## Deliberate Choice under a Lack of Confidence

## Christian P. Traeger ${ }^{1}$

Department of Economics, University of Oslo ifo Institute for Economic Research, Munich

Premise

- Not all probabilities are created equal

Question:

- How can or should a policy maker/adviser take such differences into account

[^0]
## Motivation: Background

Behavioral:

- Decision makers seem to respond differently to
- known/objective probabilities versus
- subjective guesstimates
- Vast literature on ambiguity, ambiguity attitude \& source uncertainty
- focused on descriptive behavior
- relaxes 'normatively'/'rationally' desirable axioms
- shows that decisions are 'as if' there exists ... (does not actually have to be a unique disentanglement of taste and uncertainty desciption)
$\hookrightarrow$ great for behavioral purpose
$\hookrightarrow$ difficult for policy applications


## Motivation: Question

Question:

- How should a decision maker deal with a lack of confidence into probability estimates?
Possible answers:
- A lack of confidence is already expressed by merely assigning probabilities to outcomes
- Ignore it, e.g., von Neumann-Morgenstern suggest EU


## Motivation: Question

Question:

- How should a decision maker deal with a lack of confidence into probability estimates?
Possible answers:
- A lack of confidence is already expressed by merely assigning probabilities to outcomes
$\hookrightarrow$ No: it's about probability $\frac{1}{2}$ because of
- a fair coin toss or
- Laplace's principle of insufficient reason

The lack of confidence governs the probability itself Different uncertainty generating processes

- Ignore it, e.g., von Neumann-Morgenstern suggest EU
$\hookrightarrow$ Let's see...


## Motivation: Objective

Looking for decision support framework for policy making:

- probabilities given (derived by scientists)
- seek evaluation of probabilistic scenarios (policy/society)
- main desiderata:
- stay close to von Neumann-Morgenstern framework (often considered 'normative benchmark')
- impose time consistency of decisions (failed by most amgiguity models)


## Motivation: Objective

Looking for decision support framework for policy making:

- probabilities given (derived by scientists)
- seek evaluation of probabilistic scenarios (policy/society)
- main desiderata:
- stay close to von Neumann-Morgenstern framework (often considered 'normative benchmark')
- impose time consistency of decisions (failed by most amgiguity models)

Simple idea:

- Distinguish in model what is different in real world (\& leave it to axioms whether evaluated the same or not)


## Example: distinct probabilistic characterizations

Guidance notes for lead authors of Intergovernmental Panel on Climate Change (AR4). All scenarios are described probabilistically, but authors are asked to distinguish between

Table 1. A simple typology of uncertainties

| Type | Indicative examples of sources | Typical approaches or considerations |
| :---: | :---: | :---: |
| Unpredictability | Projections of human behaviour not easily amenable to prediction (e.g. evolution of political systems). Chaotic components of complex systems. | Use of scenarios spanning a plausible range, clearly stating assumptions, limits considered, and subjective judgments. Ranges from ensembles of model runs. |
| Structural uncertainty | Inadequate models, incomplete or competing conceptual frameworks, lack of agreement on model structure, ambiguous system boundaries or definitions, significant processes or relationships wrongly specified or not considered. | Specify assumptions and system definitions clearly, compare models with observations for a range of conditions, assess maturity of the underlying science and degree to which understanding is based on fundamental concepts tested in other areas. |
| Value uncertainty | Missing, inaccurate or non-representative data, inappropriate spatial or temporal resolution, poorly known or changing model parameters. | Analysis of statistical properties of sets of values (observations, model ensemble results, etc); bootstrap and hierarchical statistical tests; comparison of models with observations. |

## Basic idea

In the model (part 1)

- distinguish different probalistic characterizations of the future
- labeling them with 'index' $s \in S \subset \mathbb{N}$
- apply standard axioms but respecting differences


## Basic idea

In the model (part 1)

- distinguish different probalistic characterizations of the future
- labeling them with 'index' $s \in S \subset \mathbb{N}$
- apply standard axioms but respecting differences

Note: Already Keynes in 'A treaties of probablity' (1921) suggests that a probabilistic description of an uncertain future might miss an orthogonal 'confidence' dimension

## Basic idea

In the model (part 1)

- distinguish different probalistic characterizations of the future
- labeling them with 'index' $s \in S \subset \mathbb{N}$
- apply standard axioms but respecting differences

Note: Already Keynes in 'A treaties of probablity' (1921) suggests that a probabilistic description of an uncertain future might miss an orthogonal 'confidence' dimension

Model (part 2)

- characterize a possible order structure on $s$
- capturing the idea of confidence
- for agents averse to a lack of confidence


## Relation to Ambiguity Literature

Models of ambiguity

- Rank dependent utility
- Choquet expected utility
- Variational preferences
- Multiple prior models
- Second order probabilities

Maybe closest to Klibanoff, Marinacci \& Mukerji's $(2005,2009)$ 'smooth ambiguity aversion' ( $\equiv$ KMM)

## Preview

The simple idea:

- Index probability measures by type or degree of confidence $s$
- Reduction of compound probabilities only if they are of same type/ same degree of confidence
- Otherwise standard axioms (von Neumann-Morgenstern, certainty separability, time consistency)


## Preview

The simple idea:

- Index probability measures by type or degree of confidence $s$
- Reduction of compound probabilities only if they are of same type/ same degree of confidence
- Otherwise standard axioms (von Neumann-Morgenstern, certainty separability, time consistency)

Results in:

- Decision Support Framework taking account of Confidence
- A concept of Aversion to the Lack of Confidence
- Generalization of a unified framework of
- Epstein-Zin preferences (disentangle int subst and risk aversion)
$\rightarrow$ KMM model (smooth ambiguity aversion)
- can nest common criteria such as EU, maximin, maximin EU, smooth ambiguity aversion as functions of confidence


## Uncertainty structure

Representing 1 layer of uncertainty


## Uncertainty structure

Representing 1 layer of uncertainty


## Uncertainty structure

Representing 1 layer of uncertainty


## Uncertainty structure

Representing 2 layers of uncertainty


## Uncertainty structure

Representing 3 layers of uncertainty


## Uncertainty structure

Representing 3 layers of uncertainty


One period future

## Uncertainty structure

Representing 3 layers of uncertainty


Multi-period setting

## Uncertainty structure

Representing 3 layers of uncertainty


Multi-period setting

## Reduction of compound lotteries (Definition)

Denote

- $P_{t}^{s}$ : Subset of $P_{t}$ with first node of type $s$ (e.g. confidence level)
- $\hat{s}\left(p_{t}\right)=s$ iff $p_{t} \in P_{t}^{s}$



## Reduction of compound lotteries (Definition)

Denote

- $P_{t}^{s s}$ : Subset of $P_{t}$ with first two uncertainty layers of type $s$



## Reduction of compound lotteries (Definition)

Denote

- $P_{t}^{s s}$ : Subset of $P_{t}$ with first two uncertainty layers of type $s$
- $p_{t}^{r}$ : Reduction of $p_{t} \in P_{t}^{s s}$ obtained by collapsing first two layers



## Mixing (Definition)

Mixing of lotteries: (here: same type lotteries but not crucial)
For $p_{t}, p_{t}^{\prime} \in P_{t}^{s}$ define for $\alpha \in[0,1]$ and $s \in S$ the mixture $p_{t} \oplus_{s}^{\alpha} p_{t}^{\prime} \quad$ as lottery in $P_{t}^{s}$ yielding

- $p_{t}$ with probability $\alpha$ and
- $p_{t}^{\prime}$ with probability $1-\alpha$ with
- where lottery is of type $s$

Same idea as std von Neumann-Morgenstern, but index $s$ representing type of lottery

## Mixing

Example: Mixing of lotteries:


## Mixing

Example: Mixing of lotteries:


## Axioms

Axioms

- Indifference to reduction of same degree of subjectivity lotteries:

For all $t \in\{0, \ldots, T\}, s \in S$, and $p_{t} \in \cup_{s \in S} P_{t}^{s s}: \quad p_{t}^{r} \sim_{t} p_{t}$

## Axioms

Axioms

- Indifference to reduction of same degree of subjectivity lotteries:

For all $t \in\{0, \ldots, T\}, s \in S$, and $p_{t} \in \cup_{s \in S} P_{t}^{s s}: \quad p_{t}^{r} \sim_{t} p_{t}$

- Independence:

For all $t \in\{0, \ldots, T\}, s \in S, \alpha \in[0,1]$ and $p_{t}, p_{t}^{\prime}, p_{t}^{\prime \prime} \in P_{t}^{s}$

$$
p_{t} \succeq_{t} p_{t}^{\prime} \quad \Leftrightarrow \quad p_{t} \oplus_{s}^{\alpha} p_{t}^{\prime \prime} \succeq_{t} p_{t}^{\prime} \oplus_{s}^{\alpha} p_{t}^{\prime \prime}
$$

## Axioms

Axioms

- Indifference to reduction of same degree of subjectivity lotteries:

For all $t \in\{0, \ldots, T\}, s \in S$, and $p_{t} \in \cup_{s \in S} P_{t}^{s s}: \quad p_{t}^{r} \sim_{t} p_{t}$

- Independence:

For all $t \in\{0, \ldots, T\}, s \in S, \alpha \in[0,1]$ and $p_{t}, p_{t}^{\prime}, p_{t}^{\prime \prime} \in P_{t}^{s}$

$$
p_{t} \succeq_{t} p_{t}^{\prime} \quad \Leftrightarrow \quad p_{t} \oplus_{s}^{\alpha} p_{t}^{\prime \prime} \succeq_{t} p_{t}^{\prime} \oplus_{s}^{\alpha} p_{t}^{\prime \prime}
$$

- Standard axioms: weak order, continuity, certainty separability, time consistency


## Representation

Notation for Representation:

- Uncertainty aggregator (generalized mean):
- For $f$ strictly increasing define: $\mathcal{M}_{p}^{f} z \equiv f^{-1}\left[\mathrm{E}_{p} f(z)\right]$
- Note: For $f$ concave $\mathcal{M}_{p}^{f} z<\mathrm{E}_{p} z$


## Representation

Notation for Representation:

- Uncertainty aggregator (generalized mean):
- For $f$ strictly increasing define: $\mathcal{M}_{p}^{f} z \equiv f^{-1}\left[\mathrm{E}_{p} f(z)\right]$
- Note: For $f$ concave $\mathcal{M}_{p}^{f} z<\mathrm{E}_{p} z$
- Let $\hat{f}_{t}=\left(f_{t}^{s}\right)_{s \in S}, f_{t}^{s}: \mathbb{R} \rightarrow \mathbb{R}$ be sequence of strictly increasing continuous functions


## Representation

Notation for Representation:

- Uncertainty aggregator (generalized mean):
- For $f$ strictly increasing define: $\mathcal{M}_{p}^{f} z \equiv f^{-1}\left[\mathrm{E}_{p} f(z)\right]$
- Note: For $f$ concave $\mathcal{M}_{p}^{f} z<\mathrm{E}_{p} z$
- Let $\hat{f}_{t}=\left(f_{t}^{s}\right)_{s \in S}, f_{t}^{s}: \mathbb{R} \rightarrow \mathbb{R}$ be sequence of strictly increasing continuous functions

Define generalized uncertainty aggregator:
Let $p_{t}$ be lottery $p_{t}^{1}$ over lotteries $p_{t}^{2}$ over $\ldots p_{t}^{N}$ over $\left(x_{t}^{*}, p_{t+1}\right)$ :
$\mathcal{M}_{p_{t}}^{\hat{f}_{t}} W_{t}\left(x_{t}^{*}, p_{t+1}\right) \equiv \mathcal{M}_{p_{t}^{1}}^{f^{\hat{s}\left(p_{t}^{1}\right)}} \cdots \mathcal{M}_{p_{t}^{N}}^{f^{\hat{f}\left(p_{t}^{N}\right)}} W_{t}\left(x_{t}^{*}, p_{t+1}\right)$

## Representation

The Representation:
The sequence of preference relations $\left(\succeq_{t}\right)_{t \in T}$ satisfies the axioms if, and only if, for all $t \in\{0, \ldots, T\}$ there exist

- a set of strictly increasing and continuous functions

$$
\hat{f}_{t}=\left(f_{t}^{s}\right)_{s \in S}, f_{t}^{s}: \mathbb{R} \rightarrow \mathbb{R}
$$

- a continuous and bounded function $u_{t}: X^{*} \rightarrow \mathbb{R}$


## Representation

The Representation:
The sequence of preference relations $\left(\succeq_{t}\right)_{t \in T}$ satisfies the axioms if, and only if, for all $t \in\{0, \ldots, T\}$ there exist

- a set of strictly increasing and continuous functions

$$
\hat{f}_{t}=\left(f_{t}^{s}\right)_{s \in S}, f_{t}^{s}: \mathbb{R} \rightarrow \mathbb{R}
$$

- a continuous and bounded function $u_{t}: X^{*} \rightarrow \mathbb{R}$ such that by defining recursively the functions $W_{T}=u_{T}$ and
- $W_{t-1}: X^{*} \times P_{t} \rightarrow \mathbb{R}$ by

$$
W_{t-1}\left(x_{t-1}, p_{t}\right)=u_{t-1}\left(x_{t-1}\right)+\mathcal{M}_{p_{t}}^{\hat{f}_{t}} W_{t}\left(x_{t}, p_{t+1}\right)
$$

## Representation

The Representation:
The sequence of preference relations $\left(\succeq_{t}\right)_{t \in T}$ satisfies the axioms if, and only if, for all $t \in\{0, \ldots, T\}$ there exist

- a set of strictly increasing and continuous functions

$$
\hat{f}_{t}=\left(f_{t}^{s}\right)_{s \in S}, f_{t}^{s}: \mathbb{R} \rightarrow \mathbb{R}
$$

- a continuous and bounded function $u_{t}: X^{*} \rightarrow \mathbb{R}$ such that by defining recursively the functions $W_{T}=u_{T}$ and
- $W_{t-1}: X^{*} \times P_{t} \rightarrow \mathbb{R}$ by

$$
W_{t-1}\left(x_{t-1}, p_{t}\right)=u_{t-1}\left(x_{t-1}\right)+\mathcal{M}_{p_{t}}^{\hat{f}_{t}} W_{t}\left(x_{t}, p_{t+1}\right)
$$

it holds for all $t \in T$ and all $p_{t}, p_{t}^{\prime} \in P_{t}$

$$
p_{t} \succeq_{t} p_{t}^{\prime} \Leftrightarrow \mathcal{M}_{p_{t}}^{\hat{f}_{t}} W_{t}\left(x_{t}, p_{t+1}\right) \geq \mathcal{M}_{p_{t}^{\prime}}^{\hat{f}_{t}} W_{t}\left(x_{t}, p_{t+1}\right)
$$

## Main Feature of Representation

The representation uses:

- A generalized mean for uncertainty aggregation
- For $f$ strictly increasing define: $\quad \mathcal{M}_{p}^{f} z \equiv f^{-1}\left[\mathrm{E}_{p} f(z)\right]$
- Note: For $f$ concave $\mathcal{M}_{p}^{f} z<\mathrm{E}_{p} z$


## Main Feature of Representation

The representation uses:

- A generalized mean for uncertainty aggregation
- For $f$ strictly increasing define: $\mathcal{M}_{p}^{f} z \equiv f^{-1}\left[\mathrm{E}_{p} f(z)\right]$
- Note: For $f$ concave $\mathcal{M}_{p}^{f} z<\mathrm{E}_{p} z$
- A sequence $\hat{f}_{t}=\left(f_{t}^{s}\right)_{s \in S}$ of aversion functions $f_{t}^{s}: \mathbb{R} \rightarrow \mathbb{R}$ characterizing aversion to uncertainty of type $s$


## Main Feature of Representation

The representation uses:

- A generalized mean for uncertainty aggregation
- For $f$ strictly increasing define: $\mathcal{M}_{p}^{f} z \equiv f^{-1}\left[\mathrm{E}_{p} f(z)\right]$
- Note: For $f$ concave $\mathcal{M}_{p}^{f} z<\mathrm{E}_{p} z$
- A sequence $\hat{f}_{t}=\left(f_{t}^{s}\right)_{s \in S}$ of aversion functions $f_{t}^{s}: \mathbb{R} \rightarrow \mathbb{R}$ characterizing aversion to uncertainty of type $s$

The representation shows:

- Any uncertainty node of type $s$ is evaluated using $\mathcal{M}_{p^{s}}^{f^{s}}$ (characterized by aversion function $f_{t}^{s}$ depending on $s$ )
- Evaluation is recursive (in both time and probabilitiy tree within a given period)

Example

## Interpretation

$$
W_{t-1}\left(x_{t-1}, p_{t}\right)=u_{t-1}\left(x_{t-1}\right)+\mathcal{M}_{p_{t}}^{\hat{f}_{t}} W_{t}\left(x_{t}, p_{t+1}\right)
$$

Function $u$ measures aversion to intertemporal subst.
There are 2 effects of risk:
i) Generates fluctuations over time $\rightarrow$ Disliked by agents who prefer smooth consumption paths
$\rightarrow$ Measured by $u$

## Interpretation

$$
W_{t-1}\left(x_{t-1}, p_{t}\right)=u_{t-1}\left(x_{t-1}\right)+\mathcal{M}_{p_{t}}^{\hat{f}_{t}} W_{t}\left(x_{t}, p_{t+1}\right)
$$

Function $u$ measures aversion to intertemporal subst.
There are 2 effects of risk:
i) Generates fluctuations over time $\rightarrow$ Disliked by agents who prefer smooth consumption paths
$\rightarrow$ Measured by $u$
ii) Makes agent unsure about their future
$\rightarrow$ Disliked by agents with intrinsic aversion to risk
$\rightarrow$ Measured by $f$, which depends on confidence

## Interpretation

$$
W_{t-1}\left(x_{t-1}, p_{t}\right)=u_{t-1}\left(x_{t-1}\right)+\mathcal{M}_{p_{t}}^{\hat{f}_{t}} W_{t}\left(x_{t}, p_{t+1}\right)
$$

Function $u$ measures aversion to intertemporal subst.
There are 2 effects of risk:
i) Generates fluctuations over time
$\rightarrow$ Disliked by agents who prefer smooth consumption paths
$\rightarrow$ Measured by $u$
ii) Makes agent unsure about their future
$\rightarrow$ Disliked by agents with intrinsic aversion to risk
$\rightarrow$ Measured by $f$, which depends on confidence
More about

- intrinsic risk aversion
- how to characterize concavity of individual $f_{t}^{s}$ axiomatically
in the paper


## Lack of confidence

Now let us associate the label $s$ with level of confidence

- suggests an order relation $s^{\prime} \triangleright s$ :

More confident about lottery labeled $s^{\prime}$ than lottery labeled $s$.
Definition 2:
A decision maker is (strictly) averse to the lack of confidence in belief iff for all $\chi, \chi^{\prime} \in X^{t}$ and $s, s^{\prime} \in S$ :

$$
s^{\prime} \triangleright s \quad \Rightarrow \quad x \oplus_{s^{\prime}}^{\frac{1}{2}} x^{\prime} \succeq_{t}\left(\succ_{t}\right) x \oplus_{s}^{\frac{1}{2}} x^{\prime}
$$

## Lack of confidence

Now let us associate the label $s$ with level of confidence

- suggests an order relation $s^{\prime} \triangleright s$ :

More confident about lottery labeled $s^{\prime}$ than lottery labeled $s$.

## Proposition 2: Characterization

A decision maker is (strictly) averse to the lack of confidence in belief iff for all $\chi, \chi^{\prime} \in X^{t}$ and $s, s^{\prime} \in S$ :

$$
s^{\prime} \triangleright s \quad \Rightarrow \quad x \oplus_{s^{\prime}}^{\frac{1}{2}} x^{\prime} \succeq_{t}\left(\succ_{t}\right) x \oplus_{s}^{\frac{1}{2}} x^{\prime}
$$

which is equivalent to

$$
s^{\prime} \triangleright s \quad \Leftrightarrow \quad f_{t}^{s} \circ\left(f_{t}^{s^{\prime}}\right)^{-1} \text { (strictly) concave } \forall s, s^{\prime} \in S .
$$

## Lack of confidence

Note: Behavioral decision theorists would probably prefer formulation:

- if there exists order on $S$ such that...
- ... then representation satisfies...


## Lack of confidence

Note: Behavioral decision theorists would probably prefer formulation:

- if there exists order on $S$ such that...
- ... then representation satisfies...

Yet, I seek a framework that

- takes order on $S$ characterizing lack of confidence as given:
- Decision maker obtains it from scientists
- or assigns it based on her judgement of advising panels
- explores how to incorporate such a statement meaningfully into evaluation


## Conclusions

- Standard expected utility model suggests that differences in types of probabilities do not matter for evaluation
- this 'finding' is based on implicit ignoring of differences
- von Neumann-Morgenstern setting is easily extended to respect differences keeping main, normatively desirable axioms


## Conclusions

- Standard expected utility model suggests that differences in types of probabilities do not matter for evaluation
- this 'finding' is based on implicit ignoring of differences
- von Neumann-Morgenstern setting is easily extended to respect differences keeping main, normatively desirable axioms
Then
- Confidence in probabilistic description of future matters (just as much as risk aversion does)
- Define and characterize aversion to the lack of confidence


## Conclusions

- Standard expected utility model suggests that differences in types of probabilities do not matter for evaluation
- this 'finding' is based on implicit ignoring of differences
- von Neumann-Morgenstern setting is easily extended to respect differences keeping main, normatively desirable axioms
Then
- Confidence in probabilistic description of future matters (just as much as risk aversion does)
- Define and characterize aversion to the lack of confidence
- The evaluation model can nest decision criteria arising in
- standard expected utility
- decision making under ignorance by Arrow Hurwitz
- maxi-min expected utility by Gilboa Schmeidler
- smooth ambiguity aversion by KMM depending on the level of confidence

Appendix

## Relation to Risk Literature

The 2 Effects of risk:
i) Generates fluctuations over time $\rightarrow$ Disliked by agents who prefer smooth consumption over time
ii) Makes agent unsure about their future
$\rightarrow$ Disliked by agents with intrinsic aversion to risk

## Relation to Risk Literature

The 2 Effects of risk:
i) Generates fluctuations over time $\rightarrow$ Disliked by agents who prefer smooth consumption over time
ii) Makes agent unsure about their future $\rightarrow$ Disliked by agents with intrinsic aversion to risk

- Intertemporally additive std model dismisses second effect (NOT a consequence of von Neumann-Morgenstern!)


## Relation to Risk Literature

The 2 Effects of risk:
i) Generates fluctuations over time
$\rightarrow$ Disliked by agents who prefer smooth consumption over time
ii) Makes agent unsure about their future
$\rightarrow$ Disliked by agents with intrinsic aversion to risk

- Kreps \& Porteus $(1978)$, Epstein \& Zin $(1989,1991)$ and Weil (1990) developed model that incorporates both risk effects
- In Epstein-Zin-Weil model:

Arrow Pratt risk aversion coefficient measures $i$ and $i i$ jointly.

## Relation to Risk Literature

The 2 Effects of risk:
i) Generates fluctuations over time
$\rightarrow$ Disliked by agents who prefer smooth consumption over time
ii) Makes agent unsure about their future
$\rightarrow$ Disliked by agents with intrinsic aversion to risk

- Kreps \& Porteus $(1978)$, Epstein \& Zin $(1989,1991)$ and Weil (1990) developed model that incorporates both risk effects
- In Epstein-Zin-Weil model:

Arrow Pratt risk aversion coefficient measures $i$ and $i i$ jointly.

- Alternative (Traeger 2010):

Intertemporal risk aversion characterizes ii directly (a convenient multi-commodity risk measure)

## Intertemporal Risk Aversion (characterizing f)

Let $x, x^{\prime}$ be two consumption paths of length $T$.
Example, $T=4$ :

$$
\begin{aligned}
& x=(, \quad, \quad, \quad) \\
& x^{\prime}=(, \quad, \quad, \quad)
\end{aligned}
$$

Let $x \succ x^{\prime}$ denote a strict preference for $x$ over $\chi^{\prime}$.
Let $\sim$ denote indifference.

## Intertemporal Risk Aversion (characterizing f)

Let $x, \chi^{\prime}$ be two consumption paths of length $T$.
Example, $T=4$ :

$$
\begin{aligned}
& x=(\odot, \odot, \odot, \odot) \\
& x^{\prime}=(\odot, \odot, \odot, \odot)
\end{aligned}
$$

Let $x \succ x^{\prime}$ denote a strict preference for $x$ over $\chi^{\prime}$.
Let $\sim$ denote indifference.

## Intertemporal Risk Aversion (characterizing f)

Let $x, x^{\prime}$ be two consumption paths of length $T$.
Example, $T=4$ :

$$
\begin{aligned}
& x=(\odot, \odot, \odot, \odot) \\
& x^{\prime}=(\odot, \odot, \odot, \odot)
\end{aligned}
$$

Let $x \succ x^{\prime}$ denote a strict preference for $x$ over $\chi^{\prime}$.
Let $\sim$ denote indifference.
Define for $x$ and $x^{\prime}$ the consumption paths

- $\chi^{\text {high }}$ : collects better outcomes of every period
- $x^{\text {low }}$ : collects inferior outcomes of every period


## Intertemporal Risk Aversion (characterizing f)

Let $x, x^{\prime}$ be two consumption paths of length $T$.
Example, $T=4$ :

$$
\begin{array}{ll}
x=(\odot, \odot, \odot, \odot) & x^{\text {high }}=(\odot, \odot, \odot, \odot) \\
x^{\prime}=(\odot, \odot, \odot, \odot) & x^{\text {low }}=(\odot, \odot, \odot, \odot)
\end{array}
$$

Let $\chi \succ \chi^{\prime}$ denote a strict preference for $\chi$ over $\chi^{\prime}$.
Let $\sim$ denote indifference.
Define for $x$ and $x^{\prime}$ the consumption paths

- $\chi^{\text {high }}$ : collects better outcomes of every period
- $x^{\text {low }}$ : collects inferior outcomes of every period


## A Question of Preference

Assume you'd be indifferent between

$$
(\Theta, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

## A Question of Preference

Assume you'd be indifferent between

$$
(\odot, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

If not, please mentally adjust the corners of the mouth of the red frowny $)^{2}$ to reach indifference.

## A Question of Preference

Assume you'd be indifferent between

$$
(\odot, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

If not, please mentally adjust the corners of the mouth of the red frowny $)$ to reach indifference.

What preference do you have in the following choice?
$(\odot, \bigcirc, \bigcirc, \odot)$
certain path

coin toss if $s=o b j$

## A Question of Preference

Assume you'd be indifferent between

$$
(\odot, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

If not, please mentally adjust the corners of the mouth of the red frowny $)$ to reach indifference.

What preference do you have in the following choice?
$(\odot, \bigcirc, \bigcirc, \odot)$
certain path

coin toss if $s=o b j$

## A Question of Preference

Assume you'd be indifferent between

$$
(\odot, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

If not, please mentally adjust the corners of the mouth of the red frowny $)$ to reach indifference.

What preference do you have in the following choice?

$$
\begin{array}{ll}
(\odot, \odot, \odot, \odot) & \succ \underbrace{\frac{1}{2}}_{\frac{1}{2}}(\odot, \odot, \odot, \odot) \\
\text { certain path } & \text { coin toss if } s=o b, \odot)
\end{array}
$$

## A Question of Preference

Assume you'd be indifferent between

$$
(\odot, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

If not, please mentally adjust the corners of the mouth of the red frowny $)$ to reach indifference.

What preference do you have in the following choice?
$(\odot, \odot, \bigcirc, \odot)$
certain path

coin toss if $s=o b j$

## A Question of Preference

Assume you'd be indifferent between

$$
(\odot, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

If not, please mentally adjust the corners of the mouth of the red frowny $)$ to reach indifference.

What preference do you have in the following choice?

$$
\begin{aligned}
& (\odot, \bigcirc, \bigcirc, \odot) \\
& \sim \underbrace{\frac{1}{2}}_{\frac{1}{2}}(\odot,(\odot,(),(\odot)) \\
& \text { certain path } \\
& \text { coin toss if } \mathrm{s}=\mathrm{obj} \\
& \forall s \Rightarrow \text { STANDARD MODEL } \quad \mathrm{E} \sum_{t} \beta^{t} u\left(x_{t}\right)
\end{aligned}
$$

## A Question of Preference

Assume you'd be indifferent between

$$
(\odot, \odot, \odot, \odot) \sim(\odot, \odot, \odot, \odot)
$$

If not, please mentally adjust the corners of the mouth of the red frowny $)$ to reach indifference.

What preference do you have in the following choice?

certain path
coin toss if $s=o b j$
INTERTEMPORAL RISK AVERSE with respect to degree of subjectivity $s$

## A Question of Preference

Assume you'd be indifferent between

$$
x \sim x^{\prime} \quad \wedge \exists \text { period } \tau \in\{1, \ldots, T\} \text { in which }
$$ consumption of $x$ and $x^{\prime}$ are nonindifferent

What preference do you have in the following choice?

certain path
coin toss if $s=o b j$
INTERTEMPORAL RISK AVERSE
with respect to degree of subjectivity $s$

## Intertemporal Risk Aversion

For any two consumption paths $x, \chi^{\prime}$ define composed paths

- $x^{\text {high }}\left(x, x^{\prime}\right)$ collecting better outcomes of every period
- $x^{\text {low }}\left(x, x^{\prime}\right)$ collecting inferior outcomes of every period


## Intertemporal Risk Aversion

For any two consumption paths $\chi, \chi^{\prime}$ define composed paths

- $x^{\text {high }}\left(x, x^{\prime}\right)$ collecting better outcomes of every period
- $x^{\text {low }}\left(x, x^{\prime}\right)$ collecting inferior outcomes of every period


## Definition 1:

A decision maker is intertemporal risk averse w.r.t. to lotteries of degree of subjectivity $s$ in period $t$

- iff for all certain consumption paths $x$ and $\chi^{\prime}$

$$
x \sim_{t} x^{\prime} \quad \Rightarrow \quad x \succeq_{t} \quad x^{\text {high }}\left(x, x^{\prime}\right) \oplus_{s}^{\frac{1}{2}} x^{\text {low }}\left(x, x^{\prime}\right)
$$

## Intertemporal Risk Aversion

For any two consumption paths $\chi, \chi^{\prime}$ define composed paths

- $\chi^{\text {high }}\left(x, x^{\prime}\right)$ collecting better outcomes of every period
- $x^{\text {low }}\left(x, x^{\prime}\right)$ collecting inferior outcomes of every period


## Characterization of $f$ :

A decision maker is intertemporal risk averse w.r.t. to lotteries of degree of subjectivity $s$ in period $t$

- iff for all certain consumption paths $x$ and $x^{\prime}$

$$
x \sim_{t} x^{\prime} \quad \Rightarrow \quad x \succeq_{t} \quad x^{\text {high }}\left(x, x^{\prime}\right) \oplus_{s}^{\frac{1}{2}} x^{\text {low }}\left(x, x^{\prime}\right)
$$

- iff $f_{t}^{s}$ in the representation is concave


## Intertemporal Risk Aversion

For any two consumption paths $x, \chi^{\prime}$ define composed paths

- $x^{\text {high }}\left(x, x^{\prime}\right)$ collecting better outcomes of every period
- $x^{\text {low }}\left(x, x^{\prime}\right)$ collecting inferior outcomes of every period

A decision maker is intertemporal risk averse w.r.t. to lotteries of degree of subjectivity $s$ in period $t$

- iff for all certain consumption paths $x$ and $\chi^{\prime}$

$$
x \sim_{t} x^{\prime} \quad \Rightarrow \quad x \succeq_{t} \quad x^{\mathrm{high}}\left(x, x^{\prime}\right) \oplus_{s}^{\frac{1}{2}} x^{\mathrm{low}}\left(x, x^{\prime}\right)
$$

- iff $f_{t}^{s}$ in the representation is concave

Note relation to one-commodity Epstein Zin (1989):

- $f_{t}^{o b j}$ measures the difference between Arrow Pratt aversion to objective risk an aversion to intertemporal substitution


## Subjectivity of Belief and Ambiguity

Three restrictions make representation a von
Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- $f_{t}^{o b j}$ is identity (absent)


## Subjectivity of Belief and Ambiguity

Three restrictions make representation a von
Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- $f_{t}^{o b j}$ is identity (absent)

Most important implication:

- KMM do not allow for intertemporal risk aversion with respect so objective lotteries


## Subjectivity of Belief and Ambiguity

Three restrictions make representation a von Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- $f_{t}^{o b j}$ is identity (absent)

Most important implication:

- KMM do not allow for intertemporal risk aversion with respect so objective lotteries
Another way of phrasing the restriction:
- KMM disentangle subjective Arrow Pratt risk aversion from aversion to intertemporal substitution
- But KMM set Arrow Pratt aversion to objective risk equal to aversion to intertemporal substitution


## Subjectivity of Belief and Ambiguity

Three restrictions make representation a von Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- $f_{t}^{o b j}$ is identity (absent)

Most important implication:

- KMM do not allow for intertemporal risk aversion with respect so objective lotteries
Then:
Aversion to subjectivity collapses to KMM's smooth ambiguity aversion


## Representation - Illustration

back

Example $(T=2)$ :

Evaluate


## Representation - Illustration

Example ( $T=2$ ):


## Representation - Illustration

Example ( $T=2$ ):


## Representation - Illustration

Example ( $T=2$ ):


## Representation - Illustration

back

Example ( $T=2$ ):

by $\quad \mathcal{M}^{f s}\left(p_{1}, \tilde{u}_{1}\right)$

## Setting - Details

## $\rightarrow$ back

The choice space (within a period):

- X compact metric space, for example:
- $X^{*}$ outcomes and observations within a period


## Setting - Details

## $\rightarrow$ back

The choice space (within a period):

- X compact metric space, for example:
- $X^{*}$ outcomes and observations within a period
- $s \in S$ degree of subjectivity, where $S$ is finite set
- $\Delta_{s}(X)$ space of Borel probability measures on $X$, indexed by degree subjectivity of the lottery


## Setting - Details

## $\rightarrow$ back

The choice space (within a period):

- X compact metric space, for example:
- $X^{*}$ outcomes and observations within a period
- $s \in S$ degree of subjectivity, where $S$ is finite set
- $\Delta_{s}(X)$ space of Borel probability measures on $X$, indexed by degree subjectivity of the lottery
- $Z^{0}(X) \equiv X$,
- $Z^{1}(X) \equiv \cup_{s \in S} \Delta_{s}(X) \cup X$
- $Z^{n}(X) \equiv \cup_{s \in S} \Delta_{s}\left(Z^{n-1}\right) \cup Z^{n-1}$


## Setting - Details

## $\rightarrow$ back

The choice space (within a period):

- X compact metric space, for example:
- $X^{*}$ outcomes and observations within a period
- $s \in S$ degree of subjectivity, where $S$ is finite set
- $\Delta_{s}(X)$ space of Borel probability measures on $X$, indexed by degree subjectivity of the lottery
- $Z^{0}(X) \equiv X$,
- $Z^{1}(X) \equiv \cup_{s \in S} \Delta_{s}(X) \cup X$
- $Z^{n}(X) \equiv \cup_{s \in S} \Delta_{s}\left(Z^{n-1}\right) \cup Z^{n-1}$

What for?

- Static choice object: Lottery $z \in Z^{N}\left(X^{*}\right)$ for some $N \in \mathbb{N}$
- Arbitrary concatenation of lotteries with differing degrees of subjectivity


## Setting - Details

## $\rightarrow$ back

The actual choice space (generalized temporal lotteries):
Assume a finite time horizon

- Last period: choices $p_{T} \in P_{T}=Z^{N}\left(X^{*}\right)$
- Period before: choices $p_{T-1} \in P_{T-1}=Z^{N}\left(X^{*} \times Z^{N}\left(X^{*}\right)\right)$
- Recursively: choices in $t: p_{t} \in P_{t}=Z^{N}\left(X^{*} \times P_{t+1}\right)$


## Setting - Details

## $\rightarrow$ back

The actual choice space (generalized temporal lotteries):
Assume a finite time horizon

- Last period: choices $p_{T} \in P_{T}=Z^{N}\left(X^{*}\right)$
- Period before: choices $p_{T-1} \in P_{T-1}=Z^{N}\left(X^{*} \times Z^{N}\left(X^{*}\right)\right)$
- Recursively: choices in $t: p_{t} \in P_{t}=Z^{N}\left(X^{*} \times P_{t+1}\right)$

Interpretation $P_{t}$ :

- At beginning of a period uncertainty over
- outcome in that period
- lottery describing the future at the end of that period
- uncertainty composed of different risks with differing degrees of subjectivity


## Setting - Details

 $\rightarrow$ backDefinitions (preferences, subjectivity of lottery, reduction)

- Preferences $\succeq_{t}$ on $P_{t}$


## Setting - Details

## $\rightarrow$ back

Definitions (preferences, subjectivity of lottery, reduction)

- Preferences $\succeq_{t}$ on $P_{t}$
- $P_{t}^{s} \equiv \Delta_{s}\left(P_{t}\right) \cap P_{t} \quad$ (root lottery has subjectivity $s$ )
- $\hat{s}\left(p_{t}\right)=s$ iff $p_{t} \in P_{t}^{s} \quad$ (degree of subjectivity of root lottery)


## Setting - Details

## $\rightarrow$ back

Definitions (preferences, subjectivity of lottery, reduction)

- Preferences $\succeq_{t}$ on $P_{t}$
- $P_{t}^{s} \equiv \Delta_{s}\left(P_{t}\right) \cap P_{t} \quad$ (root lottery has subjectivity s)
- $\hat{s}\left(p_{t}\right)=s$ iff $p_{t} \in P_{t}^{s} \quad$ (degree of subjectivity of root lottery)
- $P_{t}^{s s} \equiv \Delta_{s}\left(\Delta_{s}\left(P_{t}\right)\right) \cap P_{t}$
- For $p_{t} \in P_{t}^{s s}$ define the reduced lottery $p_{t}^{r}$ by $p_{t}^{r}(A)=\int \tilde{p}(A) d p_{t}(\tilde{p}) \quad$ for all $A$ in Borel algebra


## Setting - Details

## $\rightarrow$ back

Definitions (preferences, subjectivity of lottery, reduction)

- Preferences $\succeq_{t}$ on $P_{t}$
- $P_{t}^{s} \equiv \Delta_{s}\left(P_{t}\right) \cap P_{t} \quad$ (root lottery has subjectivity s)
- $\hat{s}\left(p_{t}\right)=s$ iff $p_{t} \in P_{t}^{s} \quad$ (degree of subjectivity of root lottery)
- $P_{t}^{s s} \equiv \Delta_{s}\left(\Delta_{s}\left(P_{t}\right)\right) \cap P_{t}$
- For $p_{t} \in P_{t}^{s s}$ define the reduced lottery $p_{t}^{r}$ by $p_{t}^{r}(A)=\int \tilde{p}(A) d p_{t}(\tilde{p}) \quad$ for all $A$ in Borel algebra

What's the point?

- (Only) lotteries of same subjectivity can be pulled together
- Only then the independence axioms will have power


## Relation to Epstein Zin (1989)

Relation to Arrow Pratt risk aversion:
For the one-commodity setting (with utility str. increasing)

- $u_{t}$ characterize aversion to intertemporal substitution


## Relation to Epstein Zin (1989)

Relation to Arrow Pratt risk aversion:
For the one-commodity setting (with utility str. increasing)

- $u_{t}$ characterize aversion to intertemporal substitution

Define:

- $g_{t}^{o b j} \equiv f_{t}^{o b j} \circ u_{t}^{-1}$ : measures Arrow Pratt risk aversion with respect to objective risk
- $g_{t}^{\text {subj }} \equiv f_{t}^{\text {subj }} \circ u_{t}^{-1}$ : measures Arrow Pratt risk aversion with respect to subjective risk
- Then $f_{t}^{a m b}=g_{t}^{\text {subj }} \circ\left(g_{t}^{o b j}\right)^{-1}$


## Relation to Epstein Zin (1989)

Relation to Arrow Pratt risk aversion:
For the one-commodity setting (with utility str. increasing)

- $u_{t}$ characterize aversion to intertemporal substitution

Define:

- $g_{t}^{o b j} \equiv f_{t}^{o b j} \circ u_{t}^{-1}$ : measures Arrow Pratt risk aversion with respect to objective risk
- $g_{t}^{\text {subj }} \equiv f_{t}^{\text {subj }} \circ u_{t}^{-1}$ : measures Arrow Pratt risk aversion with respect to subjective risk
- Then $f_{t}^{a m b}=g_{t}^{\text {subj }} \circ\left(g_{t}^{o b j}\right)^{-1}$

Here, my suggested refinement of smooth ambiguity aversion is equivalent to being

- more Arrrow Pratt risk averse to subjective than to objective risk.


[^0]:    ${ }^{1}$ Email: traeger@uio.no

