents who do not pass an attention check placed at half survey; it also discards single answers given after treatment exposures of strictly less than 5 seconds ${ }^{26}$ Both exclusion criteria are pre-registered.

Table II reports the estimated treatment effects on the respondents' opinion on each issue. News issues are ordered by the distinctiveness of Democrats' and Republicans' prior ideological positions (most similar for Police funding, and least similar for Juneteenth, as indicated by the distribution of respondents' first opinions (Appendix Figure A.2.6). All dependent variables are readjusted to range between -50 and +50 , with the exception of the "Defund Police" issue, whose opinion ranges between -100% and $+100 \%$ of the true Police budget ${ }^{27}$ All the dependent variables have been adjusted so that higher and lower values correspond respectively to Democrats' and Republicans' ideological positions relative to an "indifference", intermediate position (marked with value 0); hence positive coefficients indicate a relative pro-Democratic opinion stance, and vice versa. Round parentheses contain robust standard errors, while square brackets contain the p-values for two-sided tests of equality between coefficients (with tested pairs indicated on the left) using heteroskedasticity-robust standard errors 28

Police funding. For this issue, the dependent variable is the answer to the question: "If you were to decide the police budget, how much would you set it to? [Relative to the current budget of $\$ 119$ billion]". Coefficients represent the deviation, in percentage points, from the indifference opinion (0). To ease the comparison with other issues, the answers to this question (ranging between -100 and +100) have been adapted so that positive values indicate a budget decrease (i.e. a positive budget cut). Relative to the news piece led by a Republicanleaning image, the same news piece led by a Democratic-leaning picture significantly increases the desired budget cut by an additional 3.77 percentage points - equivalent to about $\$ 4.5$ billion in monetary terms (st. error $=$ $1.240, \mathrm{p}$-value $=.002$). A comparison of the maximum opinion spread produced by image variation (that is, the difference between the largest and the smallest treatment coefficients) and the smallest effect exerted by news exposure (that is, the smallest coefficient in absolute value) provides an indication of the effect of visual partisanship relative to the more general effect of news previews. The rationale is the following: as all treatment branches display the same text content, all coefficients capture the effect of exposure to the constant elements (headline, summary, byline, etc.). Given this, any difference in opinion across treatment branches identifies the

[^13]TABLE (II)
Impact of Leading Images On News-Readers' Opinion

Dependent variable:	(1)	(2)	(3)	(4)	(5)
	Opinion on "Defund Police"	Opinion on "Iran deal"	Opinion on "Inflation"	Opinion on "Covid measures"	Opinion on "Juneteenth"
	$\begin{gathered} \text { (Budget cut } \\ \text { in }-100+100 \text {) } \end{gathered}$	(Confidence, in $-50+50$)	(Confidence, in $-50+50$)	$\begin{gathered} \text { (Blame } \\ \text { in }-50+50) \end{gathered}$	(Policy support, in $-50+50$)
Neutral images (N)	$\begin{aligned} & -0.594 \\ & (0.745) \end{aligned}$	$\begin{aligned} & -0.421 \\ & (0.692) \end{aligned}$	$\begin{gathered} 1.084 \\ (0.414) \end{gathered}$	$\begin{aligned} & -7.260 \\ & (0.223) \end{aligned}$	$\begin{gathered} 8.687 \\ (0.457) \end{gathered}$
Democrat images (D-N)	$\begin{gathered} 1.376 \\ (1.097) \\ {[0.210]} \end{gathered}$	-0.283 (0.987) [0.775]	$\begin{gathered} -0.548 \\ (1.071) \\ {[0.609]} \end{gathered}$	$\begin{gathered} 1.364 \\ (1.291) \\ {[0.291]} \end{gathered}$	$\begin{gathered} -0.495 \\ (0.836) \\ {[0.554]} \end{gathered}$
Republican images (R-N)	$\begin{aligned} & -2.394 \\ & (1.309) \\ & {[0.068]} \end{aligned}$	$\begin{aligned} & -2.329 \\ & (0.898) \\ & {[0.010]} \end{aligned}$	$\begin{aligned} & -2.941 \\ & (1.118) \\ & {[0.009]} \end{aligned}$	$\begin{aligned} & -0.903 \\ & (1.352) \\ & {[0.505]} \end{aligned}$	$\begin{gathered} -0.229 \\ (0.830) \\ {[0.782]} \end{gathered}$
Democrat-Republican (D-R)	$\begin{gathered} 3.771 \\ (1.240) \\ {[0.002]} \end{gathered}$	2.047 (0.910) [0.025]	$\begin{gathered} 2.392 \\ (1.161) \\ {[0.039]} \end{gathered}$	$\begin{gathered} 2.267 \\ (1.366) \\ {[0.097]} \end{gathered}$	$\begin{aligned} & -0.266 \\ & (0.840) \\ & {[0.751]} \end{aligned}$
Observations	1565	1599	1615	1584	1542
Controls:	Y	Y	Y	Y	Y

Notes: The Table presents OLS estimates of the effect of the Democrat-leaning (D), neutral (N), and Republican-leaning (R) news-leading images on respondents' opinion after exposure to the news. Column headers indicate the relevant news issue. The dependent variable for the "Defund Police" issue ranges in $[-100,+100]$, while all others range in $[-50+50]$. Dependent variables are adjusted so that the maximum value corresponds to Democrats' ideological position (thus, positive coefficients indicate a pro-Democratic opinion, and vice versa). In the Table, round parentheses present robust standard errors and square brackets contain the p-values for two-sided tests of equality between coefficients (tested pairs are noted on the left). Treatment-independent controls are indicators for: 4 age groups, ethnicity (White, Black, Latinx, Asian, Native American), literacy, political opinion (liberal-conservative), level of interest for politics, party preference, previous knowledge on the issue, perceived salience of the issue, opinion on the issue prior to treatment exposure, main type of information outlet (Radio, TV, Social networks, Newspapers), frequency of use for 6 media outlets (Fox News, Breitbart, New York Post, MSNBC, New York Times, CNN), technical aspects of the survey filling (indicator for low screen resolution, total number of clicks in the survey introduction), and State of residence fixed effects.
additional effect that image partisanship can exert on top of the overall effect of news previews ${ }^{29}$ In this first news issue, image variation can increase the desired Police budget cuts by up to 3.77 percentage points, (from a minimum of -2.39 to a maximum of 1.37), that is more than 6 times the increase produced from overall exposure to news previews (amounting to .54 percentage points, as indicated by the smallest coefficient in absolute value, that of the Neutral treatment) ${ }^{30}$

Iran deal. For this issue, the dependent variable is the answer to the question: "From 0 to 100, in your opinion what is the probability for Biden to succeed in reviving the 2015 nuclear deal with Iran?". The answers to this question have been adapted to range in $-50+50$ and the coefficients can once again be interpreted as deviation from the indifference position (0). All the coefficients are negative, indicating that after the exposure to the news piece all respondents perceive the deal success as less likely. However, compared to respondents exposed to Republican-leaning leading images, those exposed to Democratic-leaning images judge the deal success as significantly more likely, with a margin of 2.05 percentage points (st. error $=.910$, p-value $=.025$). Similarly,

[^14]respondents' exposed to neutral images report a higher perceived likelihood of the deal success (with a margin of 2.33 percentage points, estimated with st. error $=.898$ and p -value $=.010$).

Using the criterion above mentioned, namely comparing the coefficient range to the smallest treatment coefficient in absolute value, I conclude that while the deal news always produce a loss in confidence of Biden's success, the variation in the news leading images can exacerbate such an effect, producing an additional confidence loss 5.54 times as big 31

Inflation. For this issue, the dependent variable is the answer to the question: "From 0 to 100, in your opinion what is the probability of inflation returning to pre-pandemic levels by July 2022?". Once again, the answers to this question have been adapted to range in $-50+50$, and coefficients represent deviation from an indifference stance. Compared to respondents exposed to Republican-leaning images, those who see Democratic-leaning images report a higher perceived likelihood of Biden's success, with a 2.39 percentage points difference (st. error $=1.161$, p-value $=.039)$; the smallest effect is obtained by news exposure with Democrat-leaning images, with a .54 p.p. coefficient. Hence, the variation in images attains about 4.4 times the opinion change of the news preview overall.

Covid measures. For this issue, the dependent variable is the answer to the question: "From 0 to 100, how much do you approve of the pandemic handling by public health experts in March last year?". Also in this case the answers have been adapted to range in $-50+50$, and coefficients represent deviation from the indifferent opinion. Moreover, to ease the comparison with the other issues, a value of 50 marks Democrats' ideological pole (i.e. the strongest blame for the pandemic handling).

Compared to Republican-leaning leading images, Democratic-leaning ones increase (i.e. decrease by less) the dissatisfaction for the pandemic management, with a 2.27 percentage points gap (st. error $=1.366, \mathrm{p}$-value $=$.097). As above, I compare the coefficients' range to the smallest treatment coefficient (-5.89); image variation produces an additional approval increase of more than a third the increase from overall exposure to the news ($+38 \%$).

Juneteenth. For this issue, the dependent variable is the answer to the question "From 0 to 100, how much do you support the creation of a new federal holiday for Juneteenth?". Again, the answers have been adapted to range in $-50+50$. For this issue however treatments lead to negligible differences and imprecise estimates: the opinion margin between Republican-leaning and Democratic-leaning images amounts to .266 percentage points, and the effect is statistically indistinguishable from 0 (st. error $=.840$, p-value .751).

Overall, the results in Table II indicate that leading images have a non-negligible impact on news readers' opinion. Pictures distinctive of Democrats/Republican news outlets pull the audience towards their respective parties' ideological poles. These results indicate that the visual partisanship above documented effectively favors outlets' preferred political factions, and in so doing it translates to a proper "visual bias", another tangible expression of political bias in the media.

Moreover, when images produce a significant impact on opinion, its magnitude ranges between 38% and 634% of the overall effect from exposure to news previews; in 3 of the 4 precisely estimated impacts, the "slanting

[^15]effect" of pictures dominates that of other elements of the news previews, and notably of written content ${ }^{32}$ One implication of these findings is that a news piece rated as "non partisan" through a text-based analysis could still exert a partisan influence on readers. Hence, any measure of political bias in written news shall take into account the eventual proximity of text and images, and interpret them jointly.

Another pattern highlighted by the results in Table II concerns the decrease of the effect of images relative to text in the distance between parties' ideological positions. As above mentioned, parties' stances are most similar for the "Defund police" issue, and least similar for the "Juneteenth" issue ${ }^{33}$ The effect of images relative to text shrinks for two reasons: first, due to a decrease in the numerator (i.e. the maximum distance across treatment branches, which becomes smaller across columns from left to right); second, and more evidently, due to an increase in the denominator (the smallest coefficient in absolute value, which in the last column is more than 15 times bigger than in the first). Independently of the images leading the news, readers seem to react more to news previews covering issues for which the ideological positions across parties are more distinct. These patterns are suggestive but should not be taken as conclusive evidence: a formal assessment of such relationships would require testing a large number of issues, hence falls outside the scope of the present work.

III. C Does visual partisanship cause opinion polarization?

I test whether the exposure to partisan images causes polarization to increase in the general public. As preregistered, I study the heterogeneity of the treatment effects along respondents' political affiliation (Republicans, Democratic or Independents), examining the extent of opinion polarization within-party and between-parties.

I find that the polarizing effect of partisan images across parties dominates the polarizing effect within each party. While Republicans and Democrats hold significantly different opinions already ex ante, their exposure to partisan aligned leading images further exacerbates the opinion gap, increasing overall polarization.

III.C. 1 Polarization within-party

Within-party polarization occurs if the exposure to different leading images brings members of the same group apart. Figures VI and VII show the heterogeneous impact of leading images on individuals from different political affiliations separately for the Defund Police, Covid measures, Iran deal, and Inflation news issues ${ }^{34}$ The equality tests on top of each panel compare the treatment coefficients within the same party (e.g. whether Dem-leaning and Rep-leaning images have the same effect on Democrats); the p-values therefore measure the within-group polarization induced by visual bias for a given news issue. The equality tests at the bottom of each Figure instead compare the effect of exposure to the same leading image across different parties (e.g. whether Dem-leading images have the same effect on Democrats and on Republicans); the corresponding p-values indicate the extent to which one's party affiliation affects the impact of leading images ${ }^{35}$

The symmetry of treatment effects in all political groups is apparent already at a first glance: for a given news issue, the rank of coefficients for Republican-leaning, neutral, and Democrat- leaning images is nearly

[^16]
(a) News issue: Defund Police

(b) News issue: Covid Measures

FIGURE (VI)

Heterogeneous effects of images on opinion, by respondents' political party affiliation

Notes: The Figure shows OLS estimates of opinion changes after news exposure (news issues indicated below each panel). Treatments are interacted with respondent's party affiliation. Omitted regression category: Republicans exposed to Rep-leaning images. Lines indicate 95% CI (heteroskedasticity-robust st. errors). Equality tests on top of each Figure compare coefficients within each party; those at the bottom compare coefficients across parties (tested coefficients indicated in parentheses). All p-values are for two-sided tests of equality, with bold font marking statistical significance at 10 percent level or higher.

(a) News issue: Nuclear deal with Iran

(b) News issue: Inflation

FIGURE (VII)
Heterogeneous effects of images on opinion, by respondents' political party affiliation

Notes: The Figure shows OLS estimates of opinion changes after news exposure (news issues indicated below each panel). Treatments are interacted with respondent's party affiliation. Omitted regression category: Republicans exposed to Rep-leaning images. Lines indicate 95% CI (heteroskedasticity-robust st. errors). Equality tests on top of each Figure compare coefficients within each party; those at the bottom compare coefficients across parties (tested coefficients indicated in parentheses). All p-values are for two-sided tests of equality, with bold font marking statistical significance at 10 percent level or higher.
constant, suggesting the "direction" of each image slant is universal (i.e. individuals with opposite prior do not react in opposite ways to a given image). Vice versa, the relative distances among the three treatment coefficients varies with the political party, indicating that the effect of an image interacts with readers' prior. For Democrats, partisan and non-partisan images never have statistically distinguishable effects, with the exception of the difference between Republican-leaning and neutral images leading the news on Iran (p-value: 0.065). For Independents (that is all individuals not affiliated to either Democrats or Republicans), the only significant difference is once again between Republican-leaning and neutral images leading the news on Iran (p-value: 0.011). Among Republicans, the effect of Republican-leaning vs. Democrat leaning images differs for news on police funding (p-value: 0.002) and on inflation (p-value: 0.061); similarly, the effect of Republican-leaning images differs from that of neutral images for police funding (p -value: 0.016) and inflation news (p -value: 0.050).

Does the exposure to the same partisan image produce equal effect on members of the Democratic and Republican party? On the one hand, the coefficient for Democrats exposed to Rep-leaning images is always statistically different from the coefficient for Republicans exposed to the same images (see the third coefficient from the left, marked by a red line, in each Figure). The equality between coefficients is rejected with confidence $<90 \%$ in all the four news issues. On the other hand, the equality of effects for Democrats and Republicans exposed to Dem-leaning images is rejected with $<90 \%$ confidence in two of the four news issues, as indicated by the tests at the bottom of Figures VI and VII (test label: $\mathrm{D}^{*} \mathrm{D}=\mathrm{D}^{*} \mathrm{R}$; p-values: 0.004 for Covid measures; 0.098 for Iran deal) Similarly, the equality test comparing Democrats and Republicans exposed to neutral images (test label: $D^{*} N=N^{*} R$) rejects the equality in the same two issues (p-values: 0.037 for Covid measures; 0.003 for Iran deal).

Overall, partisan images increase polarization within the Republican party more than within other parties. In general, Democrats and Republicans tend to react differently to the same pictures. However, part of their opinion gap accrues to their different political stances and it is independent of the image partisanship (it persist across all images). In the following section I explore how the effect of partisan images interacts with readers' political stance by widening or closing the opinion divide.

III.C. 2 Polarization across parties

The equality tests at the bottom of Figures VI, and VII indicate that part of the opinion gap across parties is, as above mentioned, unrelated to which images lead the news. However, the Figures also show that when Republicans (Democrats) hold the highest opinion on a given issue, Republican- (Democrat-) leaning images are also the ones that increase the opinion the most (the same is true with the opposite sign). This reinforcing effect has an important implication: the -always opposite- slants of Dem-leaning and Rep-leaning images, albeit mildly significant within each party, become significant if added up; that is, if readers are selectively exposed to partisan images aligned with their party's viewpoint (hereinafter: "partisan aligned images").

The polarizing effects of partisan aligned images are verified by testing the equality between the maximum and minimum opinion distance images can instil between Democrats and Republicans. Formally, this amounts to testing whether the distance between Democrats and Republicans exposed to aligned images is greater than the

[^17]distance between the same groups exposed to images that do not reinforce their prior ${ }^{37}$ If members of different parties had homogeneous reactions to the partisan images, the tested quantities would be equal. Appendix Table A.2.8 reports the p-values of the corresponding one sided-tests (lower Panel, first line), showing that the null hypothesis is rejected in all four issues.

This indicates that whenever images affect the opinion, the direction and the magnitude of the effects are such that the selective exposure to aligned images relative to opposite images causes polarization to increase significantly. In the presence of "information echo chambers" (readers' tendency to source news from likeminded outlets), these results imply that visual bias materially translates to a significantly more polarized public opinion.

To summarize, one could argue the causal effect of visual bias on public opinion polarization has three mutually reinforcing components: first, as documented in previous literature, readers' tendency to source news from like-minded outlets; second, the news visual bias, whereby news sources predominantly use images that pull readers towards their ideological position; third, the interaction between the slanting effect of images and readers' prior, with readers on both sides of the political spectrum reacting more distinctly to pictures that are more aligned with their viewpoint.

III.C. 3 Which implications?

A large literature documents that recently -and in particular during the first months of the Covid-19 pandemicpartisan divisions significantly shaped health behavior, support to specific policies, attributions of responsibility, and general beliefs (e.g., Allcott et al., 2020a, 2020b; Druckman et al., 2020; Gadarian, Goodman, and Pepinsky, 2021; Gollwitzer et al., 2020; Romer and Jamieson, 2020. There is additional evidence suggesting that issue polarization is rising (see e.g. Doherty, Kiley, and Asheer, 2019), to which the present paper adds by demonstrating the causal effect of news visual bias in this direction.

Given that partisan aligned images significantly polarize public opinion, a natural question is whether the opinion gap across parties could be made to shrink. From a theoretical standpoint the most effective option should be to selectively expose readers to leading images contrary to their prior (hereinafter: opposite partisan images) ${ }^{38}$ The hypothesis of a gap closure in this way can be verified by testing the equality between the post-news exposure opinion of Republicans and Democrats exposed to opposite partisan images. The p-values for this (two-sided) test of equality are displayed at the bottom of Table A.2.8 in the second line of tests. The tests fails to reject the equality in all issues, hence providing suggestive but inconclusive evidence. Note that, overall, the partisan divide shrinks: exposure to opposite partisan images produces a smaller gap than that from exposure to aligned partisan ones (see the first line of one-sided tests in Table A.2.8).

From the perspective of a regulator aiming to limit the polarization accruing to visual bias, a more viable initiative would be to promote an extensive use of non-partisan (neutral) images by news sources on both sides of the political spectrum. The data suggest that such alternative could indeed be effective in reducing the potential partisan divide accruing to visual bias (not that stemming from political ideology): the Table coefficients indicate that neutral images in most cases produce a smaller opinion gap compared to partisan

[^18]aligned-images, which is corroborated by the third line of tests at the Table bottom (reporting the palues for (one-sided) tests of the null hypothesis that neutral images produce a larger gap than partisan-aligned ones).

III.D Underlying Mechanisms: When Does Visual Bias Bite?

This last Section explores the mechanisms underlying the effect of images on opinion. I study three possibly moderating factors: the ex-ante opinion held on the issue (readers' prior on the news issue), the perceived issue salience, and the respondents' self-reported prior knowledge on the issue.

In general, respondents who ex-ante hold more extreme opinions (in either direction) appear more receptive to leading images compared to respondents who hold more intermediate opinions. Neither issue salience nor prior knowledge on the issue appear to be strong predictors of respondent' sensibility to the images leading the news, and no neat patterns arise.

III.D. 1 Images and ex-ante opinion

Do images exert a different effect on readers who previously expressed intermediate or extreme opinions? To respond, I explore the heterogeneity of treatment effects across terciles of respondents' prior opinion on each issue. Overall, the results show that respondents who ex-ante hold more intermediate opinions are less affected by leading images, compared to respondents who belong to the first/third terciles. There are no other cross-issue systematic patterns between the level of prior opinion and the magnitude of treatment effects.

Appendix Table A.2.9 reports the estimates from an OLS regression of the respondents' updated opinion on treatments interacted with terciles of prior opinion distribution, and Figure A.2.7 displays coefficients plots and equality tests. The following paragraphs discuss the heterogeneity of treatment effect separately for each news issue.

Police funding. For this issue, respondents who ex ante chose the lowest police budget update their response by further lowering the budget. Within this group, those who were exposed to Dem-leaning images chose an even lower budget than both those exposed to Rep-leaning images $(\mathrm{p}=0.067)$ and those exposed to neutral images $(\mathrm{p}=0.015){ }^{39}$ Respondents in the intermediate tercile of prior opinion, who expressed the mildest variations to the Police budget (in either direction), do not react differently to treatments. Finally, respondents who ex-ante were choosing the highest Police funding reduce the budget significantly more if exposed to news with Dem-leaning images as opposed to Rep-leaning ones (p -value $=0.036$), and even more so if exposed to neutral images as opposed to Rep-leaning ones (p -value $=0.006$).

Covid measures. For this issue, Rep-leaning and Dem-leaning images exert statistically different effects only among respondents who ex ante express the lowest judgement on the adequacy of anti-covid measures implemented in March 2020. Among those, people exposed to Republican-leaning images have a significantly more positive opinion on the Government's measures (p -value $=0.034$) than individuals exposed to Democratleaning images. In the same group of respondents, there is no significant difference between those exposed to neutral images and the others. No differences across treatment branches exist in the middle and higher terciles of prior opinion.

Iran deal. Respondents who ex ante express the lowest belief in the success of a US-Iran nuclear deal decrease

[^19]their judgement on the likelihood of success significantly more if exposed to Republican-leaning images than if exposed to either neutral images $(p$-value $=0.007)$ or Dem-leaning images (p -value $=0.086$). In the intermediate tercile of prior opinion there is a difference between Rep-leaning and Dem-leaning images (p -value $=0.043$), and no other difference across treatment branches. Once again, no differences across treatment branches exist in the higher tercile of prior opinion.
Inflation. Respondents who ex ante express the highest belief in the regress of inflation by June 2022 exhibit the largest upward opinion update if exposed to neutral images as opposed to Rep-leaning ones (p -value $=$ 0.018). Otherwise, there are no other significant differences across treatment branches ineither of the terciles of prior opinion.

III.D. 2 Images and issue salience

Does the effect of images depend on how relevant is the news issue to the individual respondent? I investigate the relationship between issue salience and treatments by interacting the treatment indicators with the distribution terciles of perceived issue salience. Overall, respondents in the lowest and highest tercile of the perceived issue salience appear mildly more susceptible to the effect of leading images, relative to the respondents in the intermediate tercile. However, the evidence does not suggest issue salience be a strong predictor of respondent' sensibility to the images leading the news.

Appendix Table A.2.10 reports the estimates from an OLS regression of the respondents' updated opinion on these interaction terms, and Figure A.2.8 displays coefficients plots and equality tests. The following paragraphs discuss the heterogeneity of treatment effect separately for each news issue.

Police funding. Respondents who are in the lowest tercile for perceived relevance of the police funding issue update their response by lowering the budget comparatively more if exposed to Dem-leaning images than to neutral images, albeit the difference is only modestly significant (p -value $=0.099$). Respondents who perceive the issue as more relevant to them (i.e. those in the highest tercile of perceived issue salience) decrease the desired police budget by comparatively more if exposed to Dem-leaning images as opposed to Rep-leaning images $(p$-value $=0.013)$. No other significant differences exists across treatment branches in either groups. Similarly, individuals in the intermediate salience tercile do not exhibit significantly different opinion updates across any of the treatment branches.

Covid measures. For this issue, none of the terciles of issue salience display significant differences in the effects across treatment branches.
Iran deal. Rep-leaning images and neutral images have significantly different effects both in the first and in the third salience tercile, with Republican-leaning images producing a relatively lower perceived likelihood of success of a US-Iran nuclear deal (p -values $=0.057$ in the lowest salience group, and 0.070 in the highest salience group). No significant effect exist between these two treatment branches in the intermediate tercile; in this group, instead, the effect of Republican-leaning and Democrat-leaning images is significantly different, with the latter eliciting a higher perceived likelihood of success of the deal (p -value $=0.044$).
Inflation. For this issue, respondents in the highest salience tercile display a significantly different response to Republican-leaning and neutral images. In fact, the latter induce a relatively higher perceived likelihood of inflation to return to pre-pandemic levels by June 2022 (p -value $=0.076$). No other statistically significant
differences exist across treatment branches in any of the salience terciles.

III.D. 3 Images and opinion development

Does the effect of images depend on news readers' stage of opinion development? Does it depend on the knowledge about the issue? I explore whether the effect of images varies between respondents whose prior knowledge and opinion are more vs. less consolidated. Those are directly measured with a question before treatment takes place. While no neat patterns arise, image variation appears to affect highly knowledgeable respondents more often that the others (3 news issues displaying significant differences across branches, vs. 1 news issue for least knowledgeable respondents). The evidence is however merely suggestive, and cannot be considered as conclusive proof of prior issue knowledge being a determinant factor in the effect of images.

Appendix Table A.2.11 reports the estimates from an OLS regression of the respondents' updated opinion interacted with high and low levels of prior knowledge on the news issue, and Figure A.2.9 displays coefficients plots and equality tests. The following paragraphs discuss the heterogeneity of treatment effect separately for each news issue.

Police funding. Respondents who consider themselves not very knowledgeable about the issue do not update their response differently across the treatment branches. Vice versa, respondents who consider themselves highly knowledgeable about the issue update their response by lowering the desired Police budget comparatively more if exposed to Dem-leaning images than to Rep-leaning images (p -value $=0.006$), and if exposed to neutral images than to Rep-leaning ones (p -value $=0.073$). The effect of any image type never differs between the least and the most knowledgeable respondents (tests at the bottom of panels of Figure A.2.9).

Covid measures. For this issue, neither the most knowledgeable nor the least knowledgeable respondents' update their response differently across the treatment branches. Moreover, the effect of any image type never differs between the least and the most knowledgeable respondents.
Iran deal. Respondents who consider themselves not very knowledgeable about the issue update their response by increasing the perceived likelihood of success of a US-Iran deal relatively more if exposed to neutral images than to Rep-leaning images $(p-v a l u e=0.049)$. Vice versa, respondents who consider themselves highly aware about the US-Iran deal update their response by increasing the perceived likelihood of success comparatively more if exposed to Dem-leaning images than to Rep-leaning images (p-value $=0.053$). No other significant differences exist among treatment coefficients within either knowledge groups. Moreover, the effect of an image never differs between the least and the most knowledgeable respondents.

Inflation. Respondents who consider themselves not very knowledgeable about the issue do not update their response differently across the treatment branches. Vice versa, respondents who consider themselves knowledgeable about the issue update their response by increasing the perceived likelihood of inflation to return to pre-pandemic levels by June 2022 comparatively more if exposed to neutral images than to Rep-leaning images $(\mathrm{p}$-value $=0.054)$. No other significant differences exist among treatment coefficients within either knowledge groups. Moreover, the effect Democrat-leaning images is mildly different between the least and the most knowledgeable respondents, with a slightly smaller positive effect in the latter group $(\mathrm{p}=0.092)$.

III.E Limits of Inference from the Experiment: Within and Beyond

This Subsection discusses the limits of inference from the experiment, summarising the conclusions that can be drawn and the patterns that remain as speculation, hinting at future studies.

The main experimental results demonstrate that images can have a significant effect on opinion and that such effect directly causes higher polarization in the general public. The estimates cannot however be generalized to represent "the average effect of partisan images": in fact, it is possible that different images or news issues lead to higher/lower estimates. In this sense, the estimates should not be interpreted as universal measure of the effect of leading images, but rather as evidence demonstrating that such impact exist and is non-negligible. Future research is needed to explore the sensitivity of the estimates to variation of different news elements, including: graphic rendering (testing different formats of online news previews), news topics, or political slant in text.

The experiment also finds that in 3 out of the 4 news issues in which leading images had a significant impact, the opinion variation accruing to images was larger than the general effect of news previews, including the (politically neutral) text elements. This proves that images can be more relevant than text in affecting the opinion of online-news readers. It also demonstrates that newscasts can bypass text-based fact checking and still slant readers' opinion. It would be factually incorrect however to generalize the result and conclude, for instance, that pictures dominate text in 75% of cases. The experiment measured the opinion of a large sample of individuals on a limited number of news issues (5): hence, any pattern arising from comparisons across issues offers, at best, suggestive evidence. Further research is needed to test simultaneously several issues and allow solid inference across news pieces.

IV CONCLUSION

This study shows that news media exploit the leading images in written news pieces to exert a political influence on readers. The first Section of this paper quantifies the extent of visual partisanship in US news, finding a high degree of polarization in the visual narratives adopted by news sources across the political spectrum. The second Section of the paper tests for the direct effect of visually-partisan images on public opinion. It finds that partisan visual narratives slant readers' opinion towards the outlets' ideological poles, hence that visual partisanship is an expression of political media bias. The experimental results also show that news visual bias has a positive causal effect on issue polarization, as the slanting effect of images interacts with news readers' priors: readers on both sides of the political spectrum react more distinctly to pictures aligned with their viewpoint. This pattern implies that the polarizing effect of visual bias is further exacerbated if readers' source their news exclusively from like-minded outlets.

European University Institute

References

Abele, A. E., N. Hauke, K. Peters, E. Louvet, A. Szymkow, and Y. Duan (2016). "Facets of the fundamental content dimensions: Agency with competence and assertivenessfffdfffdfffdCommunion with warmth and morality". Frontiers in psychology 7, 1810.

Allcott, H., L. Boxell, J. C. Conway, B. A. Ferguson, M. Gentzkow, and B. Goldman (2020a). What explains temporal and geographic variation in the early US coronavirus pandemic? Tech. rep. National Bureau of Economic Research.

Allcott, H., L. Boxell, J. Conway, M. Gentzkow, M. Thaler, and D. Yang (2020b). "Polarization and public health: Partisan differences in social distancing during the coronavirus pandemic". Journal of Public Economics 191, 104254.

Bailenson, J. N., S. Iyengar, N. Yee, and N. A. Collins (2008). "Facial similarity between voters and candidates causes influence". Public opinion quarterly 72.5, 935-961.

Bowden, M. (2015). Winning body language: Control the conversation, command attention, and convey the right message without saying a word.

Boxell, L. (2021). "Slanted images: Measuring nonverbal media bias during the 2016 election". Political Science Research and Methods.
Cassidy, M. F. (1982). "Toward integration: Education, instructional technology, and semiotics". ECTJ 30.2, 75-89.

Cassirer, E. (1944). "An Essay on Man (New Haven and London)". Yale University.
Dari, S., N. Kadrileev, and E. Hullermeier (2020). "A Neural Network-Based Driver Gaze Classification System with Vehicle Signals", 1-7.

De Vreese, C. H. (2004). "The effects of frames in political television news on issue interpretation and frame salience". Journalism \S Mass Communication Quarterly 81.1, 36-52.

DellaVigna, S. and M. Gentzkow (2010). "Persuasion: empirical evidence". Annu. Rev. Econ. 2.1, 643-669.
Demszky, D., N. Garg, R. Voigt, J. Zou, M. Gentzkow, J. Shapiro, and D. Jurafsky (2019). "Analyzing polarization in social media: Method and application to tweets on 21 mass shootings". arXiv preprint arXiv:1904.01596.

Doherty, C., J. Kiley, and N. Asheer (2019). "Partisan antipathy: More intense, more personal". Pew Research Center.

Druckman, J. N., S. Klar, Y. Krupnikov, M. Levendusky, and J. B. Ryan (2020). "How affective polarization shapes Americans' political beliefs: A study of response to the COVID-19 pandemic". Journal of Experimental Political Science, 1-12.

Eco, U. (1979). A theory of semiotics. Vol. 217. Indiana University Press.
Ekman, P. (2009). Telling lies: Clues to deceit in the marketplace, politics, and marriage (revised edition). WW Norton \& Company.

Furnham, A. and E. Petrova (2010). Body language in business: Decoding the signals. Palgrave Macmillan.
Gabielkov, M., A. Ramachandran, A. Chaintreau, and A. Legout (2016). "Social clicks: What and who gets read on Twitter?" In: Proceedings of the 2016 ACM SIGMETRICS international conference on measurement and modeling of computer science, 179-192.
Gadarian, S. K., S. W. Goodman, and T. B. Pepinsky (2021). "Partisanship, health behavior, and policy attitudes in the early stages of the COVID-19 pandemic". Plos one 16.4, e0249596.

Gawronski, B. and B. K. Payne (2011). Handbook of implicit social cognition: Measurement, theory, and applications. Guilford Press.
Gentzkow, M., B. Kelly, and M. Taddy (2019). "Text as data". Journal of Economic Literature 57.3, 535-74.
Gentzkow, M. and J. M. Shapiro (2010). "What drives media slant? Evidence from US daily newspapers". Econometrica 78.1, 35-71.

- (2011). "Ideological segregation online and offline". The Quarterly Journal of Economics 126.4, 1799-1839.

Gentzkow, M., J. M. Shapiro, and M. Taddy (2019). "Measuring group differences in high-dimensional choices: method and application to congressional speech". Econometrica 87.4, 1307-1340.

Gollwitzer, A., C. Martel, W. J. Brady, P. Pärnamets, I. G. Freedman, E. D. Knowles, and J. J. Van Bavel (2020). "Partisan differences in physical distancing are linked to health outcomes during the COVID-19 pandemic". Nature human behaviour 4.11, 1186-1197.
Grabe, M. E. and E. P. Bucy (2009). Image bite politics: News and the visual framing of elections. Oxford University Press.
Greene, S. and P. Resnik (2009). "More than words: Syntactic packaging and implicit sentiment". In: Proceedings of human language technologies: The 2009 annual conference of the north american chapter of the association for computational linguistics, 503-511.
Groseclose, T. and J. Milyo (2005). "A measure of media bias". The Quarterly Journal of Economics 120.4, 1191-1237.
Haim, M. and M. Jungblut (2021). "Politicians' self-depiction and their news portrayal: Evidence from 28 countries using visual computational analysis". Political Communication 38.1-2, 55-74.
Hołowka, T. (1981). "On conventionality of signs".
Imbens, G. W. and D. B. Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.

Jha, S. and C. Busso (2020). "Estimation of Driver's Gaze Region from Head Position and Orientation using Probabilistic Confidence Regions". arXiv preprint arXiv:2012.12754.
Knowlton, J. Q. (1964). "A socio-and psycho-linguistic theory of pictorial communication."

- (1966). "On the definition of "picture"". AV communication review 14.2, 157-183.

Koliska, M. and K. Oh (2021). "Guided by the Grid: Raising Attention with the Rule of Thirds". Journalism Practice, 1-20.
Langer, S. K. (2009). Philosophy in a new key: A study in the symbolism of reason, rite, and art. Harvard University Press.
Lee, J., M. Muñoz, L. Fridman, T. Victor, B. Reimer, and B. Mehler (2018). "Investigating the correspondence between driver head position and glance location". PeerJ Computer Science 4, e146.

Lewis, J. B., K. Poole, H. Rosenthal, A. Boche, A. Rudkin, and L. Sonnet (2021). "Voteview: Congressional Roll-Call Votes Database". See https://voteview.com/.
Long, J. S. and L. H. Ervin (2000). "Using heteroscedasticity consistent standard errors in the linear regression model". The American Statistician 54.3, 217-224.

Lunenburg, F. C. (2010). "Louder than words: The hidden power of nonverbal communication in the workplace". International Journal of Scholarly Academic Intellectual Diversity 12.1, 1-5.

McCombs, M. and A. Reynolds (2009). "How the news shapes our civic agenda". In: Media effects. Routledge, 17-32.

Morris, C. (1946). "Signs, language and behavior."
Parks, D., A. Borji, and L. Itti (2015). "Augmented saliency model using automatic 3d head pose detection and learned gaze following in natural scenes". Vision research 116, 113-126.

Peirce, C. S. (1931). "Collected Papers, Cambridge". Harvard University Press 1958.2, 643.
Peng, Y. (2018). "Same candidates, different faces: Uncovering media bias in visual portrayals of presidential candidates with computer vision". Journal of Communication 68.5, 920-941.

Poole, K. T. and H. Rosenthal (1985). "A spatial model for legislative roll call analysis". American journal of political science, 357-384.
Prat, A. (2018). "Media power". Journal of Political Economy 126.4, 1747-1783.
Prat, A. and D. Strömberg (2013). "The political economy of mass media". Advances in economics and econometrics 2, 135.

Prior, M. (2013). "Media and political polarization". Annual Review of Political Science 16, 101-127.
Recasens, M., C. Danescu-Niculescu-Mizil, and D. Jurafsky (2013). "Linguistic models for analyzing and detecting biased language". In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1650-1659.
Romer, D. and K. H. Jamieson (2020). "Conspiracy theories as barriers to controlling the spread of COVID-19 in the US". Social science E° medicine $263,113356$.

Sebeok, T. A. (1985). Contributions to the Doctrine of Signs. University Press of America.
Shearer, E. (2021). "More than eight-in-ten Americans get news from digital devices". Pew Research Center 12.
Strömberg, D. (2015). "Media and politics". economics 7.1, 173-205.
Sutherland, C. A., J. A. Oldmeadow, I. M. Santos, J. Towler, D. M. Burt, and A. W. Young (2013). "Social inferences from faces: Ambient images generate a three-dimensional model". Cognition 127.1, 105-118.

Veltrusky, J. (1976). "Some aspects of the pictorial sign". Semiotics of Art. Ladislav.
Walters, S. B. (2011). Principles of kinesic interview and interrogation. Boca Raton, FL: CRC Press.
Yano, T., P. Resnik, and N. A. Smith (2010). "Shedding (a thousand points of) light on biased language". In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk, 152-158.

A. 1 Appendix 1 (for the Analysis of Visual Partisanship)

A.1.1 Establishing gaze regions in pictures

This section describes the details of the methods used to determine the gaze regions of the subjects in a picture. Given two subjects in a picture, A and B, I determine subject A's "gaze region", and measure whether B falls in that gaze region; if so, then I consider B as seen by A . I use this measure to construct the triggered emotionality measure described in the main text. The raw data from Microsoft's API include the measurement
of the following head poses: pitch (ie. whether the chin is up or down), yaw (i.e. the horizontal rotation of the head, towards the left or the right), and roll (i.e. the head's inclination to the sides, namely bringing the ear closer to the shoulder).
First, I determine an area of the picture that is "compatible" with an individual's gaze region, that is, points in the picture that are possibly seen by the individual. I approximate this region through the information on the head's yaw and pitch. The accurate determination of a subject's gaze region in a 2 -dimensional picture presents two main challenges. First, the head's position is expressed in degrees (yaw, pitch, roll), and the conversion of an angle to a length requires knowledge of the distance between the viewer and an object. In fact, the sight region flattened in a 2-dimensional space appears as a triangle whose base (i.e. the side most distant from the viewer) is proportional to the triangle's "height" (namely, the distance between viewer and object). This implies that for a given angle of a visual region, its section is wider the furthest is the observer. Actual distances between subjects in a picture can hardly be measured ${ }^{40}$ and are thus often approximated. Another problem originates in the fact that the sight angle γ between A and B can result from multiple combinations of A's yaw and pitch, as we ignore the distance between subject and cannot exactly determine the relative contributions of a head's pitch and yaw in producing γ. To illustrate, imagine a viewer in the center of the picture and consider the picture's bottom-left corner: such point could be visible both if the person had yaw $=-90$ (i.e. her head was completely turned to the right) and pitch <0 (i.e. looking downward), and if the person had pitch=0 (gaze at own eyes' level) and head turned more toward the camera (e.g. yaw 45). In particular, the more distant the person from the camera, the closer to 0 could be her head's yaw while maintaining sight of the point at the bottom-left corner of the picture. The ambiguity is once again due to the lack of knowledge of distances between subjects, and the flattening of the scene on a 2-dimensional surface.

To work around the difficulty, I determine each person's "plausible" sight region using rather ample criteria, and then imposing further requirements to increase the precision. First, I consider a margin to the left and to the right of the head's yaw. Now, the eyes' main focus region is 30 degrees to each side, but 30 degrees is much less than the actual natural sight region as we also have 30 more degrees of near-peripheral area. Objects in this area would be more comfortably seen by turning the head more, however pictures often capture moments in which the individuals are reacting quickly to a visual stimulus, to which eyes naturally respond before head movements. Therefore, I take an intermediate length between the focus region and the near-peripheral region, and consider a margin of 45 degrees to each side of the yaw. Then, I consider the sign of the head's pitch, to pin down in which direction (upper or lower) to orient the area determined by the yaw.

For every observer (A) and other subject (B) in the picture, I consider B as falling within A's sight region if both of the folowing conditions are verified:

1. The angle γ generated by the line connecting A and B falls within a range around A's yaw equal to $3 * \sqrt{|y a w|}$.
2. The vertical distance between A and B (i.e the distance in coordinates $y_{b}-y_{a}$) and A's pitch have the

[^20]same sign. Formally, the product of the two shall be non-negative: this indicates that A's head vertical inclination (upwards or downwards) is in B's direction. Given that for sufficiently small vertical distances or for pitches close to 0 the product may happen to be negative even if B is visible to A, I include a tolerance level considering as 0 values between -15 and +15 for both vertical distance and pitch, so to obtain a vertical vision span of 30 degrees. I also set vertical distance to 0 any distance between -0.9 and +0.9 between Y_{a} and Y_{b}.

Using the head's yaw and pitch, I define a person's gaze-line as the vector originating from the eyes' midpoint and oriented in the direction indicated by the two head's poses. Having computed a person's gaze orientation through the head pose, one must however still confront with the difficult task of establishing the person's gaze region, to understand which elements of the picture "fall" in it and are therefore being "observed" by the subject. I approximate this area by simulating the human near-peripheral visual field, which spans about 60 degrees in the direction of the person's nose. I define the boundaries of the gaze region through two vectors originating from the eyes-midpoint and oriented $+/-30$ yaw degrees from the gaze-line ${ }^{41}$
Then, to determine whether a subject B is "seen" by a subject A, given the coordinates of their faces' centroids $\left(x_{a}, y_{a}\right)$ and $\left(x_{b}, y_{b}\right)$, I trace a right triangle with hypotenuse connecting $\left(x_{a}, y_{a}\right)$ and $\left(x_{b}, y_{b}\right)$, and legs $\left|y_{b}-y_{a}\right|$ and $\left|x_{b}-x_{a}\right|$, namely the vertical and horizontal distance between the centroids The angle defined by the hypotenuse and the side $\left|y_{b}-y_{a}\right|$ corresponds to the head yaw rotation that A would have if she was looking at B: if such angle falls within the boundaries of A's gaze region (as defined above), I consider B as "seen" by A. If two or more persons fall within A's gaze region, I consider A to be looking only at the person that is closest to her. In this sense, since in images with at least three individuals about 94% of the persons have head yaw between -45 and 45 degrees (indicating a relatively frontal head pose), I rank subjects in a person's gaze region considering first image depth (namely distance from the camera), then breaking eventual ties using horizontal distances (to the left and to the right of the viewer). I establish the relative distance of subjects from the camera using the faces' dimensions, considering two subjects with the same face size as equally distant, and allowing for a 5% tolerance in face area differences.I then exclude from a person's gaze region all the subjects who are behind her (and hence cannot be in her sight). Finally, I exclude all subjects from the gaze regions of the persons whose eyes are occluded (either covered or closed).

Having so approximated the focus of the persons' gaze (i.e. what they "see"), I compute the triggered emotion of observed individuals as the weighted average of their observers' emotions. The weights are proportional to the depth-distance of the observer: as stated in the previous section, I assume the picture to confer more visibility to the subjects whose features are meant to matter more.
calcoli dell area triangolare della region area:
Given an observer A and a subject B , with respective image coordinates $\left(x_{a}, y_{a}\right)$ and $\left(x_{b}, y_{b}\right)$, I first determine the distance h between A and B: $\left.\sqrt{\left(y_{a}-y_{b}\right)^{2}+\left(x_{a}-x_{b}\right)^{2}}\right)$.

[^21]Then, I let h be the height of an equilateral triangle with basis equal to $\frac{2}{\sqrt{3}} * h$, symmetric around B . Let C and D define the extremes of the triangle basis (symmetrically placed around B , and equidistant from A). I exploit the length $B C$ (or equivalently, $B D$) to trace a circumference around B , or ray $B C$. Let $\mathrm{W}, \mathrm{Q}, \mathrm{Z}$, and K be the four points on the circumference respectively at the top (highest y coordinate), right (highest x coordinate), bottom (lowest y coordinate) and left (lowest x coordinate).
Those points define the maximum and minimum head yaw and pitch that A can have such that B is in her gaze region. I derive the minimum and maximum pitch (expressed in degrees) as: pitch max $=\operatorname{arccot}\left(\frac{\left|y_{a}-y_{w}\right|}{\left|x_{a}-x_{w}\right|}\right)$.

TABLE (A.1.1)
List of US News sources

Source's twitter handle:	Bias Rating on Adfontesmedia:	Bias rating on allsides.com	Included in analysis:
AlterNet	-30.33	LL	
TheAtlantic	-19.66	L	
Salon	-19.35	LL	
politicususa	-16.62	LL	\checkmark
theintercept	-16.5	LL	\checkmark
MSNBC	-13.76	LL	\checkmark
Newsweek	-12.96	L	\checkmark
CNN	-12.15	LL	\checkmark
voxdotcom	-11.93	LL	\checkmark
GuardianUS	-10.35	L	\checkmark
TIME	-10.22	L	\checkmark
thehill	0.1	R	\checkmark
PittsburghPG	0.1	R	\checkmark
WSJ	4.95	R	\checkmark
TPInsidr	7.67	R	\checkmark
RealClearNews	13.07	R	\checkmark
nypost	14.2	RR	\checkmark
FreeBeacon	15.9	RR	\checkmark
WashTimes	16.12	R	
FoxNews	17.19	R	
realDailyWire	18.63	RR	
BreitbartNews	25.67	RR	

Notes: The Table presents the list of the main News sources extrapolated from Similarweb.com. The partisanship scores from Adfontes media and Allsides.com are listed in the respective columns (for Adfontesmedia, positive numbers indicate relatively Republican leaning).

TABLE (A.1.2)
Topic Assignment

A. 2 Appendix 2: Survey Experiment

A.2.1 News Issues, Leading text, and Leading images

This Section illustrates the choice of treatments' news issues, texts, and pictures. As illustrated in Section II.D.4 five news topics have comparable and significant visual partisanship: Politics, Covid \& Health, Economy, Security, and Society. To identify news issues pertaining each of these topics, I rely on the list of relevant news issues drafted by allsides.com, which also tags issues by their topic. This website compares news issues from sources with opposite slants, and it periodically publishes "Headline Roundups" (syntheses of the main news issues within a given period) to highlight the different takes of the Democrat-leaning and Republican-leaning news sources ${ }^{42}$ I use these roundups to identify valid issues within each news topic (as listed in the following paragraphs) and to ensure the coherence between treatments' framing and actual media coverage. Based on the roundups, for each news issue I draft a headline, a byline, and a leading text coherent with the neutral tone of non-partisan coverage (i.e. that of news sources rated as "Centre", neither Democrat- nor Republican- leaning, on allsides.com).

Having identified the treatment news issues, I proceed to select three treatment leading images (Dem-leaning, Rep-leaning and neutral) for each issue. A fundamental aspect to consider in the choice of images was that the partisanship scores determined through the method in Section II pertained to a period in time (Dec 2019Dec 2020) when the US president was a Republican. Vice versa, the experiment took place in 2021, under a Democrat presidency. This implied that the partisan news outlets' narratives (including the visual one) in use during the experiment could potentially differ from the ones tested in Section II^{43} I therefore adopt a two-steps process to guarantee the experimental pictures would be both "partisan" according to the method introduced in Section II and aligned with the partisan visual narratives in place at the time of the experiment (2021). I first identify a set of "candidate images" of opposite ideological stance for each experimental issue ${ }^{44}$ Then, I manually rank the viable images based on their similarity with leading pictures actually published in news pieces on the same issue and rated as "strongly Democratic", "Strongly Republican", or "center" on allsides.com; for each topic and each ideological pole, the image ranking first is then selected as treatment image.

The following paragraphs illustrate all the components of the news previews, for each issue.

[^22]
A.2.1.1 Topic: ECONOMY.

Issue: FED's forecasts on inflation.

Headlines Roundup:45

"Amid rising consumer prices and debates over large federal spending bills, the government's role in fuelling or relieving Americans' economic burdens is a subject of debate. Many Republicans say current Democratic policies and high-cost spending bills will make current inflation worsen in coming years, hurting consumers, workers and families. The Federal Reserve maintains that current inflation will only be temporary, a stance that President Joe Biden and other prominent Democrats have echoed while advocating for spending packages they say will better the lives of average Americans. Right-rated voices have covered inflation fears more prominently, with some accusing Democrats of dismissing inflation fears while supporting harmful economic policy. Left- and center-rated voices have been less accusatory, often exploring the likelihood of inflation worsening and financially-sustainable legislation being agreed upon in Congress."

Treatments:

-••

Rising consumer prices are spurring concerns and debates nationwide as the economic recovery from the COVID-19 pandemic continues. Prices have risen recently across many sectors, including energy, used automobiles, airlines and hotels. Federal Reserve officials have described the price hikes as a temporary effect of the quickening economic recovery, commenting that price rises should cease and retreat.

Rising consumer prices are spurring concerns and debates nationwide as the economic recovery from the COVID-19 pandemic continues. Prices have risen recently across many sectors, including energy, used automobiles, airlines and hotels. Federal Reserve officials have described the price hikes as a temporary effect of the quickening economic recovery, commenting that price rises should cease and retreat.

Rising consumer prices are spurring concerns and debates nationwide as the economic recovery from the COVID-19 pandemic continues. Prices have risen recently across many sectors, including energy, used automobiles, airlines and hotels. Federal Reserve officials have described the price hikes as a temporary effect of the quickening economic recovery, commenting that price rises should cease and retreat.

(a) Leading image: Neutral

(b) Leading image: Dem-leaning

Federal Reserve Chairman: factors driving inflation 'should be temporary'

(1) Like	\square Comment	\Rightarrow Share
Write a c		

(c) Leading image: Rep-leaning

FIGURE (A.2.1)
Treatments for "Inflation" issue: Non partisan, Dem-leaning, and Rep-leaning images.

The Figure shows the treatments (news previews) for the news issue "Inflation", related to the Economy topic. Panel A (left) shows the treatment with non partisan leading image. Panel B (centre) shows the treatment featuring the Democrat-leaning leading image. Panel C (right) shows the treatment featuring the Republican-leaning leading image.

[^23]
A.2.1.2 Topic: COVID \& HEALTH.

Issue: The effectiveness of anti-Covid measures.

Headlines Roundup ${ }^{46}$

"Opinions range far and wide on the Trump administration's response to the COVID-19 outbreak. Many voices, particularly on the left, criticized the U.S. and White House responses. Others, especially on the right, tended to focus more on China's response to the virus as being worthy of stricter scrutiny. Some minimized the role that the administration was playing, focusing instead on other key actors and decisions."

Other:
"Partisans who harbor high levels of animus towards the other party do not differentiate the United States response to COVID-19 from that of the Trump administration."
(Druckman et al., 2020)

Treatments:

March 30, 2020:*
... March 30, 2020. ${ }^{\circ}$
... March 30, 2020. ©

President Trump extended the administration's social-distancing guidelines for another 30 days through the end of April. These guidelines include avoiding non-essential travel, going to work, or gathering in groups of 10 or more. The extension of social-distancing restrictions came after Dr. Fauci and other members of the COVID-19 task force made the recommendation.

President Trump extended the administration's social-distancing guidelines for another 30 days through the end of April. These guidelines include avoiding non-essential travel, going to work, or gathering in groups of 10 or more. The extension of social-distancing restrictions came after Dr. Fauci and other members of the COVID-19 task force made the recommendation.

President Trump extended the administration's social-distancing guidelines for another 30 days through the end of April. These guidelines include avoiding non-essential travel, going to work, or gathering in groups of 10 or more. The extension of social-distancing restrictions came after Dr. Fauci and other members of the COVID-19 task force made the recommendation.

(a) Leading image: Neutral

FIGURE (A.2.2)
Treatments for "Covid \& Health" issue: Non partisan, Dem-leaning, and Rep-leaning images.

The Figure shows the treatments (news previews) for the news issue "Covid measures", related to the Covid \& Health topic. Panel A (left) shows the treatment with non partisan leading image. Panel B (centre) shows the treatment featuring the Democrat-leaning leading image. Panel C (right) shows the treatment featuring the Republican-leaning leading image.

[^24]
A.2.1.3 Topic: POLITICS.

Issue: Renewal of the US-Iran nuclear deal.

Headlines Roundup: 4^{47}

"U.S. President Joe Biden is intent on restoring the 2015 nuclear agreement with Iran, and with talks resuming in Vienna on Thursday after a weeklong break, his chief negotiator, Robert Malley, is beginning to develop a road map on how to get there. According to sources close to European and U.S. negotiators, Malley is expected to offer Tehran a Goldilocks-style deal: just enough sanctions relief so Iran will return to the pact but not so much that it would leave Biden vulnerable to attacks from hard-liners at home "

Treatments:

\because Jun 22

President Joe Biden and his team have made a U.S. to return to the nuclear deal with Iran one of their top foreign policy priorities. On Monday, the new hard-liner Iranian President Raisi backed talks between Iran and six world powers to revive a 2015 nuclear deal but flatly rejected meeting U.S. President Joe Biden. However, Biden administration officials insist prospects for reaching an agreement are unaltered, because Iran's Supreme Leader Khamenei, who signed off on the 2015 deal, will make final decisions regardless of who is president.

President Joe Biden and his team have made a U.S. to return to the nuclear deal with Iran one of their top foreign policy priorities. On Monday, the new hard-liner Iranian President Raisi backed talks between Iran and six world powers to revive a 2015 nuclear deal but flatly rejected meeting U.S. President Joe Biden. However, Biden administration officials insist prospects for reaching an agreement are unaltered, because Iran's Supreme Leader Khamenei, who signed off on the 2015 deal, will make final decisions regardless of who is president.

President Joe Biden and his team have made a U.S. to return to the nuclear deal with Iran one of their top foreign policy priorities. On Monday, the new hard-liner Iranian President Raisi backed talks between Iran and six world powers to revive a 2015 nuclear deal but flatly rejected meeting U.S. President Joe Biden. However, Biden administration officials insist prospects for reaching an agreement are unaltered, because Iran's Supreme Leader Khamenei, who signed off on the 2015 deal, will make final decisions regardless of who is president.

(a) Leading image: Neutral

FIGURE (A.2.3)
Treatments for "Iran deal" issue: Non partisan, Dem-leaning, and Rep-leaning images.

The Figure shows the treatments (news previews) for the news issue "Iran deal", related to the Politics topic. Panel A (left) shows the treatment with non partisan leading image. Panel B (centre) shows the treatment featuring the Democrat-leaning leading image. Panel C (right) shows the treatment featuring the Republican-leaning leading image.

[^25]
A.2.1.4 Topic: SOCIETY.

Issue: Juneteenth becomes a Federal holiday.

Headlines Roundup:48

"Most of the opinions about Juneteenth this year were framed around the day becoming an official holiday. Opinions were more common from left- and center-rated outlets. Many left-rated voices celebrated the decision; many also called it a "hollow victory" and grouped it with other "symbolic gestures that are presented as progress without any accompanying economic or structural change." Some right-rated voices criticized that narrative and its proponents, arguing that "there is no concession or show of good faith that will ever placate their ever-increasing litany of demands."

News outlets from the right tended to lead the news on the bipartisan bill by portraying the Republican cosponsor (John Cornyn), while Democrat-leaning ones tended to portray the Democrat co-sponsor (Ed Markey).

Treatments:

The Senate approved a bill that would make June 19, the date commemorating the end of chattel slavery in the United States, a legal public holiday. President Abraham Lincoln had signed the proclamation outlawing slavery years earlier, but it was not until 1865 that those in bondage in Texas were freed. The bill was co-sponsored by senators Ed Markey (Dem) and John Cornyn (Rep).

The Senate approved a bill that would make June 19, the date commemorating the end of chattel slavery in the United States, a legal public holiday. President Abraham Lincoln had signed the proclamation outlawing slavery years earlier, but it was not until 1865 that those in bondage in Texas were freed. The bill was co-sponsored by senators Ed Markey (Dem) and John Cornyn (Rep).

The Senate approved a bill that would make June 19, the date commemorating the end of chattel slavery in the United States, a legal public holiday. President Abraham Lincoln had signed the proclamation outlawing slavery years earlier, but it was not until 1865 that those in bondage in Texas were freed. The bill was co-sponsored by senators Ed Markey (Dem) and John Cornyn (Rep).

Senate Approves Making Juneteenth a Public Holiday, Bill Sponsors Rejoice

(a) Leading image: Neutral

(c) Leading image: Rep-leaning

FIGURE (A.2.4)
Treatments for "Juneteenth" issue: Non partisan, Dem-leaning, and Rep-leaning images.

Notes: The Figure shows the treatments (news previews) for the news issue "Juneteenth", related to the Society topic. Panel A (left) shows the treatment with non partisan leading image. Panel B (centre) shows the treatment featuring the Democrat-leaning leading image. Panel C (right) shows the treatment featuring the Republican-leaning leading image.

[^26]
A.2.1.5 Topic: SECURITY.

Issue: Police budget cuts.

Headlines Roundup 49

"Some left-rated voices advocated for addressing systemic issues and reforming communities by reallocating significant funds from law enforcement to housing and education budgets. Several also called for an end to mass incarceration, police militarization, and police in schools. Some voices from the right argued that police systems should remain intact, pointing to possible correlations between cities with progressive law enforcement policies and rising crime rates. Many voices from all sides of the spectrum advocated for some form of police reform or reduced funding."

Treatments:

2 May $25 \stackrel{\circ}{\circ}^{\circ}$

Floyd was killed by a policeman one year ago, on May 25, 2020, during an arrest that was captured on video and seen worldwide.
In a city raw from complaints of officer abuses and systemic racism, outrage exploded into street demonstrations for six days and nights. Police responded with riot squads armed with tear gas and rubber bullets, and some peaceful demonstrations escalated into arson, looting and chaos, making it difficult to sort out whether protesters or police triggered violence.
... May $25 \stackrel{\ominus}{9}$
Floyd was killed by a policeman one year ago, on May 25, 2020, during an arrest that was captured on video and seen worldwide.
In a city raw from complaints of officer abuses and systemic racism, outrage exploded into street demonstrations for six days and nights. Police responded with riot squads armed with tear gas and rubber bullets, and some peaceful demonstrations escalated into arson, looting and chaos, making it difficult to sort out whether protesters or police triggered violence.

Floyd was killed by a policeman one year ago, on May 25, 2020, during an arrest that was captured on video and seen worldwide.
In a city raw from complaints of officer abuses and systemic racism, outrage exploded into street demonstrations for six days and nights. Police responded with riot squads armed with tear gas and rubber bullets, and some peaceful demonstrations escalated into arson, looting and chaos, making it difficult to sort out whether protesters or police triggered violence.

(a) Leading image: Neutral

FIGURE (A.2.5)
Treatments for "Police defund" issue: Non partisan, Dem-leaning, and Rep-leaning images.

Notes: The Figure shows the treatments (news previews) for the news issue "Police defund", related to the topic Security. Panel A (left) shows the treatment with non partisan leading image. Panel B (centre) shows the treatment featuring the Democrat-leaning leading image. Panel C (right) shows the treatment featuring the Republican-leaning leading image.

[^27]TABLE (A.2.1)
Survey Experiment Summary Statistics

		Mean	Sd	Min	Max
Age bracket:	- 18-34	. 2273185	. 4192057	0	1
	- 35-44	. 2565524	. 4368403	0	1
	- 45-54	. 2525202	. 4345675	0	1
	- 55-65	. 2636089	. 4407007	0	1
Ethnicity:	- Caucasic	. 8089718	. 3932103	0	1
	- African-American	. 0927419	. 2901436	0	1
	- Latin American	. 0645161	. 245732	0	1
	- Asiatic	. 0579637	. 2337337	0	1
	- Native American	. 015625	. 1240509	0	1
Schooling < 8 yrs.		. 0095766	. 097415	0	1
Party affiliation:	- Democrat	. 3886089	. 487557	0	1
	- Independent	. 3069556	. 4613471	0	1
	- Republican	. 3044355	. 4602839	0	1
Politics interest:	- Very low	. 0922379	. 2894344	0	1
	- Low	. 1673387	. 3733721	0	1
	- Medium	. 3447581	. 4754091	0	1
	- High	. 2620968	. 4398859	0	1
	-Very high	. 1335685	. 3402739	0	1
Political opinion	(Liberal/Conservative)	4.048387	1.723639	1	7
Gets news from:	- Fox News	1.144153	1.151808	0	3
	- CNN	1.316028	1.143477	0	3
	- Breitbart	. 3513105	. 7434829	0	3
	- NYT	1.012097	1.058479	0	3
	- MSNBC	1.020665	1.041294	0	3
	- NYPost	. 7923387	. 9480834	0	3
Main info. source:	- Newspapers	. 1789315	. 3833915	0	1
	- Radio	. 0453629	. 2081513	0	1
	- Socials	. 1355847	. 3424333	0	1
	- TV	. 5146169	. 4999123	0	,
Clicks in introduction		1.628024	1.339399	1	28
Low screen resolution		. 2011089	. 4009303	0	1
Defund Police	(Ex ante opinion)	. 1334203	44.36863	-100	100
	(Post treatment opinion)	1.272364	44.13409	-100	100
Iran deal	(Ex ante opinion)	-3.100806	28.06095	-50	50
	(Post treatment opinion)	-1.830141	27.76713	-50	50
Inflation	(Ex ante opinion)	-2.071069	28.96654	-50	50
	(Post treatment opinion)	-. 4188508	28.7	-50	50
Covid measures	(Ex ante opinion)	4.081653	33.6061	-50	50
	(Post treatment opinion)	6.431452	32.87022	-50	50
Juneteenth	(Ex ante opinion)	5.163306	37.67628	-50	50
	(Post treatment opinion)	7.272177	37.56104	-50	50
Defund police issue has low salience		. 2520161	. 4342799	0	1
Iran deal issue has low salience		. 2535282	. 4351403	0	1
Inflation issue has low salience		. 2510081	. 4337025	0	1
Covid measures issue has low salience		. 2530242	. 4348543	0	1
Juneteenth issue has low subjective salience		. 2681452	. 4431053	0	1
Familiarity with Defund police issue		2.389113	. 7378551	0	3
Familiarity with Inflation issue		1.537802	. 9781178	0	3
Familiarity with Iran deal issue		1.307964	1.000462	0	3
Familiarity with Covid measures issue		2.160786	. 8902761	0	3
Familiarity with Juneteenth issue		1.995968	. 8743466	0	3
Observations	1984				

TABLE (A.2.2)
Impact of Leading Images On News-Readers' Opinion
(Specification without controls)

Dependent variable:	(1)	(2)	(3)	(4)	(5)
	Opinion on "Defund Police"	Opinion on "Iran deal"	Opinion on "Inflation"	Opinion on "Covid measures"	Opinion on "Juneteenth"
	$\begin{gathered} \text { (Budget cut } \\ \text { in }-100+100 \text {) } \end{gathered}$	(Confidence, in $-50+50$)	(Confidence, in $-50+50$)	(Dissatisfaction, in $-50+50$)	(Policy support, in $-50+50$)
Neutral images (N)	$\begin{aligned} & -0.517 \\ & (0.672) \end{aligned}$	$\begin{aligned} & -0.541 \\ & (0.769) \end{aligned}$	$\begin{gathered} 0.903 \\ (0.486) \end{gathered}$	$\begin{aligned} & -7.475 \\ & (0.317) \end{aligned}$	$\begin{gathered} 8.740 \\ (0.653) \end{gathered}$
Democrat images (D-N)	$\begin{gathered} 1.379 \\ (0.465) \\ {[0.059]} \end{gathered}$	$\begin{aligned} & -0.257 \\ & (1.246) \\ & {[0.850]} \end{aligned}$	$\begin{aligned} & -0.494 \\ & (1.359) \\ & {[0.740]} \end{aligned}$	$\begin{gathered} 0.866 \\ (0.314) \\ {[0.070]} \end{gathered}$	$\begin{aligned} & -0.737 \\ & (1.109) \\ & {[0.554]} \end{aligned}$
Republican images (R-N)	$\begin{gathered} -1.516 \\ (0.519) \\ {[0.06]} \end{gathered}$	$\begin{gathered} -1.832 \\ (1.180) \\ {[0.22]} \end{gathered}$	$\begin{gathered} -2.239 \\ (0.804) \\ {[0.07]} \end{gathered}$	$\begin{gathered} -0.159 \\ (0.631) \\ {[0.82]} \end{gathered}$	$\begin{gathered} -0.426 \\ (0.448) \\ {[0.41]} \end{gathered}$
Democrat-Republican (D-R)	$\begin{gathered} 2.895 \\ (0.422) \\ {[0.006]} \end{gathered}$	$\begin{gathered} 1.575 \\ (0.845) \\ {[0.159]} \end{gathered}$	$\begin{gathered} 1.745 \\ (1.014) \\ {[0.184]} \end{gathered}$	$\begin{gathered} 1.025 \\ (0.799) \\ {[0.290]} \end{gathered}$	$\begin{aligned} & -0.311 \\ & (1.461) \\ & {[0.845]} \end{aligned}$
Observations	1574	1608	1625	1595	1551
Controls:	N	N	N	N	N

Notes: The Table presents OLS estimates of the effect of the Democrat-leaning (D), neutral (N), and Republican-leaning (R) news-leading images on respondents' opinion after exposure to the news (column headers indicate the relevant news issue). The dependent variable for the "Defund Police" issue ranges in $[-100,+100]$, while all others range in $[-50+50]$. Variables are adjusted so that the higest value in the range always corresponds to Democrats' ideological position (hence positive coefficients indicate a pro-Democratic opinion shift, and vice versa). The specifications only control for the opinion expressed on the issue prior to treatment exposure, and no other covariates. Round parentheses contain robust standard errors; square brackets contain the p-values for two-sided tests of equality between coefficients (tested pairs indicated on the left) using robust standard errors.

TABLE (A.2.3)
Balance of observable characteristics across treatment branches, "Defund police" news issue

Variables:		Republican		Neutral		Democrat		Normalized difference:		
		Mean	St. err.	Mean	St. err.	Mean	St. err.	(R-N)	(N-D)	(D-R)
Age bracket:	- 18-34	0.006	(0.019)	-0.009	(0.018)	0.003	(0.018)	0.037	-0.028	-0.009
	- 35-44	0.007	(0.020)	0.015	(0.020)	-0.021	(0.018)	-0.019	0.084	-0.064
	- 45-54	-0.003	(0.019)	-0.010	(0.019)	0.013	(0.019)	0.014	-0.051	0.037
	- 55-65	-0.010	(0.019)	0.003	(0.020)	0.006	(0.019)	-0.029	-0.006	0.035
Ethnicity:	- Caucasic	0.011	(0.017)	-0.032	(0.018)	0.021	(0.016)	0.107	-0.132	0.025
	- African-American	-0.008	(0.013)	0.028	(0.014)	-0.019	(0.012)	-0.117	0.157	-0.041
	- Latin American	0.005	(0.011)	0.007	(0.011)	-0.013	(0.010)	-0.008	0.084	-0.075
	- Asiatic	0.001	(0.011)	-0.002	(0.010)	0.001	(0.010)	0.015	-0.012	-0.003
	- Native American	-0.006	(0.004)	0.010	(0.007)	-0.004	(0.004)	-0.123	0.107	0.017
Schooling <8 yrs.		-0.003	(0.004)	-0.001	(0.004)	0.004	(0.005)	-0.018	-0.050	0.068
Party affiliation:	- Democrat	-0.007	(0.022)	0.054	(0.022)	-0.047	(0.021)	-0.125	0.209	-0.084
	- Independent	0.006	(0.020)	-0.048	(0.019)	0.042	(0.021)	0.119	-0.196	0.077
	- Republican	0.001	(0.020)	-0.007	(0.020)	0.005	(0.020)	0.017	-0.026	0.009
Politics interest:	-Very low	0.017	(0.014)	-0.009	(0.012)	-0.008	(0.012)	0.087	-0.002	-0.085
	-Low	0.011	(0.017)	-0.002	(0.017)	-0.008	(0.016)	0.032	0.018	-0.050
	-Medium	-0.013	(0.021)	-0.004	(0.021)	0.016	(0.021)	-0.019	-0.043	0.062
	-High	-0.018	(0.019)	0.017	(0.020)	0.001	(0.019)	-0.078	0.036	0.042
	-Very high	0.003	(0.015)	-0.002	(0.015)	-0.001	(0.014)	0.015	-0.005	-0.011
Conservative-Liberal score		-0.075	(0.076)	-0.066	(0.075)	0.137	(0.074)	-0.005	-0.119	0.124
Gets news from:	-Fox News	-0.063	(0.050)	0.005	(0.052)	0.055	(0.050)	-0.060	-0.043	
	-CNN	0.062	(0.050)	-0.004	(0.051)	-0.056	(0.050)	0.058	0.045	-0.104
	-Breitbart	0.032	(0.032)	-0.029	(0.031)	-0.002	(0.031)	0.085	-0.039	-0.047
	-NYT	0.060	(0.046)	-0.015	(0.046)	-0.043	(0.046)	0.072	0.026	-0.099
	-MSNBC	0.033	(0.046)	-0.014	(0.045)	-0.018	(0.045)	0.045	0.003	-0.048
	-NYPost	0.015	(0.041)	-0.016	(0.041)	0.001	(0.041)	0.033	-0.019	-0.014
Main info. source:	-Newspapers	0.020	(0.018)	-0.006	(0.017)	-0.014	(0.016)	0.067	0.023	-0.090
	-Radio	0.006	(0.010)	-0.014	(0.007)	0.008	(0.010)	0.105	-0.113	0.008
	-Socials	0.014	(0.016)	-0.024	(0.014)	0.010	(0.015)	0.113	-0.101	-0.012
	-TV	-0.058	(0.022)	0.038	(0.022)	0.019	(0.022)	-0.192	0.038	0.154
Clicks in introduction		-0.033	(0.056)	0.013	(0.072)	0.019	(0.055)	-0.031	-0.004	0.041
Low screen resolution		-0.005	(0.017)	0.019	(0.018)	-0.013	(0.017)	-0.059	0.080	-0.020
Topic of low subjective salience		-0.015	(0.019)	-0.017	(0.018)	0.030	(0.019)	0.005	-0.108	0.103
Topic familiarity:	- Low	-0.007	(0.005)	0.004	(0.007)	0.002	(0.006)	-0.081	0.015	0.066
	- Mid-Low	0.004	(0.013)	0.013	(0.013)	-0.017	(0.011)	-0.032	0.108	-0.077
	- Mid-High	-0.002	(0.021)	-0.013	(0.021)	0.015	(0.021)	0.023	-0.058	0.035
	- High	0.005	(0.022)	-0.005	(0.022)	-0.000	(0.022)	0.019	-0.009	-0.010
Topic ex ante opinion		0.904	(2.004)	0.662	(1.908)	-1.517	(1.785)	0.005	0.051	-0.056

N of observations: $\quad 510 \quad 523 \quad 532$

Notes: The table presents the means and standard errors for each covariate specified, and the standardized difference between treatment groups for the "Defund Police" news issue to assess balance. Treatment branches are marked in column headers, with "Republican" ("Democrat") indicating being exposed to news on the issue lead by Republican-leaning (Democrat-leaning) images, and "Neutral" indicating non-partisan leading images.

TABLE (A.2.4)
Balance of observable characteristics across treatment branches, "Iran deal" news issue

Variables:		Republican		Neutral		Democrat		Normalized difference:		
		Mean	St. err.	Mean	St. err.	Mean	St. err.	(R-N)	(N-D)	(D-R)
Age bracket:	- 18-34	0.010	(0.018)	0.003	(0.018)	-0.013	(0.017)	0.016	0.039	-0.055
	- 35-44	0.004	(0.019)	0.001	(0.019)	-0.005	(0.019)	0.006	0.014	-0.020
	- 45-54	-0.008	(0.019)	0.012	(0.019)	-0.004	(0.019)	-0.045	0.035	0.010
	- 55-65	-0.006	(0.019)	-0.016	(0.019)	0.022	(0.020)	0.023	-0.083	0.060
Ethnicity:	- Caucasic	-0.020	(0.018)	0.004	(0.017)	0.016	(0.016)	-0.058	-0.033	0.091
	- African-American	-0.013	(0.012)	0.008	(0.013)	0.005	(0.013)	-0.070	0.008	0.062
	- Latin American	0.016	(0.012)	-0.005	(0.010)	-0.011	(0.010)	0.083	0.030	-0.112
	- Asiatic	0.017	(0.012)	-0.017	(0.009)	-0.001	(0.010)	0.143	-0.071	-0.072
	- Native American	-0.003	(0.005)	0.001	(0.006)	0.003	(0.006)	-0.030	-0.016	0.046
Schooling < 8 yrs.		-0.009	(0.002)	0.001	(0.005)	0.008	(0.006)	-0.116	-0.063	0.168
Party affiliation:	- Democrat	-0.003	(0.021)	0.003	(0.021)	0.000	(0.021)	-0.012	0.005	0.008
	- Independent	-0.013	(0.020)	-0.003	(0.020)	0.016	(0.020)	-0.022	-0.041	0.063
	- Republican	0.016	(0.020)	0.000	(0.020)	-0.017	(0.020)	0.035	0.037	-0.072
Politics interest:	- Very low	0.008	(0.013)	0.000	(0.012)	-0.008	(0.012)	0.027	0.029	-0.056
	- Low	-0.031	(0.015)	0.025	(0.017)	0.006	(0.017)	-0.149	0.047	0.102
	- Medium	0.037	(0.021)	-0.039	(0.020)	0.003	(0.021)	0.160	-0.089	-0.071
	- High	0.015	(0.019)	-0.006	(0.019)	-0.009	(0.019)	0.049	0.005	-0.054
	- Very high	-0.029	(0.013)	0.021	(0.015)	0.008	(0.015)	-0.152	0.038	0.114
Conservative-Liberal score		0.115	(0.074)	0.015	(0.074)	-0.131	(0.074)	0.058	0.086	-0.144
Gets news from:	- Fox News	0.002	(0.050)	-0.006	(0.050)	0.005	(0.051)	0.007	-0.010	0.003
	- CNN	-0.019	(0.050)	-0.003	(0.049)	0.022	(0.049)	-0.014	-0.022	0.036
	- Breitbart	-0.006	(0.031)	0.036	(0.032)	-0.030	(0.029)	-0.057	0.092	-0.034
	- NYT	-0.031	(0.045)	-0.014	(0.045)	0.045	(0.046)	-0.016	-0.056	0.071
	- MSNBC	-0.017	(0.045)	-0.006	(0.046)	0.023	(0.044)	-0.011	-0.028	0.039
	- NYPost	-0.029	(0.039)	-0.009	(0.040)	0.039	(0.041)	-0.021	-0.051	0.073
Main info. source:	- Newspapers	-0.002	(0.017)	0.013	(0.017)	-0.011	(0.016)	-0.037	0.062	-0.026
	- Radio	-0.002	(0.009)	-0.000	(0.009)	0.002	(0.009)	-0.008	-0.012	0.020
	- Socials	0.002	(0.015)	-0.011	(0.014)	0.009	(0.015)	0.040	-0.060	0.020
	- TV	0.010	(0.022)	-0.023	(0.022)	0.013	(0.022)	0.067	-0.074	0.006
Clicks in introduction		-0.101	(0.048)	0.085	(0.074)	0.016	(0.058)	-0.130	0.046	0.095
Low screen resolution		0.005	(0.017)	-0.005	(0.017)	-0.000	(0.017)	0.025	-0.011	-0.014
Topic of low subjective salience		-0.016	(0.018)	-0.009	(0.018)	0.026	(0.019)	-0.016	-0.081	0.096
Topic familiarity:			(0.019)	-0.013	(0.019)		(0.019)	0.049	-0.038	-0.011
	- Mid-Low	-0.011	(0.020)	0.021	(0.021)	-0.010	(0.020)	-0.069	0.067	0.002
	- Mid-High	0.014	(0.020)	-0.026	(0.019)	0.012	(0.020)	0.090	-0.083	-0.006
	- High	-0.012	(0.014)	0.017	(0.015)	-0.005	(0.014)	-0.088	0.067	0.021
Topic ex ante opinion		0.338	(1.189)	-0.202	(1.203)	-0.137	(1.192)	0.020	-0.002	-0.017

$\begin{array}{lll}\mathrm{N} \text { of observations: } & 534 & 536 \\ \text { Notes: } \text { The table presents the means and standard errors for each covariate specified, and the standardized difference between treatment groups for the "Iran deal" }\end{array}$ Notes: The table presents the means and standard errors for each covariate specified, and the standardized difference between treatment groups for the "Iran deal"
news issue to assess balance. Treatment branches are marked in column headers, with "Republican" ("Democrat") indicating being exposed to news on the issue lead by Republican-leaning (Democrat-leaning) images, and "Neutral" indicating non-partisan leading images.

TABLE (A.2.5)
Balance of observable characteristics across treatment branches, "Inflation" news issue

Variables:		Republican		Neutral		Democrat		Normalized difference:		
		Mean	St. err.	Mean	St. err.	Mean	St. err.	(R-N)	(N-D)	(D-R)
Age bracket:	- 18-34	-0.025	(0.017)	0.011	(0.018)	0.015	(0.018)	-0.089	-0.011	0.099
	- 35-44	-0.003	(0.019)	-0.004	(0.019)	0.007	(0.019)	0.001	-0.024	0.023
	- 45-54	0.021	(0.019)	-0.005	(0.019)	-0.017	(0.018)	0.059	0.028	-0.088
	- 55-65	0.007	(0.019)	-0.002	(0.019)	-0.005	(0.019)	0.021	0.006	-0.027
Ethnicity:	- Caucasic	-0.019	(0.017)	-0.003	(0.017)	0.022	(0.016)	-0.040	-0.063	0.103
	- African-American	0.016	(0.013)	-0.007	(0.012)	-0.010	(0.012)	0.078	0.010	-0.088
	- Latin American	0.013	(0.011)	0.001	(0.010)	-0.014	(0.009)	0.048	0.063	-0.111
	- Asiatic	0.007	(0.011)	0.006	(0.011)	-0.012	(0.009)	0.004	0.079	-0.083
	- Native American	0.005	(0.006)	-0.001	(0.005)	-0.004	(0.004)	0.043	0.034	-0.077
Schooling < 8 yrs.		0.004	(0.005)	-0.005	(0.003)	0.001	(0.005)	0.091	-0.062	-0.030
Party affiliation:	- Democrat	0.013	(0.021)	-0.013	(0.021)	0.000	(0.021)	0.054	-0.028	-0.026
	- Independent	-0.010	(0.020)	0.025	(0.020)	-0.015	(0.020)	-0.076	0.085	-0.009
	- Republican	-0.003	(0.020)	-0.012	(0.020)	0.014	(0.020)	0.020	-0.056	0.036
Politics interest:	-Very low	-0.009	(0.012)	0.009	(0.013)	0.000	(0.012)	-0.062	0.028	0.034
	-Low	-0.007	(0.016)	0.001	(0.016)	0.006	(0.016)	-0.021	-0.015	0.036
	-Medium	-0.015	(0.020)	0.041	(0.021)	-0.026	(0.020)	-0.117	0.140	-0.023
	-High	0.020	(0.019)	-0.038	(0.018)	0.018	(0.019)	0.133	-0.127	-0.006
	-Very high	0.011	(0.015)	-0.013	(0.014)	0.002	(0.015)	0.071	-0.043	-0.028
Conservative-Liberal score		0.001	(0.074)	-0.010	(0.073)	0.009	(0.074)	0.006	-0.011	0.005
Gets news from:	-Fox News	-0.010	(0.050)	-0.015	(0.049)	0.025	(0.050)	0.005	-0.036	0.030
	-CNN	0.014	(0.049)	-0.025	(0.049)	0.011	(0.050)	0.034	-0.031	-0.003
	-Breitbart	0.015	(0.032)	-0.018	(0.029)	0.003	(0.030)	0.046	-0.030	-0.017
	-NYT	0.011	(0.046)	-0.028	(0.046)	0.017	(0.045)	0.037	-0.043	0.006
	-MSNBC	0.047	(0.046)	-0.084	(0.044)	0.037	(0.045)	0.125	-0.118	-0.009
	-NYPost	0.002	(0.041)	-0.014	(0.040)	0.012	(0.040)	0.017	-0.028	0.010
Main info. source:	-Newspapers	0.013	(0.017)	0.006	(0.017)	-0.020	(0.016)	0.017	0.069	-0.086
	-Radio	0.007	(0.009)	-0.001	(0.009)	-0.006	(0.008)	0.041	0.026	-0.067
	-Socials	0.003	(0.015)	0.009	(0.015)	-0.012	(0.014)	-0.016	0.061	-0.045
	-TV	0.007	(0.021)	-0.039	(0.022)	0.032	(0.022)	0.090	-0.143	0.052
Clicks in introduction		-0.076	(0.049)	0.080	(0.075)	-0.004	(0.054)	-0.107	0.056	0.060
Low screen resolution		0.013	(0.017)	-0.010	(0.017)	-0.003	(0.017)	0.059	-0.020	-0.039
Topic of low subjective salience		0.009	(0.019)	0.014	(0.019)	-0.023	(0.018)	-0.012	0.086	-0.074
Topic familiarity:	- Low	-0.035	(0.015)	0.043	(0.018)	-0.009	(0.016)	-0.204	0.132	0.072
	- Mid-Low	0.018	(0.020)	-0.030	(0.019)	0.011	(0.020)	0.107	-0.090	-0.016
	- Mid-High	0.002	(0.021)	0.001	(0.021)	-0.002	(0.021)	0.002	0.007	-0.008
	- High	0.014	(0.016)	-0.015	(0.015)	0.000	(0.016)	0.079	-0.041	-0.038
Topic ex ante opinion		-0.400	(1.230)	-1.787	(1.234)	2.217	(1.241)	0.048	-0.140	0.091

N of observations:
Notes: The table presents the means and standard errors for each covariate specified, and the standardized difference between treatment groups for the "Inflation"
news issue to assess balance. Treatment branches are marked in column headers, with "Republican" ("Democrat") indicating being exposed to news on the issue

TABLE (A.2.6)
Balance of observable characteristics across treatment branches, "Covid measures" news issue

Variables:		Republican		Neutral		Democrat		Normalized difference:		
		Mean	St. err.	Mean	St. err.	Mean	St. err.	(R-N)	(N-D)	(D-R)
Age bracket:	- 18-34	0.013	(0.018)	0.000	(0.018)	-0.013	(0.017)	0.030	0.031	-0.062
	- 35-44	0.026	(0.020)	-0.032	(0.018)	0.006	(0.019)	0.132	-0.088	-0.044
	- 45-54	-0.011	(0.018)	0.017	(0.019)	-0.005	(0.019)	-0.065	0.049	0.016
	- 55-65	-0.027	(0.019)	0.015	(0.020)	0.012	(0.020)	-0.094	0.008	0.086
Ethnicity:	- Caucasic	-0.010	(0.017)	-0.006	(0.017)	0.016	(0.016)	-0.009	-0.056	0.065
	- African-American	0.007	(0.013)	0.005	(0.013)	-0.012	(0.012)	0.006	0.061	-0.066
	- Latin American	-0.014	(0.009)	0.016	(0.012)	-0.001	(0.010)	-0.126	0.068	0.059
	- Asiatic	0.002	(0.010)	0.003	(0.011)	-0.004	(0.010)	-0.005	0.030	-0.025
	- Native American	0.002	(0.006)	-0.003	(0.005)	0.000	(0.006)	0.043	-0.028	-0.015
Schooling < 8 yrs.		-0.009	(0.002)	0.003	(0.005)	0.006	(0.006)	-0.133	-0.028	0.156
Party affiliation:	- Democrat	0.005	(0.021)	-0.018	(0.021)	0.013	(0.021)	0.046	-0.062	0.016
	- Independent	0.022	(0.020)	-0.006	(0.020)	-0.017	(0.020)	0.060	0.024	-0.084
	- Republican	-0.027	(0.019)	0.023	(0.021)	0.004	(0.020)	-0.109	0.041	0.068
Politics interest:	-Very low	0.021	(0.014)	-0.006	(0.012)	-0.015	(0.011)	0.089	0.035	-0.124
	-Low	-0.021	(0.015)	0.015	(0.017)	0.007	(0.016)	-0.097	0.021	0.075
	-Medium	0.006	(0.021)	-0.011	(0.021)	0.005	(0.021)	0.037	-0.034	-0.003
	-High	-0.008	(0.019)	-0.007	(0.019)	0.015	(0.019)	-0.004	-0.049	0.053
	-Very high	0.002	(0.015)	0.009	(0.015)	-0.011	(0.014)	-0.019	0.060	-0.040
Conservative-Liberal score		0.001	(0.074)	0.014	(0.075)	-0.014	(0.073)	-0.008	0.017	-0.009
Gets news from:	-Fox News	0.004	(0.050)	-0.051	(0.050)	0.045	(0.050)	0.048	-0.084	0.036
	-CNN	0.036	(0.049)	-0.050	(0.050)	0.013	(0.050)	0.076	-0.054	-0.021
	-Breitbart	0.013	(0.032)	-0.007	(0.031)	-0.007	(0.029)	0.028	0.000	-0.028
	-NYT	-0.001	(0.045)	-0.019	(0.047)	0.019	(0.046)	0.017	-0.036	0.020
	-MSNBC	0.019	(0.045)	-0.007	(0.047)	-0.011	(0.045)	0.025	0.004	-0.029
	-NYPost	0.028	(0.041)	-0.017	(0.040)	-0.011	(0.040)	0.048	-0.007	-0.042
Main info. source:	-Newspapers	-0.009	(0.016)	0.012	(0.017)	-0.002	(0.017)	-0.054	0.036	0.018
	-Radio	0.002	(0.009)	-0.001	(0.009)	-0.002	(0.008)	0.015	0.005	-0.020
	-Socials	0.006	(0.015)	0.003	(0.015)	-0.009	(0.014)	0.008	0.038	-0.045
	-TV	0.003	(0.022)	0.001	(0.022)	-0.004	(0.022)	0.005	0.011	-0.015
Clicks in introduction		-0.034	(0.051)	-0.030	(0.055)	0.063	(0.077)	-0.003	-0.061	0.065
Low screen resolution		-0.023	(0.016)	0.013	(0.018)	0.010	(0.017)	-0.093	0.008	0.086
Topic of low subjective salience		0.023	(0.019)	-0.009	(0.018)	-0.014	(0.018)	0.073	0.013	-0.086
Topic familiarity:	- Low	0.014	(0.011)	-0.006	(0.010)	-0.009	(0.009)	0.083	0.014	-0.097
	- Mid-Low	-0.005	(0.014)	0.000	(0.015)	0.004	(0.015)	-0.014	-0.013	0.026
	- Mid-High	0.001	(0.021)	-0.018	(0.021)	0.017	(0.021)	0.040	-0.071	0.032
	- High	-0.011	(0.022)	0.023	(0.022)	-0.012	(0.021)	-0.069	0.072	-0.003
Topic ex ante opinion		0.945	(1.481)	-1.146	(1.478)	0.176	(1.447)	0.062	-0.039	-0.023

N of observations:	531	520	533

Notes: The table presents the means and standard errors for each covariate specified, and the standardized difference between treatment groups for the "Covid measures" news issue to assess balance. Treatment branches are marked in column headers, with "Republican" ("Democrat") indicating being exposed to news on the issue lead by Republican-leaning (Democrat-leaning) images, and "Neutral" indicating non-partisan leading images.

TABLE (A.2.7)
Balance of observable characteristics across treatment branches, "Juneteenth" news issue

Variables:		Republican		Neutral		Democrat		Normalized difference:		
		Mean	St. err.	Mean	St. err.	Mean	St. err.	(R-N)	(N-D)	(D-R)
Age bracket:	- 18-34	-0.005	(0.018)	-0.011	(0.018)	0.015	(0.019)	0.016	-0.064	0.048
	- 35-44	0.019	(0.020)	-0.001	(0.020)	-0.018	(0.019)	0.045	0.041	-0.085
	- 45-54	-0.018	(0.018)	0.016	(0.020)	0.002	(0.019)	-0.079	0.032	0.047
	- 55-65	0.003	(0.020)	-0.004	(0.020)	0.001	(0.020)	0.017	-0.011	-0.006
Ethnicity:	- Caucasic	0.000	(0.017)	0.012	(0.017)	-0.012	(0.018)	-0.029	0.059	-0.031
	- African-American	-0.008	(0.013)	-0.016	(0.012)	0.023	(0.014)	0.028	-0.128	0.101
	- Latin American	0.001	(0.011)	-0.006	(0.010)	0.005	(0.011)	0.031	-0.048	0.017
	- Asiatic	0.002	(0.010)	-0.003	(0.010)	0.001	(0.010)	0.023	-0.016	-0.007
	- Native American	0.002	(0.006)	-0.001	(0.005)	-0.001	(0.005)	0.026	0.005	-0.031
Schooling < 8 yrs.		0.004	(0.005)	0.001	(0.005)	-0.005	(0.003)	0.029	0.066	-0.094
Party affiliation:	- Democrat	-0.005	(0.021)	0.026	(0.022)	-0.021	(0.021)	-0.063	0.096	-0.032
	- Independent	-0.005	(0.020)	-0.016	(0.020)	0.021	(0.020)	0.025	-0.081	0.057
	- Republican	0.010	(0.020)	-0.010	(0.020)	-0.000	(0.020)	0.044	-0.021	-0.022
Politics interest:	-Very low	-0.009	(0.012)	0.021	(0.014)	-0.011	(0.012)	-0.100	0.106	-0.006
	-Low	-0.026	(0.016)	0.002	(0.017)	0.024	(0.018)	-0.077	-0.056	0.133
	-Medium	-0.012	(0.021)	-0.001	(0.021)	0.013	(0.021)	-0.022	-0.029	0.051
	-High	0.018	(0.020)	-0.011	(0.019)	-0.007	(0.019)	0.068	-0.009	-0.059
	-Very high	0.029	(0.016)	-0.010	(0.015)	-0.019	(0.014)	0.112	0.026	-0.138
Conservative-Liberal score		0.054	(0.077)	-0.129	(0.074)	0.070	(0.074)	0.108	-0.119	0.009
Gets news from:	-Fox News	0.004	(0.052)	-0.096	(0.050)	0.089	(0.050)	0.086	-0.163	0.073
	-CNN	-0.015	(0.051)	0.001	(0.051)	0.013	(0.050)	-0.014	-0.011	0.024
	-Breitbart	0.066	(0.034)	-0.079	(0.027)	0.010	(0.033)	0.206	-0.129	-0.073
	-NYT	0.031	(0.047)	-0.007	(0.048)	-0.024	(0.046)	0.035	0.016	-0.052
	-MSNBC	0.009	(0.046)	-0.015	(0.046)	0.005	(0.045)	0.024	-0.020	-0.004
	-NYPost	0.079	(0.043)	-0.040	(0.040)	-0.041	(0.040)	0.125	0.002	-0.126
Main info. source:	-Newspapers	0.031	(0.018)	0.018	(0.018)	-0.049	(0.014)	0.033	0.185	-0.218
	-Radio	-0.001	(0.009)	0.006	(0.010)	-0.005	(0.008)	-0.038	0.057	-0.019
	-Socials	0.006	(0.016)	-0.007	(0.015)	0.001	(0.015)	0.039	-0.024	-0.015
	-TV	-0.012	(0.022)	-0.010	(0.022)	0.022	(0.022)	-0.005	-0.065	0.069
Clicks in introduction		0.020	(0.063)	-0.059	(0.049)	0.036	(0.071)	0.061	-0.069	0.010
Low screen resolution		0.007	(0.017)	0.007	(0.018)	-0.014	(0.017)	-0.002	0.054	-0.052
Topic of low subjective salience		-0.011	(0.019)	0.004	(0.020)	0.007	(0.020)	-0.034	-0.007	0.042
Topic familiarity:	- Low	-0.008	(0.010)	-0.005	(0.011)	0.013	(0.012)	-0.011	-0.074	0.085
	- Mid-Low	-0.025	(0.017)	0.011	(0.018)	0.014	(0.018)	-0.090	-0.008	0.099
	- Mid-High	0.015	(0.022)	0.006	(0.022)	-0.020	(0.021)	0.018	0.053	-0.071
	- High	0.018	(0.021)	-0.011	(0.021)	-0.008	(0.020)	0.063	-0.008	-0.055
Topic ex ante opinion		0.222	(1.646)	1.677	(1.668)	-1.835	(1.632)	-0.039	0.094	-0.055
N of observations:		522		500		520				

Notes: The table presents the means and standard errors for each covariate specified, and the standardized difference between treatment groups for the "Juneteenth" news issue to assess balance. Treatment branches are marked in column headers, with "Republican" ("Democrat") indicating being exposed to news on the issue lead by Republican-leaning (Democrat-leaning) images, and "Neutral" indicating non-partisan leading images.

TABLE (A.2.8)
Heterogeneous Impact of Leading Images on News-Readers' Opinion:
(by Readers' Political Party Affiliation)

	$\begin{gathered} \hline \text { (1) } \\ \text { Defund Police } \end{gathered}$	$\overline{(2)}$ Iran deal	$\begin{gathered} \hline(3) \\ \text { Inflation } \end{gathered}$	$\overline{(4)}$ Covid measures	(5) Juneteenth
Dependent variable: Post-treatment opinion on topic					
Democrats x Dem-leaning images (D)	$\begin{gathered} \hline 3.880 \\ (1.172) \end{gathered}$	$\begin{gathered} \hline 0.984 \\ (1.936) \end{gathered}$	$\begin{gathered} 2.466 \\ (1.735) \end{gathered}$	$\begin{gathered} -0.341 \\ (2.134) \end{gathered}$	$\begin{gathered} \hline 1.242 \\ (2.878) \end{gathered}$
Democrats x neutral images (N)	$\begin{gathered} 2.197 \\ (1.360) \end{gathered}$	$\begin{gathered} 1.939 \\ (2.006) \end{gathered}$	$\begin{gathered} 2.236 \\ (0.962) \end{gathered}$	$\begin{aligned} & -2.073 \\ & (0.386) \end{aligned}$	$\begin{gathered} 0.680 \\ (0.537) \end{gathered}$
Democrats x Rep-leaning images (R)	$\begin{gathered} 2.449 \\ (1.113) \end{gathered}$	$\begin{gathered} -0.555 \\ (1.621) \end{gathered}$	$\begin{aligned} & -0.103 \\ & (1.106) \end{aligned}$	$\begin{gathered} -2.390 \\ (1.349) \end{gathered}$	$\begin{gathered} 1.116 \\ (0.419) \end{gathered}$
Independents x Dem-leaning images (D)	$\begin{gathered} 0.632 \\ (1.107) \end{gathered}$	$\begin{gathered} -0.923 \\ (2.505) \end{gathered}$	$\begin{aligned} & -1.865 \\ & (1.055) \end{aligned}$	$\begin{gathered} -0.184 \\ (1.031) \end{gathered}$	$\begin{aligned} & -1.017 \\ & (0.229) \end{aligned}$
Independents x Rep-leaning images (R)	$\begin{aligned} & -0.835 \\ & (1.493) \end{aligned}$	$\begin{gathered} -3.764 \\ (1.913) \end{gathered}$	$\begin{aligned} & -1.626 \\ & (0.880) \end{aligned}$	$\begin{aligned} & -1.895 \\ & (0.769) \end{aligned}$	$\begin{aligned} & -0.781 \\ & (1.042) \end{aligned}$
Republicans x Dem-leaning images (D)	$\begin{gathered} 1.249 \\ (2.303) \end{gathered}$	$\begin{gathered} -3.456 \\ (1.964) \end{gathered}$	$\begin{aligned} & -1.685 \\ & (0.673) \end{aligned}$	$\begin{aligned} & -4.874 \\ & (0.897) \end{aligned}$	$\begin{aligned} & -1.983 \\ & (0.848) \end{aligned}$
Republicans x neutral images (N)	$\begin{aligned} & -1.279 \\ & (2.621) \end{aligned}$	$\begin{aligned} & -4.721 \\ & (2.115) \end{aligned}$	$\begin{aligned} & -1.277 \\ & (0.842) \end{aligned}$	$\begin{aligned} & -5.555 \\ & (0.835) \end{aligned}$	$\begin{gathered} 0.022 \\ (1.018) \end{gathered}$
Republicans x Rep-leaning images (R)	$\begin{aligned} & -5.956 \\ & (1.369) \\ & \hline \end{aligned}$	$\begin{gathered} -4.939 \\ (1.976) \end{gathered}$	$\begin{aligned} & -5.571 \\ & (1.956) \\ & \hline \end{aligned}$	$\begin{gathered} -5.577 \\ (1.454) \end{gathered}$	$\begin{aligned} & -1.155 \\ & (1.602) \\ & \hline \end{aligned}$
H0 for equality tests:	P value:				
Dem* D$)-\operatorname{Rep}^{*}(\mathrm{R}) \leq \operatorname{Dem} *(\mathrm{R})-\operatorname{Rep}^{*}(\mathrm{D}):$	0.002	0.030	0.027	0.086	0.564
Dem* $(\mathrm{R})=\mathrm{Rep}^{*}(\mathrm{D})$:	0.424	0.091	0.118	0.275	0.010
$\operatorname{Dem}^{*}(\mathrm{D})-\operatorname{Rep}^{*}(\mathrm{R}) \leq \operatorname{Dem*}(\mathrm{N})-\operatorname{Rep}^{*}(\mathrm{~N}):$	0.027	0.613	0.062	0.290	0.315
Observations	1574	1608	1625	1595	1551
Treatment-independent controls	Y	Y	Y	Y	Y

Notes: The Table presents OLS estimates of the effect of the Democrat-leaning (D), neutral (N) and Republican-leaning (R) news-leading images. The dependent variable is respondents' opinion after exposure to the news (column headers indicate the relevant news issue). Treatments are interacted with indicators of the respondent's political affiliation (Democratic, Independent, or Republican), which is registered before treatment. The dependent variable for the "Defund Police" issue ranges between -100 and 100, while all others range in $-50+50$. Variables are adjusted so that the highest value in the range always corresponds to the Democrats' ideological position (hence the largest of any two coefficients indicates a relatively more pro-Democratic opinion, and vice versa). Treatment-independent controls are the same as in the main specification (with the natural exception of controls for political opinion and party preference). The panel below the regression coefficients reports the P-values for one-sided and two-sided tests of equality between coefficients (null hypotheses are indicated on the left) using robust standard errors. Heteroskedasticity-robust standard errors in parentheses.

TABLE (A.2.9)
Heterogeneous Impact of Leading Images on News-Readers' Opinion:
(by tercile of readers' prior opinion on the issue)

	(1) Police funds	(2) Covid measures	(3) Iran deal	(4) Inflation	(5) Juneteenth
Dependent variable: Opinion difference					
Lowest prior opinion x Dem-leaning images (D)	$\begin{aligned} & 12.554 \\ & (3.362) \end{aligned}$	$\begin{gathered} 2.138 \\ (4.662) \end{gathered}$	$\begin{gathered} 0.105 \\ (2.870) \end{gathered}$	$\begin{gathered} -2.888 \\ (3.720) \end{gathered}$	$\begin{aligned} & -1.965 \\ & (3.529) \end{aligned}$
Lowest prior opinion x neutral images (N)	$\begin{gathered} 7.375 \\ (3.375) \end{gathered}$	$\begin{gathered} 0.409 \\ (4.888) \end{gathered}$	$\begin{gathered} 1.544 \\ (2.842) \end{gathered}$	$\begin{gathered} -3.352 \\ (3.706) \end{gathered}$	$\begin{gathered} -0.000 \\ (3.380) \end{gathered}$
Lowest prior opinion x Rep-leaning images (R)	$\begin{gathered} 7.854 \\ (3.729) \end{gathered}$	$\begin{gathered} -3.715 \\ (4.517) \end{gathered}$	$\begin{gathered} -3.153 \\ (3.000) \end{gathered}$	$\begin{aligned} & -3.577 \\ & (3.800) \end{aligned}$	$\begin{gathered} -0.888 \\ (3.506) \end{gathered}$
Medium prior opinion x Dem-leaning images (D)	$\begin{gathered} 6.624 \\ (2.437) \end{gathered}$	$\begin{gathered} -2.498 \\ (2.622) \end{gathered}$	$\begin{gathered} 1.108 \\ (1.885) \end{gathered}$	$\begin{gathered} 0.125 \\ (2.395) \end{gathered}$	$\begin{gathered} 1.232 \\ (1.813) \end{gathered}$
Medium prior opinion x neutral images (N)	$\begin{gathered} 7.431 \\ (2.521) \end{gathered}$	$\begin{gathered} -4.320 \\ (2.692) \end{gathered}$	$\begin{gathered} -1.083 \\ (1.903) \end{gathered}$	$\begin{gathered} 1.703 \\ (2.499) \end{gathered}$	$\begin{gathered} 0.799 \\ (1.850) \end{gathered}$
Medium prior opinion x Rep-leaning images (R)	$\begin{gathered} 4.628 \\ (2.562) \end{gathered}$	$\begin{gathered} -4.247 \\ (2.616) \end{gathered}$	$\begin{gathered} -2.021 \\ (1.946) \end{gathered}$	$\begin{aligned} & -0.662 \\ & (2.499) \end{aligned}$	$\begin{gathered} 1.207 \\ (1.713) \end{gathered}$
Highest prior opinion x Dem-leaning images (D)	$\begin{gathered} 4.582 \\ (2.184) \end{gathered}$	$\begin{gathered} 0.288 \\ (2.367) \end{gathered}$	$\begin{gathered} -0.794 \\ (1.613) \end{gathered}$	$\begin{gathered} 3.552 \\ (2.369) \end{gathered}$	$\begin{gathered} 0.860 \\ (0.924) \end{gathered}$
Highest prior opinion x neutral images (N)	$\begin{gathered} 6.462 \\ (2.366) \end{gathered}$	$\begin{gathered} -1.969 \\ (2.250) \end{gathered}$	$\begin{gathered} 1.004 \\ (1.519) \end{gathered}$	$\begin{gathered} 5.445 \\ (2.293) \end{gathered}$	$\begin{gathered} 1.481 \\ (0.952) \end{gathered}$
Constant	$\begin{gathered} -4.536 \\ (17.908) \end{gathered}$	$\begin{aligned} & -23.977 \\ & (9.630) \end{aligned}$	$\begin{gathered} 15.283 \\ (9.085) \end{gathered}$	$\begin{array}{r} 20.849 \\ (7.958) \\ \hline \end{array}$	$\begin{aligned} & 17.378 \\ & (6.435) \end{aligned}$
Observations	1436	1491	1510	1505	1414
Treatment-independent controls	Y	Y	Y	Y	Y

Notes: The Table presents the OLS estimates for the effect of the Democrat-leaning (D), neutral (N) and Republican-leaning (R) news-leading images interacted with the terciles of respondents' first opinion on the news issue, i.e. that expressed before the treatment exposure. The dependent variable is respondents' opinion after exposure to the news (column headers indicate the relevant news issue). Treatment-independent controls are the same as in the main specification. Heteroskedasticity-robust standard errors are in parentheses.

TABLE (A.2.10)
Heterogeneous Impact of Leading Images on News-Readers' Opinion:
(by level of subjective salience of the issue)

	$\begin{gathered} \hline \hline(1) \\ \text { Police funds } \end{gathered}$	(2) Covid measures	$\begin{gathered} \hline \hline(3) \\ \text { Iran deal } \end{gathered}$	(4) Inflation	(5) Juneteenth
Dependent variable: Opinion difference					
Lowest salience x Dem-leaning images (D)	$\begin{gathered} \hline 3.707 \\ (2.449) \end{gathered}$	$\begin{gathered} \hline 6.523 \\ (2.437) \end{gathered}$	$\begin{gathered} \hline-1.574 \\ (1.772) \end{gathered}$	$\begin{gathered} \hline 2.808 \\ (2.303) \end{gathered}$	$\begin{aligned} & \hline-7.221 \\ & (2.066) \end{aligned}$
Lowest salience x neutral images (N)	$\begin{gathered} 4.446 \\ (2.898) \end{gathered}$	$\begin{gathered} 5.313 \\ (2.551) \end{gathered}$	$\begin{gathered} 0.314 \\ (1.691) \end{gathered}$	$\begin{gathered} 2.984 \\ (2.299) \end{gathered}$	$\begin{gathered} -4.130 \\ (1.926) \end{gathered}$
Lowest salience x Rep-leaning images (R)	$\begin{gathered} 0.286 \\ (2.807) \end{gathered}$	$\begin{gathered} 3.319 \\ (2.588) \end{gathered}$	$\begin{aligned} & -2.531 \\ & (1.579) \end{aligned}$	$\begin{gathered} 0.674 \\ (2.318) \end{gathered}$	$\begin{aligned} & -5.581 \\ & (2.146) \end{aligned}$
Medium salience x Dem-leaning images (D)	$\begin{aligned} & 1.781 \\ & (2.547) \end{aligned}$	$\begin{gathered} 3.876 \\ (2.451) \end{gathered}$	$\begin{gathered} 3.167 \\ (1.602) \end{gathered}$	$\begin{gathered} 4.352 \\ (2.275) \end{gathered}$	$\begin{gathered} -2.480 \\ (1.473) \end{gathered}$
Medium salience x neutral images (N)	$\begin{gathered} 0.784 \\ (2.685) \end{gathered}$	$\begin{gathered} 0.711 \\ (2.406) \end{gathered}$	$\begin{gathered} 0.812 \\ (1.677) \end{gathered}$	$\begin{gathered} 3.862 \\ (2.285) \end{gathered}$	$\begin{gathered} -1.556 \\ (1.695) \end{gathered}$
Medium salience x Rep-leaning images (R)	$\begin{gathered} 0.384 \\ (2.697) \end{gathered}$	$\begin{gathered} 0.682 \\ (2.470) \end{gathered}$	$\begin{gathered} -0.301 \\ (1.658) \end{gathered}$	$\begin{gathered} 2.668 \\ (2.381) \end{gathered}$	$\begin{gathered} -4.360 \\ (1.467) \end{gathered}$
Highest salience x Dem-leaning images (D)	$\begin{gathered} 6.260 \\ (2.522) \end{gathered}$	$\begin{gathered} 1.334 \\ (2.557) \end{gathered}$	$\begin{gathered} 1.491 \\ (1.728) \end{gathered}$	$\begin{gathered} 1.248 \\ (2.403) \end{gathered}$	$\begin{gathered} -0.104 \\ (1.583) \end{gathered}$
Highest salience x neutral images (N)	$\begin{gathered} 3.655 \\ (2.394) \end{gathered}$	$\begin{gathered} 0.187 \\ (2.592) \end{gathered}$	$\begin{gathered} 3.238 \\ (1.783) \end{gathered}$	$\begin{gathered} 4.142 \\ (2.334) \end{gathered}$	$\begin{gathered} -2.251 \\ (1.427) \end{gathered}$
Constant	$\begin{gathered} -0.179 \\ (17.686) \\ \hline \end{gathered}$	$\begin{aligned} & -30.384 \\ & (8.476) \end{aligned}$	$\begin{array}{r} 16.298 \\ (8.858) \\ \hline \end{array}$	$\begin{aligned} & 14.877 \\ & (6.963) \end{aligned}$	$\begin{array}{r} 20.526 \\ (5.184) \end{array}$
Observations	1436	1491	1510	1505	1414
Treatment-independent controls	Y	Y	Y	Y	Y

Notes: The Table presents the OLS estimates for the effect of the Democrat-leaning (D), neutral (N) and Republicanleaning (R) news-leading images interacted with indicators for the level of subjective salience assigned by respondents to the news issue (salience is measured before the treatment exposure). The dependent variable is respondents' opinion after exposure to the news (column headers indicate the relevant news issue). All dependent variables are adjusted so that the highest value corresponds to the Democrats' ideological position, hence positive coefficients indicate a pro-Democratic opinion shift. Treatment-independent controls are the same as in the main specification. Heteroskedasticity-robust standard errors are in parentheses.

TABLE (A.2.11)
Heterogeneous Impact of Leading Images on News-Readers' Opinion:
(by level of self-reported knowledge of the issue)

	$\begin{gathered} (1) \\ \text { Police funds } \end{gathered}$	(2) Covid measures	(3) Iran deal	$\begin{gathered} (4) \\ \text { Inflation } \end{gathered}$	(5) Juneteenth
Dependent variable: Opinion difference					
Lowest knowledge x Dem-leaning images (D)	$\begin{gathered} \hline 3.573 \\ (1.842) \end{gathered}$	$\begin{gathered} 5.511 \\ (3.123) \end{gathered}$	$\begin{gathered} \hline 1.508 \\ (1.400) \end{gathered}$	$\begin{gathered} 3.636 \\ (1.692) \end{gathered}$	$\begin{gathered} 0.036 \\ (1.193) \end{gathered}$
Lowest knowledge x neutral images (N)	$\begin{gathered} 3.437 \\ (2.118) \end{gathered}$	$\begin{gathered} 4.474 \\ (3.369) \end{gathered}$	$\begin{gathered} 2.707 \\ (1.403) \end{gathered}$	$\begin{gathered} 2.949 \\ (1.727) \end{gathered}$	$\begin{gathered} 0.844 \\ (1.148) \end{gathered}$
Lowest knowledge x Rep-leaning images (R)	$\begin{gathered} 1.214 \\ (2.145) \end{gathered}$	$\begin{gathered} 3.114 \\ (3.133) \end{gathered}$	$\begin{gathered} 0.216 \\ (1.350) \end{gathered}$	$\begin{gathered} 1.018 \\ (1.830) \end{gathered}$	$\begin{gathered} -0.172 \\ (1.153) \end{gathered}$
Highest knowledge x Dem-leaning images (D)	$\begin{gathered} 5.080 \\ (1.855) \end{gathered}$	$\begin{gathered} 3.030 \\ (2.090) \end{gathered}$	$\begin{gathered} 2.787 \\ (1.439) \end{gathered}$	$\begin{gathered} 0.813 \\ (1.687) \end{gathered}$	$\begin{gathered} -0.795 \\ (1.157) \end{gathered}$
Highest knowledge x neutral images (N)	$\begin{gathered} 3.240 \\ (1.803) \end{gathered}$	$\begin{gathered} 0.108 \\ (2.122) \end{gathered}$	$\begin{gathered} 2.239 \\ (1.472) \end{gathered}$	$\begin{gathered} 3.036 \\ (1.574) \end{gathered}$	$\begin{gathered} -0.279 \\ (1.363) \end{gathered}$
Constant	$\begin{gathered} -0.409 \\ (17.627) \\ \hline \end{gathered}$	$\begin{array}{r} -31.033 \\ (8.207) \\ \hline \end{array}$	$\begin{array}{r} 13.792 \\ (8.704) \\ \hline \end{array}$	$\begin{array}{r} 13.671 \\ (6.948) \\ \hline \end{array}$	$\begin{array}{r} 16.434 \\ (4.977) \\ \hline \end{array}$
Observations	1436	1491	1510	1505	1414
Treatment-independent controls	Y	Y	Y	Y	Y

Notes: The Table presents the OLS estimates for the effect of the Democrat-leaning (D), neutral (N) and Republicanleaning (R) news-leading images interacted with indicators for two levels of (self-reported) knowledge on the issue prior to the news exposure. The dependent variable is respondents' opinion after treatment exposure (column headers indicate the relevant news issue). All dependent variables are adjusted so that the highest value corresponds to the Democrats' ideological position, hence positive coefficients indicate a pro-Democratic opinion shift. Treatment-independent controls are the same as in the main specification. Heteroskedasticity-robust standard errors are in parentheses.

FIGURE (A.2.6)
Densities of first opinion by news issue
Notes: The Figure displays the densities of first opinions (i.e. the opinion expressed before treatment exposure) on the five news issues, dividing respondents by their party affiliation. Parties' modes of opinion are closer in the "Police funds" issue, and most distant in the "Juneteenth" issue, suggesting that the ideological distance between Democrats and Republicans in the sample is smaller in the former and wider in the latter case.

FIGURE (A.2.7)
Heterogeneous effects of images on opinion, by respondents' tercile of prior opinion on the issue

Notes: The Figure shows OLS estimates of opinion changes after news exposure (news issues indicated below each panel). Treatments are interacted with respondents' tercile of prior opinion on the news issue. Omitted regression category: Respondents in the highest tercile of prior opinion, exposed to Rep-leaning images. Lines indicate 95% CI (heteroskedasticity-robust st. errors). Equality tests on top of each Figure compare coefficients within each party; those at the bottom compare coefficients across parties (tested coefficients indicated in parentheses). All p-values are for two-sided tests of equality, with bold font marking statistical significance at 10 percent level or higher.

FIGURE (A.2.8)
Heterogeneous effects of images on opinion,
by respondents' subjective salience of the news issue
Notes: The Figure shows OLS estimates of opinion changes after news exposure (news issues indicated below each panel). Treatments are interacted with three indicators for the level of subjective salience respondents assign to the news issue prior to treatment exposure. Omitted regression category: Respondents in the highest level of salience exposed to Rep-leaning images. Lines indicate 95% CI (heteroskedasticity-robust st. errors). Equality tests on top of each Figure compare coefficients within each party; those at the bottom compare coefficients across parties (tested coefficients indicated in parentheses). All p-values are for two-sided tests of equality, with bold font marking statistical significance at 10 percent level or higher.

FIGURE (A.2.9)
Heterogeneous effects of images on opinion, by respondents' knowledge of the news issue

Notes: The Figure shows OLS estimates of opinion changes after news exposure (news issues indicated below each panel). Treatments are interacted with two indicators for respondents' (self reported) level of knowledge on the news issue prior to treatment exposure. Omitted regression category: Respondents in the highest level of salience exposed to Rep-leaning images. Lines indicate 95% CI (heteroskedasticity-robust st. errors). Equality tests on top of each Figure compare coefficients within each party; those at the bottom compare coefficients across parties (tested coefficients indicated in parentheses). All p-values are for two-sided tests of equality, with bold font marking statistical significance at 10 percent level or higher.

[^0]: *I am especially grateful to Andrea Mattozzi and Riccardo Salerno for their helpful suggestions. This work benefited from comments by Zeinab Aboutalebi, Giacomo Calzolari, Flavia Cavallini, Thomas Crossley, Andrea Ichino, Mustafa Kaba, David K. Levine, David Martinez de Lafuente, Patrizia Mealli, David Stromberg, Junze Sun, and seminar participants at Collegio Carlo Alberto, the European University Institute, Bocconi University (LEAP), Oxford University, University of Milan, Italian Economists Society, Royal Economics Society. I gratefully acknowledge financial support from the 2019 EUI Research Council grant, and from the 2020 Early Stage Researchers grant at the European University Institute. The experiment was approved by the Ethics Committee of the European University institute, and pre-registered in the AEA RCT Registry with Digital Object Identifier: 10.1257/rct.7904-1.0.
 ${ }^{\dagger}$ Department of Economics, European University Institute (EUI). Email: Giulia.caprini@eui.eu.

[^1]: ${ }^{1}$ UVM data by SimilarWeb.com accessed on October 27, 2020. See https://www.similarweb.com
 ${ }^{2}$ The labels correspond to the tags in the descriptions by Similarweb.com; discarded outlets are mainly small local outlets, with the notable exception of the "Los Angeles Times", the "Chicago Tribune" and the "Arizona Republic".
 ${ }^{3}$ https://www.adfontesmedia.com, https://www.allsides.com
 ${ }^{4}$ See Figure 1 for an illustration of the news previews on social media.
 ${ }^{5}$ When a person's portraits did not cover a wide range of angles, I added a 10 th picture to her set. Portraits were chosen so to include different camera angles for each person.

[^2]: ${ }^{6}$ To President Donald Trump, who never sat in congress before the presidency, I attribute the same DW-NOMINATE score as the most partisan Republican congressperson (Tommy Tuberville, with score 0.916). To President Joe Biden I instead attribute the same partisanship he had as congressman in 2008 (-0.314).

[^3]: ${ }^{7}$ Human vision is sharp only in a small central area of the visual field (the fovea), while on the retina of the eye acuity falls off rapidly from this area. Because detailed discriminations are possible only on the fovea, eyes need to scan pictures to take in all the details. Such a scanning does not occur in smooth sweeps but, rather, as a series of very rapid jumps ("saccades") and stops ("fixations").
 ${ }^{8}$ This is only one of the ways to measure viewer's attention towards a subject. Other aspects that are relevant to this extent include color vidvidness, body posture etc.; however, they do not form part of my "raw information" set on the images, and thus nevertheless necessarily fall outside the scope of the present work.

[^4]: ${ }^{9}$ The maximum number of individuals I contemplate in the data is 10 persons in the same image

[^5]: ${ }^{10}$ Data from voteview.com by Lewis et al., 2021
 ${ }^{11}$ For a complete list of the available image tags, see https://docs.microsoft.com/en-us/azure/cognitive-services/ computer-vision/category-taxonomy

[^6]: ${ }^{12}$ In other words, I do not explore the co-presence of two or more specific subjects; however, indicators for the joint presence of crowds/ groups of persons in an image are included, and categorized as context features, e.g. "presence of a crowd of women".
 ${ }^{13}$ I cut features at the bottom 0.01 of the tf-idf score distribution. The score is computed within event and at the news source level (given that, differently from text analysis, no image can contain a given feature more than once).

[^7]: ${ }^{14}$ The analysis of visual partisanship in this section closely follows the study of verbal partisanship on Twitter by Demszky et al. (2019). To produce the results in this section I make extensive use of the programming codes made available by these authors at https://github.com/ddemszky/framing-twitter

[^8]: ${ }^{15}$ This part of the analysis necessarily excludes all tweets that contain no other text than the url of the shared articles.
 ${ }^{16}$ For more details on BERTopic, see https://maartengr.github.io/BERTopic
 ${ }^{17}$ Using HDBSCAN for clustering.

[^9]: ${ }^{18}$ I run a sensitivity analysis with a topic number ranging from 5 to 150 clusters. The optimal number of topics was identified both by comparing the BERTopic coherence score and through manual inspection of the topics' descriptions.
 ${ }^{19}$ For example, the following is a news piece equally relevant to the "security" and "entertainment" topics, and more specifically to the granular topics "police use of force" and "football": "Police shot tear gas and rubber bullets into a massive crowd that lined the streets of Argentina's capital city to pay their respects to soccer legend Diego Maradona, who died on Wednesday at the age of 60".
 ${ }^{20}$ For instance, while the vocabulary contains features indicating the presence of representatives from a particular decile of the political spectrum distribution, it has no feature capturing an image's color dominance, a plausibly relevant framing device in nature pictures.

[^10]: ${ }^{21}$ Stressing this scope is relevant because the analysis in Section III builds on the same methods and tools of the first, hence it operates within the same "space of inference". This allows to legitimately combine the results in the two main Sections of the paper (namely, the existence of polarization in visual language, and the effect of different visual narratives on the public).

[^11]: ${ }^{22}$ With respective digital object identifiers (DOIs): 10.1257/rct.7904-1.0 and 10.1257/rct.7247-1.0.
 ${ }^{23}$ The order of issues is randomized.
 ${ }^{24}$ For all the issues the text is comparable to that in news pieces on the same issues rated "non-partisan" on www.allsides.com

[^12]: ${ }^{25}$ These treatment-independent controls are indicators for: 4 age groups, ethnicity (White, Black, Latinx, Asian, Native American), literacy, political opinion (liberal-conservative), level of interest for politics, party preference, previous knowledge on the issue, perceived salience of the issue, opinion on the issue prior to treatment exposure, main type of information outlet (Radio, TV, Social networks, Newspapers), frequency of use for 6 media outlets (Fox News, Breitbart, New York Post, MSNBC, New York Times, CNN), technical aspects of the survey filling (indicator for low screen resolution, total number of clicks in the survey introduction), nd State of residence fixed effects. Appendix Table A.2.2 reports the corresponding estimates from specifications omitting controls.

[^13]: ${ }^{26}$ This is the time just sufficient to load the news page and immediately scroll down to the "next page" button.
 ${ }^{27}$ Respondents are given as reference the State and Local total Police expenditure in 2018, amounting to $\$ 118,800,032,000$ (rounded to 119 billion). Data accessed on January 29, 2021 from: https://state-local-finance-data.taxpolicycenter.org/ pages.cfm
 ${ }^{28} 1$ employ a HC2 heteroskedasticity consistent covariance matrix, following Long and Ervin 2000 for a setting with $N>250$.

[^14]: ${ }^{29}$ Note that that the measured effects of images add to that of neutral (non politically partisan) text elements. The present experiment does not contemplate the impact of partisan text, neither by itself nor in combination with images.
 ${ }^{30}$ More precisely, image variation produces an opinion change whose magnitude is 634% that produced by the news preview with a neutral image.

[^15]: ${ }^{31}$ To illustrate, image variation in this news issue produces a change in opinion by up to 2.329 p.p.; exposure to the news attains a minimum opinion change of .42 p.p. (negative). The former is 554% the latter.

[^16]: ${ }^{32}$ The statement refers to the written news summary featured in news previews like those encountered by scrolling social media feeds. It does not apply to a piece full-text, since survey participants could never access a full-length article.
 ${ }^{33}$ See Appendix Figure A.2.6
 ${ }^{34}$ Appendix Table A.2.8 reports the point estimates for all the issues, including Juneteenth.
 ${ }^{35}$ The test label indicates respondents' party affiliation through the external letter, and the images while the internal letters. For instance, test $\left(\mathrm{D}^{*} \mathrm{R}=\mathrm{R}^{*} \mathrm{I}\right)$ compares coefficients for Democrats and Independents both exposed to Republican-leaning images.

[^17]: ${ }^{36}$ The coefficients and the test for the Juneteenth issue are displayed in Appendix Figure ??. For this topic, the p-value of this test is 0.052 .

[^18]: ${ }^{37}$ This nets out the gap accruing to the political stance and independent of the images.
 38 These considerations do not aim to evaluate whether a policy of this intent would be socially desirable. Ascertaining these aspects is beyond the scope of this subsection.

[^19]: ${ }^{39} \mathrm{P}$-values from equality tests reported on top of the panels in Figure A.2.7

[^20]: ${ }^{40}$ This would requiring information on focal lengths and the presence of a know object whose dimension is known (e.g. a 1 euro coin).

[^21]: ${ }^{41} \mathrm{~A}$ more accurate definition of a person's visual field would require information on the relative distances between the objects in the picture. The difficulty with measuring distances in pictures arises from what is called "perspective distortion", a transformation of the photographed objects that is determined by the relative distances among the objects and with the camera. In fact, due to perspective distortion, distances and relative sizes in a picture are altered, and shots taken at different angles and focal lengths will result in different compressions/extensions of distances. For this reason, and given the limited information accompanying the images in the dataset, the gaze regions can only be defined by approximation.

[^22]: ${ }^{42}$ Roundups are available at: https://www.allsides.com/story/admin
 ${ }^{43}$ For instance, Republican outlets previously framing the governments' economic policy through positive affect could later have adopted the opposite stance (to criticize the new government), and the same for Democrat-leaning outlets.
 ${ }^{44}$ I derive the images' "partisan loading" by taking the highest 5 z-scores in absolute value of their visual tokens. The partisan labelling is robust to alternative metrics, such as average of "significant" z-scores (scores larger than 2 in absolute value).

[^23]: ${ }^{45}$ From Allsides.com's Headline Roundup "The Politicization of Inflation", available at: https://www.allsides.com/story/ perspectives-politicization-inflation

[^24]: ${ }^{46}$ From Allsides.com's Headline Roundup "Trump and the Politics of Coronavirus", available at: https://www.allsides.com/ story/opinions-trump-and-politics-coronavirus

[^25]: ${ }^{47}$ From Allsides.com's "U.S. Mounts All-Out Effort to Save Iran Nuclear Deal", available at: https://www.allsides.com/news/ 2021-04-15-1349/us-mounts-all-out-effort-save-iran-nuclear-deal

[^26]: ${ }^{48}$ From Allsides.com's "Juneteenth 2021", available at: https://www.allsides.com/story/perspectives-juneteenth-2021

[^27]: ${ }^{49}$ From Allsides.com's "Defunding the Police", available at: https://www.allsides.com/story/perspectives-defunding-police

