Asset Purchases, Limited Asset Markets Participation and Inequality

Stelios Tsiaras

EPFL - Swiss Finance Institute

EEA-ESEM 2022

This paper studies the interaction of financial frictions with unconventional monetary policy and its implications for inequality and the macroeconomy

- Quantitative Easing Asset purchases in exchange of bank reserves
 - The main unconventional monetary policy tool for stimulating the economy after the Financial Crisis and the recent Pandemic

- Quantitative Easing Asset purchases in exchange of bank reserves
 - The main unconventional monetary policy tool for stimulating the economy after the Financial Crisis and the recent Pandemic
- Goal of QE: Reduce long term rates \rightarrow stimulate economy \rightarrow push asset prices up

- Quantitative Easing Asset purchases in exchange of bank reserves
 - The main unconventional monetary policy tool for stimulating the economy after the Financial Crisis and the recent Pandemic
- Goal of QE: Reduce long term rates \rightarrow stimulate economy
 - \rightarrow push asset prices up

- Quantitative Easing Asset purchases in exchange of bank reserves
 - The main unconventional monetary policy tool for stimulating the economy after the Financial Crisis and the recent Pandemic
- Goal of QE: Reduce long term rates \rightarrow stimulate economy
 - \rightarrow push asset prices up

 \rightarrow Achieved in the US and the EA (see Altavilla et. al (2019), Krishnamurthy and Vissing-Jorgensen (2012))

• Creates direct and general equilibrium effects:

- Quantitative Easing Asset purchases in exchange of bank reserves
 - The main unconventional monetary policy tool for stimulating the economy after the Financial Crisis and the recent Pandemic
- Goal of QE: Reduce long term rates \rightarrow stimulate economy
 - \rightarrow push asset prices up

- Creates direct and general equilibrium effects:
 - Direct effects: Increase asset prices, reduce long term rates

- Quantitative Easing Asset purchases in exchange of bank reserves
 - The main unconventional monetary policy tool for stimulating the economy after the Financial Crisis and the recent Pandemic
- Goal of QE: Reduce long term rates \rightarrow stimulate economy

 \rightarrow push asset prices up

- Creates direct and general equilibrium effects:
 - Direct effects: Increase asset prices, reduce long term rates
 - Indirect effects: Wages increase, economic activity is stimulated, unemployment drops

- Quantitative Easing Asset purchases in exchange of bank reserves
 - The main unconventional monetary policy tool for stimulating the economy after the Financial Crisis and the recent Pandemic
- Goal of QE: Reduce long term rates \rightarrow stimulate economy

 \rightarrow push asset prices up

- Creates direct and general equilibrium effects:
 - Direct effects: Increase asset prices, reduce long term rates
 - Indirect effects: Wages increase, economic activity is stimulated, unemployment drops
- <u>Prior consensus</u>: QE increases inequality between those that <u>do have</u> financial assets and those who <u>do not</u>

Income Inequality Index for the the Euro Area

(1) SVAR evidence: QE is expansionary and reduces inequality

(2) Rationalize these findings with a two agent NK DSGE model with financial frictions and heterogeneity for the Euro Area

- (2) Rationalize these findings with a two agent NK DSGE model with financial frictions and heterogeneity for the Euro Area
 - Potential channels: Labour income, asset prices, interest rates, profits from banks and firms

- (2) Rationalize these findings with a two agent NK DSGE model with financial frictions and heterogeneity for the Euro Area
 - Potential channels: Labour income, asset prices, interest rates, profits from banks and firms
 - Interest rate differential channel dominates leading to an inequality reduction

- (2) Rationalize these findings with a two agent NK DSGE model with financial frictions and heterogeneity for the Euro Area
 - Potential channels: Labour income, asset prices, interest rates, profits from banks and firms
 - Interest rate differential channel dominates leading to an inequality reduction
- (3) Normative exercise: QE can be contractionary and increase inequality when considering a subset of Euro Area members with low asset markets participation + flexible wages

Related Literature

• Monetary Policy and Inequality in the EA: Lenza and Slacalek (2018), Slacalek, Tristani, and Violante (2020), Ampudia et. al (2018) Hohberger, Priftis and Vogel (2019)

 \rightarrow Show the effects of QE on 1) consumption and income inequality, 2) inequality conditional on asset markets participation

- Financial frictions: Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist (1999), Gertler and Kiyotaki (2010), Brunnermeier and Sannikov (2014)
- **TANK:** Galí et al. (2007), Debortoli and Galí (2018), Bilbiie (2008) \rightarrow Combine a TANK model with financial frictions and QE
- **Proxy SVARs:** Gertler & Karadi (2015), Mertens & Ravn (2011), Stock and Watson (2012)

 \rightarrow Use of Altavila et al. (2019) to provide QE shock aggregate responses for the EA

Instrument

Instrument

$$V_t = \sum_{i=1}^p B_j V_{t-1} + s \epsilon_t^{QE}$$

Instrument

$$V_t = \sum_{i=1}^p B_j V_{t-1} + s \epsilon_t^{QE}$$

- Identify the coefficients in s with an external instrument
- QE factor by Euro Area Monetary Policy Event Study Database (EA-MPD); Altavilla et al. (2019)

Instrument

$$V_t = \sum_{i=1}^p B_j V_{t-1} + s \epsilon_t^{QE}$$

- Identify the coefficients in s with an external instrument
- QE factor by Euro Area Monetary Policy Event Study Database (EA-MPD); Altavilla et al. (2019)
- Document the price changes 10 minutes before and after the ECB MP meeting and estimate by PCA the factors that yield from the monetary policy changes

Impulse Responses to a QE Shock

The darker bands span the 16-84 percentiles of the draws distribution while the lighter band the 9-95 percentiles 7/15

Two-Agent NK model with banks = NK +

• Optimizers and a fraction of hand to mouth households without access to financial markets

- Optimizers and a fraction of hand to mouth households without access to financial markets
 - Different impact effect of QE to the two groups

- Optimizers and a fraction of hand to mouth households without access to financial markets
 - Different impact effect of QE to the two groups
- Banks extend loans to non-financial corporations, hold government bonds and reserves
 - + They face a moral hazard problem similarly to Gertler and Karadi (2013)

- Optimizers and a fraction of hand to mouth households without access to financial markets
 - Different impact effect of QE to the two groups
- Banks extend loans to non-financial corporations, hold government bonds and reserves
 - + They face a moral hazard problem similarly to Gertler and Karadi (2013)
 - Eliminates perfect substitutability of assets and breaks QE's neutrality

- Optimizers and a fraction of hand to mouth households without access to financial markets
 - Different impact effect of QE to the two groups
- Banks extend loans to non-financial corporations, hold government bonds and reserves
 - + They face a moral hazard problem similarly to Gertler and Karadi (2013)
 - Eliminates perfect substitutability of assets and breaks QE's neutrality
- Bond purchases by an unconstrained central bank by issuing and giving reserves to the banks

- Optimizers and a fraction of hand to mouth households without access to financial markets
 - Different impact effect of QE to the two groups
- Banks extend loans to non-financial corporations, hold government bonds and reserves
 - + They face a moral hazard problem similarly to Gertler and Karadi (2013)
 - Eliminates perfect substitutability of assets and breaks QE's neutrality
- Bond purchases by an unconstrained central bank by issuing and giving reserves to the banks
 - QE loosens banks constraint and stimulate the supply of loans

Impulse Responses to Central Bank Bond Purchases

Consumption and Income Inequality Responses

QE can be contractionary and increase inequality when asset markets participation is low

QE can be contractionary and increase inequality when asset markets participation is low

• Extend the work for conventional MP by Bilbiie (2008)

QE can be contractionary and increase inequality when asset markets participation is low

- Extend the work for conventional MP by Bilbiie (2008)
- There is a reversal point in the sign of the monetary policy impact

QE can be contractionary and increase inequality when asset markets participation is low

- Extend the work for conventional MP by Bilbiie (2008)
- There is a reversal point in the sign of the monetary policy impact
- Depends on the level of asset market participation and wage flexibility

Financial Assets and Wage Determination

• Intuition after a QE shock:
QE and Inverted Aggregate Demand Logic

- Intuition after a QE shock:
 - When wages are flexible → wages increase and profits ↓, up to a point that they drag down aggregate demand

QE and Inverted Aggregate Demand Logic

- Intuition after a QE shock:
 - When wages are flexible → wages increase and profits ↓, up to a point that they drag down aggregate demand
 - When wages are sticky → wage unions make sure labour demand does not fall as match, profits become procyclical More

Impact Effects Conditional on Asset Market Participation: QE Shock

• QE increases aggregate demand and is redistributive by reducing consumption and income inequality in the EA

- QE increases aggregate demand and is redistributive by reducing consumption and income inequality in the EA
- I show this in an external instrument SVAR and a DSGE model with heterogeneity and financial frictions

- QE increases aggregate demand and is redistributive by reducing consumption and income inequality in the EA
- I show this in an external instrument SVAR and a DSGE model with heterogeneity and financial frictions
- In economies with low financial inclusion and flexible wages, QE might have inverse effects than those expected.

- QE increases aggregate demand and is redistributive by reducing consumption and income inequality in the EA
- I show this in an external instrument SVAR and a DSGE model with heterogeneity and financial frictions
- In economies with low financial inclusion and flexible wages, QE might have inverse effects than those expected.
- Cyclicality of profits plays a crucial role to the sign of the effects. With flexible wages, profits are countercyclical and inequality can increase after a QE shock.

Appendix

• Two types of agents $s \in \{o, h\}$ (o = optimizers, h = hand to mouth)

- Two types of agents $s \in \{o, h\}$ (o = optimizers, h = hand to mouth)
- λ hand to mouth, 1λ optimizers

- Two types of agents $s \in \{o, h\}$ (o = optimizers, h = hand to mouth)
- λ hand to mouth, 1λ optimizers
- Hand to Mouth (h)

$$P_t C_t^h = P_t W_t L_t^h + P_t T_t^h.$$

- Two types of agents $s \in \{o, h\}$ (o = optimizers, h = hand to mouth)
- λ hand to mouth, 1λ optimizers
- Hand to Mouth (h)

$$P_t C_t^h = P_t W_t L_t^h + P_t T_t^h.$$

• Optimizers (o)

$$\begin{split} P_t C_t^o + D_t^o + q_t B_t^o + Q_t S_t^o + T_t^o + \\ \underbrace{q_t [\frac{1}{2} (B_t^o - \bar{B}^o)^2] + Q_t [\frac{1}{2} (S_t^o - \bar{S}^o)^2]}_{\text{holding costs}} \\ &= P_t W_t L_t^o + \Pi_t + R_{d,t} D_{t-1}^o + R_{b,t} B_{t-1}^o + R_{k,t} S_{t-1}^o \end{split}$$

• Households demand for shares

$$S_t^o = \bar{S}^o + \mathbb{E}_t \Lambda_{t,t+1} (R_{k,t+1} - R_{t+1})$$

• Households demand for bonds

$$B_t^o = \bar{B}^o + \mathbb{E}_t \Lambda_{t,t+1} (R_{b,t+1} - R_{t+1})$$

Financial Intermediaries

• Bank's balance sheet:

$$\underbrace{Q_t S_{j,t} + q_t B_{j,t} + M_{j,t}^B}_{\text{Assets}} = N_{j,t} + \underbrace{D_{j,t}}_{\text{Liabilities}}$$

Financial Intermediaries

• Bank's balance sheet:

$$\underbrace{Q_t S_{j,t} + q_t B_{j,t} + M_{j,t}^B}_{\text{Assets}} = N_{j,t} + \underbrace{D_{j,t}}_{\text{Liabilities}}$$

• Bank's evolution of net worth at period t + 1:

$$N_{j,t+1} = \underbrace{R_{k,t}Q_t S_{j,t}^B + R_{b,t}q_t b_{j,t}^B + R_t M_{j,t}}_{\text{interest gains}}$$

-
$$\underbrace{R_t D_{j,t}}_{\text{interest losses}}$$

• Bankers face a moral hazard problem

- Bankers face a moral hazard problem
- At t the banker can choose to divert funds from her assets and transfer them back to her household members

- Bankers face a moral hazard problem
- At t the banker can choose to divert funds from her assets and transfer them back to her household members
- Cost: depositors can force the intermediary into bankruptcy and get the remaining assets

- Bankers face a moral hazard problem
- At t the banker can choose to divert funds from her assets and transfer them back to her household members
- Cost: depositors can force the intermediary into bankruptcy and get the remaining assets
- Depositors supply funds such as

$$\underbrace{V_{j,t}}_{\text{Value of the bank}} \geq \underbrace{\theta[Q_t S_{j,t}^B + \Delta q_t B_{j,t}^B + \omega M_{j,t}^B]}_{\text{Gain from diverting}}$$

- Bankers face a moral hazard problem
- At t the banker can choose to divert funds from her assets and transfer them back to her household members
- Cost: depositors can force the intermediary into bankruptcy and get the remaining assets
- Depositors supply funds such as

$$\underbrace{V_{j,t}}_{\text{Value of the bank}} \geq \underbrace{\theta[Q_t S^B_{j,t} + \Delta q_t B^B_{j,t} + \omega M^B_{j,t}]}_{\text{Gain from diverting}}$$

• Easier for the bank to divert loans rather than bonds. Cannot divert reserves $\omega=0$

• This places a "risk- adjusted" constraint on the banks leverage ratio (ϕ_t) and net worth N_t :

• This places a "risk- adjusted" constraint on the banks leverage ratio (ϕ_t) and net worth N_t :

$$Q_t S_t^B + \Delta q_t B_t^B + \underbrace{\omega}_{=0} M_{j,t}^B \le \phi_t N_t$$

• This places a "risk- adjusted" constraint on the banks leverage ratio (ϕ_t) and net worth N_t :

$$Q_t S_t^B + \Delta q_t B_t^B + \underbrace{\omega}_{=0} M_{j,t}^B \le \phi_t N_t$$

 • When CB acquires bonds the constraint loosens and more capital is available for new loans $Q_t S^B_t$

• This places a "risk- adjusted" constraint on the banks leverage ratio (ϕ_t) and net worth N_t :

$$Q_t S_t^B + \Delta q_t B_t^B + \underbrace{\omega}_{=0} M_{j,t}^B \le \phi_t N_t$$

- • When CB acquires bonds the constraint loosens and more capital is available for new loans $Q_t S^B_t$
- Easier credit conditions stimulate aggregate demand, \uparrow asset prices, \downarrow spreads, \uparrow bank's NW

Back

• Central Bank purchase bonds B_t^{CB}

- Central Bank purchase bonds B_t^{CB}
- Asset purchases are financed by reserves

- Central Bank purchase bonds B_t^{CB}
- Asset purchases are financed by reserves

$$q_t B_t^{CB} = M_t$$

- Central Bank purchase bonds B_t^{CB}
- Asset purchases are financed by reserves

$$q_t B_t^{CB} = M_t$$

• Total quantity of bonds decomposition

$$B_t = B_t^B + B_t^H + B_t^{CB}$$

- Central Bank purchase bonds B_t^{CB}
- Asset purchases are financed by reserves

$$q_t B_t^{CB} = M_t$$

• Total quantity of bonds decomposition

$$B_t = B_t^B + B_t^H + B_t^{CB}$$

• Asset purchases process

$$B_t^{CB} = \phi_{b,t} B_t.$$

• Loosen financial constraint of the banks

- Central Bank purchase bonds B_t^{CB}
- Asset purchases are financed by reserves

$$q_t B_t^{CB} = M_t$$

• Total quantity of bonds decomposition

$$B_t = B_t^B + B_t^H + B_t^{CB}$$

• Asset purchases process

$$B_t^{CB} = \phi_{b,t} B_t.$$

- Loosen financial constraint of the banks
- Households prefer to hold less bonds due to the lower excess returns

Monetary Policy - Government

• The government budget constraint

$$G - T_t + \bar{B}(R_{b,t} - 1) + \underbrace{q_{t-1}B_{t-1}^G + Q_{t-1}S_{t-1}^G = N_t^G + M_t}_{\text{Asset Purchases}}$$

where the government's net worth evolution is

$$N_{t}^{G} = R_{s_{t}}q_{t}B_{t}^{G} + R_{b,t}Q_{t}S_{t}^{G} - R_{t}M_{t-1}$$

Monetary Policy - Government

• The government budget constraint

$$G - T_t + \bar{B}(R_{b,t} - 1) + \underbrace{q_{t-1}B_{t-1}^G + Q_{t-1}S_{t-1}^G = N_t^G + M_t}_{\text{Asset Purchases}}$$

where the government's net worth evolution is

$$N_{t}^{G} = R_{s_{t}}q_{t}B_{t}^{G} + R_{b,t}Q_{t}S_{t}^{G} - R_{t}M_{t-1}$$

• Taylor rule

$$i_t = i + \kappa_\pi \pi + \kappa_y (\log Y - \log Y^*) + \epsilon_{m,t},$$

Monetary Policy - Government

• The government budget constraint

$$G - T_t + \bar{B}(R_{b,t} - 1) + \underbrace{q_{t-1}B_{t-1}^G + Q_{t-1}S_{t-1}^G = N_t^G + M_t}_{\text{Asset Purchases}}$$

where the government's net worth evolution is

$$N_{t}^{G} = R_{s_{t}}q_{t}B_{t}^{G} + R_{b,t}Q_{t}S_{t}^{G} - R_{t}M_{t-1}$$

• Taylor rule

$$i_t = i + \kappa_\pi \pi + \kappa_y (\log Y - \log Y^*) + \epsilon_{m,t},$$

• Asset purchases process

$$S_t^G = \phi_{s,t} S_t,$$
$$B_t^G = \phi_{b,t} B_t.$$

Calibration

• Hand to mouth share $\lambda = 20\%$

Calibration

- Hand to mouth share $\lambda = 20\%$
 - In line with similar EA studies. (see Slacalek, Tristani, and Violante (2020), Ampudia et. al (2018))
- Household and production parameter values from the New Area-Wide Model (NAWM)
 - Interest rate of 2% per annum

Calibration

- Hand to mouth share $\lambda = 20\%$
 - In line with similar EA studies. (see Slacalek, Tristani, and Violante (2020), Ampudia et. al (2018))
- Household and production parameter values from the New Area-Wide Model (NAWM)
 - Interest rate of 2% per annum
- Calibrate banking parameters to reach long term:
- Hand to mouth share $\lambda = 20\%$
 - In line with similar EA studies. (see Slacalek, Tristani, and Violante (2020), Ampudia et. al (2018))
- Household and production parameter values from the New Area-Wide Model (NAWM)
 - Interest rate of 2% per annum
- Calibrate banking parameters to reach long term:
 - Private credit spread = (2.45 percent) EA long-term composite cost of borrowing indicator EONIA rate in 2003-2015 (Andrade et. al 2016)
 - Leverage of financial institutions of 6 (Andrade et. al 2016)

 $\bullet\,$ Household and production parameter values from the New Area-Wide Model (NAWM) - $\lambda=20\%$

- Household and production parameter values from the New Area-Wide Model (NAWM) - $\lambda=20\%$
- Calibrate capital requirements and assets risk weights according Basel III Minimum Capital Requirements

- Calibrate capital requirements and assets risk weights according Basel III Minimum Capital Requirements

 - Big systemic bank capital requirements are about $\theta=20\%$

- Calibrate capital requirements and assets risk weights according Basel III Minimum Capital Requirements

 - Big systemic bank capital requirements are about $\theta=20\%$
 - Risk Weights for Assets:

- Calibrate capital requirements and assets risk weights according Basel III Minimum Capital Requirements

 - Big systemic bank capital requirements are about $\theta=20\%$
 - Risk Weights for Assets:
 - Bonds (Δ) 50%: BBB+ to BBB- grade sovereign debt
 - Loans 100%: claims on BBB+ to BBB- corporates
 - Central Bank Reserves (ω) 0%

- Household and production parameter values from the New Area-Wide Model (NAWM) - $\lambda=20\%$
- Calibrate capital requirements and assets risk weights according Basel III Minimum Capital Requirements

 - Big systemic bank capital requirements are about $\theta=20\%$
 - Risk Weights for Assets:
 - Bonds (Δ) 50%: BBB+ to BBB- grade sovereign debt
 - Loans 100%: claims on BBB+ to BBB- corporates
 - Central Bank Reserves (ω) 0%
- Calibrate banking parameters to reach long term:

- Calibrate capital requirements and assets risk weights according Basel III Minimum Capital Requirements

 - Big systemic bank capital requirements are about $\theta=20\%$
 - Risk Weights for Assets:
 - Bonds (Δ) 50%: BBB+ to BBB- grade sovereign debt
 - Loans 100%: claims on BBB+ to BBB- corporates
 - Central Bank Reserves (ω) 0%
- Calibrate banking parameters to reach long term:
 - Private credit spread = (2.45 percent) EA long-term composite cost of borrowing indicator EONIA rate in 2003-2015 (Andrade et. al 2016)
 - Leverage of financial institutions of 6 (Andrade et. al 2016)

Profit Redistribution

15 / 15

Financial Intermediaries: Solution II

$$R_{b,t} = \Delta R_{b,t} + (1 - \Delta)R_t$$
$$R_{k,t} = \frac{[Z_t + (1 - \delta)Q_t]}{Q_{t-1}}$$

Back

Appendix: Capital Goods Producers

• Capital goods producers produce new capital in order to sell it to the goods producers subject to investment adjustment costs.

$$\max_{I_{\tau}} E_t \sum_{\tau=t}^{\infty} \Lambda_{t,\tau} \left\{ Q_t I_t - \left[1 + f\left(\frac{I_{\tau}}{I_{\tau-1}}\right) \right] I_{\tau} \right\}$$
$$Q_t = 1 + \left(\chi \frac{I_{\tau}}{I_{\tau-1}} \left(\frac{I_{\tau}}{I_{\tau-1}} - 1\right) + \frac{\chi}{2} \left(\frac{I_{\tau}}{I_{\tau-1}} - 1\right)^2 - \chi \Lambda_{t,\tau} \frac{I_{\tau+1}^2}{I_{\tau}^2} \left(\frac{I_{\tau}}{I_{\tau-1}} - 1\right) \right)$$

Intermediate Good Firms

• Production Function

$$Y_t = K_t^{\alpha} L_t^{1-\alpha}$$

• Capital evolves according to the law of motion of capital

$$K_{t+1} = I_t + (1-\delta)K_t.$$

Price Setting

- Intermediate firms are not freely able to change prices each period
- There is a fixed probability (1γ) that a firm can adjust its price.

From the law of large numbers, the following relation for the evolution of the price level emerges:

$$P_t = [(1 - \gamma)(P_t^*)^{1 - \epsilon} + \gamma(\Pi_{t-1}P_{t-1})^{1 - \epsilon}]^{\frac{1}{1 - \epsilon}}$$

where P_t^* represents the price chosen by firms resetting prices at time t.

Wage Setting: Perfectly Competitive Labour Markets

• Households choose optimally their labour supply taking wages as given

$$u_{c,t}^j W_t = \chi(L_t^j)^\epsilon.$$
(1)

Wage Setting: Sticky Wages

- Wage decisions are delegated to a continuum of labour unions
- The problem of the union is to maximize its objective function:

$$\lambda \left[u_{c,t}^r W_{h,t} L_{h,t} - \frac{\chi}{1+\epsilon} L_t^{1+\epsilon} \right] + (1-\lambda) \left[u_{c,t}^o W_{h,t} L_{h,t} - \frac{\chi}{1+\epsilon} L_t^{1+\epsilon} \right]$$

• subject to a labour demand schedule

$$L_{h,t} = \left(\frac{W_{h,t}}{W_t}\right)^{-\epsilon_w} L_t$$

where ϵ_w is the elasticity of substitution between labour inputs.

• In each period, a union faces a constant probability $1 - \xi_w$ of being able to re-optimize the nominal wage.

٠

Wage Setting: Sticky Wages

- Wage decisions are delegated to a continuum of labour unions
- Hours are determined by firms taking the wages set by unions as given
- Households supply the hours required by the firms given the wage set by unions
- Probability $1 \xi_{\omega}$ that the wage for each particular labour service $W_{h,t}$ is set optimally

The union buys homogeneous labour at nominal price $W_{h,t}$, repackages it by adding a mark-up and chooses the optimal wage W_t^* to maximize the objective function. The FOC is:

$$\left(\frac{\lambda}{u_{c,t}^{r}u_{l,t}^{r}} + \frac{1-\lambda}{u_{c,t}^{o}u_{l,t}^{o}}\right)W_{t} = \mu^{W}$$

Robustness to Inverse Frisch Elasticity: MP

Robustness to Inverse Frisch Elasticity: QE

15/15