Deliberate Choice under a Lack of Confidence

Christian P. Traeger¹

Department of Economics, University of Oslo ifo Institute for Economic Research, Munich

Premise

Not all probabilities are created equal

Question:

How can or should a policy maker/adviser take such differences into account

¹Email: traeger@uio.no

Motivation: Background

Behavioral:

Decision makers seem to respond differently to

- known/objective probabilities versus
- subjective guesstimates
- Vast literature on ambiguity, ambiguity attitude & source uncertainty
 - focused on descriptive behavior
 - relaxes 'normatively'/'rationally' desirable axioms
 - shows that decisions are 'as if' there exists ... (does not actually have to be a unique disentanglement of taste and uncertainty desciption)
- \hookrightarrow great for behavioral purpose
- \hookrightarrow difficult for policy applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなの

Motivation: Question

Question:

How should a decision maker deal with a lack of confidence into probability estimates?

Possible answers:

 A lack of confidence is already expressed by merely assigning probabilities to outcomes

Ignore it, e.g., von Neumann-Morgenstern suggest EU

Motivation: Question

Question:

How should a decision maker deal with a lack of confidence into probability estimates?

Possible answers:

- A lack of confidence is already expressed by merely assigning probabilities to outcomes
- \hookrightarrow No: it's about probability $\frac{1}{2}$ because of
 - a fair coin toss or
 - Laplace's principle of insufficient reason

The lack of confidence governs the probability itself Different uncertainty generating processes

▶ Ignore it, e.g., von Neumann-Morgenstern suggest EU → Let's see...

Motivation: Objective

Looking for decision support framework for policy making:

- probabilities given (derived by scientists)
- seek evaluation of probabilistic scenarios (policy/society)
- main desiderata:
 - stay close to von Neumann-Morgenstern framework (often considered 'normative benchmark')
 - impose time consistency of decisions (failed by most amgiguity models)

Motivation: Objective

Looking for decision support framework for policy making:

- probabilities given (derived by scientists)
- seek evaluation of probabilistic scenarios (policy/society)
- main desiderata:
 - stay close to von Neumann-Morgenstern framework (often considered 'normative benchmark')
 - impose time consistency of decisions (failed by most amgiguity models)

Simple idea:

 Distinguish in model what is different in real world (& leave it to axioms whether evaluated the same or not)

Example: distinct probabilistic characterizations

Guidance notes for lead authors of Intergovernmental Panel on Climate Change (AR4). All scenarios are described probabilistically, but authors are asked to distinguish between

Туре	Indicative examples of sources	Typical approaches or considerations
Unpredictability	Projections of human behaviour not easily amenable to prediction (e.g. evolution of political systems). Chaotic components of complex systems.	Use of scenarios spanning a plausible range, clearly stating assumptions, limits considered, and subjective judgments. Ranges from ensembles of model runs.
Structural uncertainty	Inadequate models, incomplete or competing conceptual frameworks, lack of agreement on model structure, ambiguous system boundaries or definitions, significant processes or relationships wrongly specified or not considered.	Specify assumptions and system definitions clearly, compare models with observations for a range of conditions, assess maturity of the underlying science and degree to which understanding is based on fundamental concepts tested in other areas.
Value uncertainty	Missing, inaccurate or non-representative data, inappropriate spatial or temporal resolution, poorly known or changing model parameters.	Analysis of statistical properties of sets of values (observations, model ensemble results, etc); bootstrap and hierarchical statistical tests; comparison of models with observations.

Table 1. A simple typology of uncertainties

Basic idea

In the model (part 1)

- distinguish different probalistic characterizations of the future
- \blacktriangleright labeling them with 'index' $s \in S \subset {
 m I\!N}$
- apply standard axioms but respecting differences

Basic idea

In the model (part 1)

- distinguish different probalistic characterizations of the future
- ▶ labeling them with 'index' $s \in S \subset \mathbb{N}$
- apply standard axioms but respecting differences

Note: Already Keynes in 'A treaties of probablity' (1921) suggests that a probabilistic description of an uncertain future might miss an orthogonal 'confidence' dimension

Basic idea

In the model (part 1)

- distinguish different probalistic characterizations of the future
- ▶ labeling them with 'index' $s \in S \subset \mathbb{N}$
- apply standard axioms but respecting differences

Note: Already Keynes in 'A treaties of probablity' (1921) suggests that a probabilistic description of an uncertain future might miss an orthogonal 'confidence' dimension

Model (part 2)

- characterize a possible order structure on s
- capturing the idea of confidence
- for agents averse to a lack of confidence

Relation to Ambiguity Literature

Models of ambiguity

- Rank dependent utility
- Choquet expected utility
- Variational preferences
- Multiple prior models
- Second order probabilities

Maybe closest to Klibanoff, Marinacci & Mukerji's (2005,2009) 'smooth ambiguity aversion' (\equiv KMM)

Preview

The simple idea:

- Index probability measures by type or degree of confidence s
- Reduction of compound probabilities only if they are of same type/ same degree of confidence
- Otherwise standard axioms (von Neumann-Morgenstern, certainty separability, time consistency)

Preview

The simple idea:

- Index probability measures by type or degree of confidence s
- Reduction of compound probabilities only if they are of same type/ same degree of confidence
- Otherwise standard axioms (von Neumann-Morgenstern, certainty separability, time consistency)

Results in:

- Decision Support Framework taking account of Confidence
- A concept of Aversion to the Lack of Confidence
- Generalization of a unified framework of
 - Epstein-Zin preferences (disentangle int subst and risk aversion)
 - KMM model (smooth ambiguity aversion)

can nest common criteria such as EU, maximin, maximin EU, smooth ambiguity aversion as functions of confidence

Representing 1 layer of uncertainty

Representing 1 layer of uncertainty

2

Representing 1 layer of uncertainty

Representing 2 layers of uncertainty

Representing 3 layers of uncertainty

Representing 3 layers of uncertainty

One period future

Representing 3 layers of uncertainty

Multi-period setting

Representing 3 layers of uncertainty

Multi-period setting

Reduction of compound lotteries (Definition)

Denote

▶ P_t^s : Subset of P_t with first node of type *s* (e.g. confidence level)

$$\blacktriangleright \hat{s}(p_t) = s \text{ iff } p_t \in P_t^s$$

Reduction of compound lotteries (Definition)

Denote

▶ P_t^{ss} : Subset of P_t with first two uncertainty layers of type s

Reduction of compound lotteries (Definition)

Denote

P^{ss}_t: Subset of *P*_t with first two uncertainty layers of type s
 p^r_t: Reduction of *p*_t ∈ *P*^{ss}_t obtained by collapsing first two layers

Mixing (Definition)

Mixing of lotteries: (here: same type lotteries but not crucial)

For $p_t, p_t' \in P_t^s$ define for $\alpha \in [0, 1]$ and $s \in S$ the mixture

 $p_t \oplus_s^{\alpha} p'_t$ as lottery in P_t^s yielding

- p_t with probability α and
- ▶ p'_t with probability 1α with
- where lottery is of type s

Same idea as std von Neumann-Morgenstern, but index s representing type of lottery

Mixing

Example: Mixing of lotteries:

Mixing

Example: Mixing of lotteries:

Axioms

Axioms

Indifference to reduction of same degree of subjectivity lotteries:

For all $t \in \{0, ..., T\}, s \in S$, and $p_t \in \bigcup_{s \in S} P_t^{ss}$: $p_t^r \sim_t p_t$

Axioms

Axioms

Indifference to reduction of same degree of subjectivity lotteries:

 $\text{For all } t \in \{0,...,T\}, s \in S, \text{ and } p_t \in \cup_{s \in S} P_t^{ss}: \quad p_t^r \sim_t p_t$

Independence:

For all $t \in \{0, ..., T\}, s \in S, \alpha \in [0, 1]$ and $p_t, p'_t, p''_t \in P^s_t$

 $p_t \succeq_t p_t' \quad \Leftrightarrow \quad p_t \oplus_s^{\alpha} p_t'' \succeq_t p_t' \oplus_s^{\alpha} p_t''$

Axioms

Axioms

Indifference to reduction of same degree of subjectivity lotteries:

 $\text{For all } t \in \{0,...,T\}, s \in S, \text{ and } p_t \in \cup_{s \in S} P_t^{ss}: \quad p_t^r \sim_t p_t$

Independence:

For all $t \in \{0, ..., T\}, s \in S, \alpha \in [0, 1]$ and $p_t, p'_t, p''_t \in P^s_t$

$$p_t \succeq_t p'_t \quad \Leftrightarrow \quad p_t \oplus_s^{\alpha} p''_t \succeq_t p'_t \oplus_s^{\alpha} p''_t$$

Standard axioms: weak order, continuity, certainty separability, time consistency

shortcut

Notation for Representation:

- Uncertainty aggregator (generalized mean):
 - For f strictly increasing define: $\mathcal{M}_{p}^{f} z \equiv f^{-1}[\mathsf{E}_{p} f(z)]$
 - Note: For f concave $\mathcal{M}_{p}^{f} z < \mathsf{E}_{p} z$

Notation for Representation:

Uncertainty aggregator (generalized mean):
 For f strictly increasing define: M^f_p z ≡ f⁻¹ [E_p f(z)]
 Note: For f concave M^f_p z < E_p z
 Let f̂_t = (f^s_t)_{s∈S}, f^s_t : ℝ → ℝ be sequence of strictly increasing continuous functions

Notation for Representation:

Uncertainty aggregator (generalized mean):

For f strictly increasing define: M^f_p z ≡ f⁻¹ [E_p f(z)]
 Note: For f concave M^f_p z < E_p z

▶ Let $\hat{f}_t = (f_t^s)_{s \in S}$, $f_t^s : \mathbb{R} \to \mathbb{R}$ be sequence of strictly increasing continuous functions

Define generalized uncertainty aggregator:

Let p_t be lottery p_t^1 over lotteries p_t^2 over ... p_t^N over (x_t^*, p_{t+1}) : $\mathcal{M}_{p_t}^{\hat{f}_t} W_t(x_t^*, p_{t+1}) \equiv \mathcal{M}_{p_t^1}^{f^{\hat{s}(p_t^1)}} \cdots \mathcal{M}_{p_t^N}^{f^{\hat{s}(p_t^N)}} W_t(x_t^*, p_{t+1})$

The Representation:

The sequence of preference relations $(\succeq_t)_{t \in T}$ satisfies the axioms if, and only if, for all $t \in \{0, ..., T\}$ there exist

- ▶ a set of strictly increasing and continuous functions $\hat{f}_t = (f_t^s)_{s \in S}, f_t^s : \mathbb{R} \to \mathbb{R}$
- \blacktriangleright a continuous and bounded function $u_t: X^* \to {\rm I\!R}$

The Representation:

The sequence of preference relations $(\succeq_t)_{t \in T}$ satisfies the axioms if, and only if, for all $t \in \{0, ..., T\}$ there exist

▶ a set of strictly increasing and continuous functions $\hat{f}_t = (f_t^s)_{s \in S}, f_t^s : \mathbb{R} \to \mathbb{R}$

▶ a continuous and bounded function $u_t : X^* \to {\rm I\!R}$

such that by defining recursively the functions $W_T = u_T$ and

•
$$W_{t-1}: X^* imes P_t o {
m I\!R}$$
 by

$$W_{t-1}(x_{t-1}, p_t) = u_{t-1}(x_{t-1}) + \mathcal{M}_{p_t}^{t_t} W_t(x_t, p_{t+1})$$

~

The Representation:

The sequence of preference relations $(\succeq_t)_{t \in T}$ satisfies the axioms if, and only if, for all $t \in \{0, ..., T\}$ there exist

▶ a set of strictly increasing and continuous functions $\hat{f}_t = (f_t^s)_{s \in S}, f_t^s : \mathbb{R} \to \mathbb{R}$

▶ a continuous and bounded function $u_t: X^* \to {\rm I\!R}$

such that by defining recursively the functions $W_T = u_T$ and

$$\blacktriangleright \hspace{0.1 in} W_{t-1}: X^* \times P_t \rightarrow {\rm I\!R} \hspace{0.1 in} {\rm by}$$

$$W_{t-1}(x_{t-1}, p_t) = u_{t-1}(x_{t-1}) + \mathcal{M}_{p_t}^{\hat{f}_t} W_t(x_t, p_{t+1})$$

it holds for all $t \in T$ and all $p_t, p_t' \in P_t$

$$p_t \succeq_t p_t' \Leftrightarrow \mathcal{M}_{p_t}^{\hat{f}_t} W_t(x_t, p_{t+1}) \geq \mathcal{M}_{p_t'}^{\hat{f}_t} W_t(x_t, p_{t+1})$$

Example

Main Feature of Representation

The representation uses:

A generalized mean for uncertainty aggregation

► For *f* strictly increasing define: $\mathcal{M}_p^f z \equiv f^{-1}[\mathsf{E}_p f(z)]$

• Note: For f concave $\mathcal{M}_p^f z < \mathsf{E}_p z$

Main Feature of Representation

The representation uses:

A generalized mean for uncertainty aggregation

For f strictly increasing define: $\mathcal{M}_{p}^{f} z \equiv f^{-1}[\mathsf{E}_{p} f(z)]$

• Note: For f concave $\mathcal{M}_p^f z < \mathsf{E}_p z$

A sequence f̂_t = (f^s_t)_{s∈S} of aversion functions f^s_t : ℝ → ℝ characterizing aversion to uncertainty of type s

Main Feature of Representation

The representation uses:

A generalized mean for uncertainty aggregation

For f strictly increasing define: M^f_p z ≡ f⁻¹ [E_p f(z)]
 Note: For f concave M^f_p z < E_p z

A sequence f̂_t = (f^s_t)_{s∈S} of aversion functions f^s_t : ℝ → ℝ characterizing aversion to uncertainty of type s

The representation shows:

- Any uncertainty node of type s is evaluated using M^{fs}_{p^s} (characterized by aversion function f^s_t depending on s)
- Evaluation is recursive (in both time and probabilitiy tree within a given period)

Example

Interpretation

$$W_{t-1}(x_{t-1}, p_t) = u_{t-1}(x_{t-1}) + \mathcal{M}_{p_t}^{\hat{f}_t} W_t(x_t, p_{t+1})$$

Function u measures aversion to intertemporal subst.

There are 2 effects of risk:

- i) Generates fluctuations over time
 - \rightarrow Disliked by agents who prefer smooth consumption paths

 \rightarrow Measured by $\textbf{\textit{u}}$

Interpretation

$$W_{t-1}(x_{t-1}, p_t) = u_{t-1}(x_{t-1}) + \mathcal{M}_{p_t}^{\hat{f}_t} W_t(x_t, p_{t+1})$$

Function u measures aversion to intertemporal subst.

There are 2 effects of risk:

- i) Generates fluctuations over time
 - \rightarrow Disliked by agents who prefer smooth consumption paths
 - \rightarrow Measured by $\textbf{\textit{u}}$
- ii) Makes agent unsure about their future
 - \rightarrow Disliked by agents with intrinsic aversion to risk
 - \rightarrow Measured by *f*, which depends on confidence

Interpretation

$$W_{t-1}(x_{t-1}, p_t) = u_{t-1}(x_{t-1}) + \mathcal{M}_{p_t}^{\hat{f}_t} W_t(x_t, p_{t+1})$$

Function u measures aversion to intertemporal subst.

There are 2 effects of risk:

- i) Generates fluctuations over time
 - \rightarrow Disliked by agents who prefer smooth consumption paths
 - \rightarrow Measured by $\textbf{\textit{u}}$
- ii) Makes agent unsure about their future
 - \rightarrow Disliked by agents with intrinsic aversion to risk
 - \rightarrow Measured by *f*, which depends on confidence

More about

intrinsic risk aversion

▶ how to characterize concavity of individual f_t^s axiomatically in the paper

Now let us associate the label s with level of confidence

Suggests an order relation s' ▷ s: More confident about lottery labeled s' than lottery labeled s.

Definition 2:

A decision maker is (strictly) averse to the lack of confidence in belief iff for all $x, x' \in X^t$ and $s, s' \in S$:

$$s' \triangleright s \quad \Rightarrow \quad x \oplus_{s'}^{\frac{1}{2}} x' \succeq_t (\succ_t) x \oplus_{s}^{\frac{1}{2}} x'$$

Now let us associate the label s with level of confidence

Suggests an order relation s' ▷ s: More confident about lottery labeled s' than lottery labeled s.

Proposition 2: Characterization

A decision maker is (strictly) averse to the lack of confidence in belief iff for all $x, x' \in X^t$ and $s, s' \in S$:

$$s' \triangleright s \quad \Rightarrow \quad x \oplus_{s'}^{\frac{1}{2}} x' \succeq_t (\succ_t) x \oplus_{s}^{\frac{1}{2}} x'$$

which is equivalent to

$$s' \triangleright s \quad \Leftrightarrow \quad f_t^s \circ (f_t^{s'})^{-1} ext{ (strictly) concave } \quad orall s, s' \in S ext{ .}$$

Note: Behavioral decision theorists would probably prefer formulation:

- ▶ if there exists order on *S* such that...
- ... then representation satisfies...

Note: Behavioral decision theorists would probably prefer formulation:

- if there exists order on S such that...
- ... then representation satisfies...

Yet, I seek a framework that

- takes order on S characterizing lack of confidence as given:
 - Decision maker obtains it from scientists
 - or assigns it based on her judgement of advising panels
- explores how to incorporate such a statement meaningfully into evaluation

Conclusions

- Standard expected utility model suggests that differences in types of probabilities do not matter for evaluation
- this 'finding' is based on implicit ignoring of differences
- von Neumann-Morgenstern setting is easily extended to respect differences keeping main, normatively desirable axioms

Conclusions

- Standard expected utility model suggests that differences in types of probabilities do not matter for evaluation
- this 'finding' is based on implicit ignoring of differences
- von Neumann-Morgenstern setting is easily extended to respect differences keeping main, normatively desirable axioms

Then

- Confidence in probabilistic description of future matters (just as much as risk aversion does)
- Define and characterize aversion to the lack of confidence

Conclusions

- Standard expected utility model suggests that differences in types of probabilities do not matter for evaluation
- this 'finding' is based on implicit ignoring of differences
- von Neumann-Morgenstern setting is easily extended to respect differences keeping main, normatively desirable axioms

Then

- Confidence in probabilistic description of future matters (just as much as risk aversion does)
- Define and characterize aversion to the lack of confidence
- The evaluation model can nest decision criteria arising in
 - standard expected utility
 - decision making under ignorance by Arrow Hurwitz
 - maxi-min expected utility by Gilboa Schmeidler
 - smooth ambiguity aversion by KMM

depending on the level of confidence

Appendix

The 2 Effects of risk:

i) Generates fluctuations over time

 \rightarrow Disliked by agents who prefer smooth consumption over time

- ii) Makes agent unsure about their future
 - \rightarrow Disliked by agents with intrinsic aversion to risk

- The 2 Effects of risk:
 - i) Generates fluctuations over time
 - \rightarrow Disliked by agents who prefer smooth consumption over time
 - ii) Makes agent unsure about their future
 - \rightarrow Disliked by agents with intrinsic aversion to risk
 - Intertemporally additive std model dismisses second effect (NOT a consequence of von Neumann-Morgenstern!)

The 2 Effects of risk:

- i) Generates fluctuations over time
 - \rightarrow Disliked by agents who prefer smooth consumption over time
- ii) Makes agent unsure about their future
 - \rightarrow Disliked by agents with intrinsic aversion to risk
- Kreps & Porteus (1978), Epstein & Zin (1989,1991) and Weil (1990) developed model that incorporates both risk effects
- In Epstein-Zin-Weil model: Arrow Pratt risk aversion coefficient measures i and ii jointly.

The 2 Effects of risk:

- i) Generates fluctuations over time
 - \rightarrow Disliked by agents who prefer smooth consumption over time
- ii) Makes agent unsure about their future
 - \rightarrow Disliked by agents with intrinsic aversion to risk
- Kreps & Porteus (1978), Epstein & Zin (1989,1991) and Weil (1990) developed model that incorporates both risk effects
- In Epstein-Zin-Weil model: Arrow Pratt risk aversion coefficient measures i and ii jointly.
- Alternative (Traeger 2010): Intertemporal risk aversion characterizes *ii* directly (a convenient multi-commodity risk measure)

Let x, x' be two consumption paths of length \mathcal{T} .

Example, T = 4:

$$x = (, , ,)$$

 $x' = (, , ,)$

Let $x \succ x'$ denote a strict preference for x over x'. Let \sim denote indifference.

Let x, x' be two consumption paths of length \mathcal{T} .

Example, T = 4:

$$\begin{aligned} & x = (\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc) \\ & x' = (\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc) \end{aligned}$$

Let $x \succ x'$ denote a strict preference for x over x'. Let \sim denote indifference.

Let x, x' be two consumption paths of length T.

Example, T = 4:

 $\begin{array}{l} x = (\textcircled{O}, \textcircled{O}, \textcircled{O}, \textcircled{O}) \\ x' = (\textcircled{O}, \textcircled{O}, \textcircled{O}, \textcircled{O}) \end{array}$

Let $x \succ x'$ denote a strict preference for x over x'. Let \sim denote indifference.

Define for x and x' the consumption paths

- x^{high} : collects better outcomes of every period
- > x^{low} : collects inferior outcomes of every period

Let x, x' be two consumption paths of length T.

Example, T = 4:

$$\begin{array}{ll} \chi = (\odot, \odot, \odot, \odot) & \qquad \chi^{\mathsf{high}} = (\odot, \odot, \odot, \odot) \\ \chi' = (\odot, \odot, \odot, \odot) & \qquad \chi^{\mathsf{low}} = (\odot, \odot, \odot, \odot) \end{array}$$

Let $x \succ x'$ denote a strict preference for x over x'. Let \sim denote indifference.

Define for x and x' the consumption paths

- χ^{high} : collects better outcomes of every period
- > x^{low} : collects inferior outcomes of every period

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

If not, please mentally adjust the corners of the mouth of the red frowny \bigcirc to reach indifference.

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

If not, please mentally adjust the corners of the mouth of the red frowny \bigcirc to reach indifference.

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

If not, please mentally adjust the corners of the mouth of the red frowny \bigcirc to reach indifference.

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

If not, please mentally adjust the corners of the mouth of the red frowny \bigcirc to reach indifference.

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

If not, please mentally adjust the corners of the mouth of the red frowny \bigcirc to reach indifference.

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

If not, please mentally adjust the corners of the mouth of the red frowny ^(C) to reach indifference.

Assume you'd be indifferent between

 $(\odot,\odot,\odot,\odot) \sim (\odot,\odot,\odot,\odot)$

If not, please mentally adjust the corners of the mouth of the red frowny \bigcirc to reach indifference.

Assume you'd be indifferent between

$$x \sim x' \wedge \exists period \tau \in \{1, ..., T\}$$
 in which
consumption of x and x' are nonindifferent

What preference do you have in the following choice?

certain path coin toss if s=obj INTERTEMPORAL RISK AVERSE with respect to degree of subjectivity *s*

For any two consumption paths x, x' define composed paths
 x^{high}(x, x') collecting better outcomes of every period
 x^{low}(x, x') collecting inferior outcomes of every period

For any two consumption paths x, x' define composed paths

- $x^{high}(x, x')$ collecting better outcomes of every period
- $x^{\text{low}}(x, x')$ collecting inferior outcomes of every period

Definition 1:

A decision maker is intertemporal risk averse w.r.t. to lotteries of degree of subjectivity s in period t

• iff for all certain consumption paths x and x'

$$x \sim_t x' \quad \Rightarrow \quad x \succeq_t \quad x^{\mathsf{high}}(x,x') \oplus_s^{\frac{1}{2}} x^{\mathsf{low}}(x,x')$$

For any two consumption paths x, x' define composed paths

- $x^{high}(x, x')$ collecting better outcomes of every period
- $x^{\text{low}}(x, x')$ collecting inferior outcomes of every period

Characterization of *f*:

A decision maker is intertemporal risk averse w.r.t. to lotteries of degree of subjectivity s in period t

• iff for all certain consumption paths x and x'

$$x \sim_t x' \quad \Rightarrow \quad x \succeq_t \quad x^{\mathsf{high}}(x, x') \oplus_{s}^{\frac{1}{2}} x^{\mathsf{low}}(x, x')$$

• iff f_t^s in the representation is concave

For any two consumption paths $\boldsymbol{x}, \boldsymbol{x}'$ define composed paths

- $x^{high}(x, x')$ collecting better outcomes of every period
- ▶ $x^{\text{low}}(x, x')$ collecting inferior outcomes of every period

A decision maker is intertemporal risk averse w.r.t. to lotteries of degree of subjectivity s in period t

• iff for all certain consumption paths x and x'

$$x \sim_t x' \quad \Rightarrow \quad x \succeq_t \quad x^{\mathsf{high}}(x,x') \oplus_{s}^{\frac{1}{2}} \; x^{\mathsf{low}}(x,x')$$

• iff f_t^s in the representation is concave

Note relation to one-commodity Epstein Zin (1989):

f_t^{obj} measures the difference between Arrow Pratt aversion to objective risk an aversion to intertemporal substitution

Subjectivity of Belief and Ambiguity

Three restrictions make representation a von Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- f_t^{obj} is identity (absent)

Subjectivity of Belief and Ambiguity

Three restrictions make representation a von Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- f_t^{obj} is identity (absent)

Most important implication:

 KMM do not allow for intertemporal risk aversion with respect so objective lotteries

Subjectivity of Belief and Ambiguity

Three restrictions make representation a von Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- f_t^{obj} is identity (absent)

Most important implication:

 KMM do not allow for intertemporal risk aversion with respect so objective lotteries

Another way of phrasing the restriction:

- KMM disentangle subjective Arrow Pratt risk aversion from aversion to intertemporal substitution
- But KMM set Arrow Pratt aversion to objective risk equal to aversion to intertemporal substitution

Subjectivity of Belief and Ambiguity

Three restrictions make representation a von Neumann-Morgenstern version of KMM's model of smooth ambiguity aversion:

- only 2 layers of uncertainty (in every period)
- only subjective (subj) over objective (obj) lotteries
- f_t^{obj} is identity (absent)

Most important implication:

 KMM do not allow for intertemporal risk aversion with respect so objective lotteries

Then:

Aversion to subjectivity collapses to KMM's smooth ambiguity aversion

Example (T = 2): Evaluate Evalu back

7 / 11

Example (T = 2):

by
$$\mathcal{M}^{f_1}(\mathbf{p_1}, \tilde{u}_1)$$

<ロ> < 四> < 回> < 回> < 三> < 三> < 三) > 三日 のへの 7/11

$\rightarrow \mathsf{back}$

The choice space (within a period):

- ► X compact metric space, for example:
- ► X^{*} outcomes and observations within a period

$\rightarrow \mathsf{back}$

The choice space (within a period):

- ► X compact metric space, for example:
- > X^* outcomes and observations within a period
- $s \in S$ degree of subjectivity, where S is finite set
- Δ_s(X) space of Borel probability measures on X, indexed by degree subjectivity of the lottery

$\rightarrow \mathsf{back}$

The choice space (within a period):

- ► X compact metric space, for example:
- ► X^{*} outcomes and observations within a period
- $s \in S$ degree of subjectivity, where S is finite set
- Δ_s(X) space of Borel probability measures on X, indexed by degree subjectivity of the lottery

•
$$Z^0(X) \equiv X$$
,

$$\blacktriangleright Z^1(X) \equiv \cup_{s \in S} \Delta_s(X) \cup X$$

 $\blacktriangleright Z^n(X) \equiv \cup_{s \in S} \Delta_s(Z^{n-1}) \cup Z^{n-1}$

$\rightarrow \mathsf{back}$

The choice space (within a period):

- ► X compact metric space, for example:
- ► X^{*} outcomes and observations within a period
- $s \in S$ degree of subjectivity, where S is finite set
- Δ_s(X) space of Borel probability measures on X, indexed by degree subjectivity of the lottery

•
$$Z^0(X) \equiv X$$
,

$$\blacktriangleright Z^1(X) \equiv \cup_{s \in S} \Delta_s(X) \cup X$$

$$\blacktriangleright Z^n(X) \equiv \cup_{s \in S} \Delta_s(Z^{n-1}) \cup Z^{n-1}$$

What for?

- ▶ Static choice object: Lottery $z \in Z^N(X^*)$ for some $N \in \mathbb{N}$
- Arbitrary concatenation of lotteries with differing degrees of subjectivity

$\rightarrow \mathsf{back}$

The actual choice space (generalized temporal lotteries):

Assume a finite time horizon

• Last period: choices $p_T \in P_T = Z^N(X^*)$

- ▶ Period before: choices $p_{T-1} \in P_{T-1} = Z^N(X^* \times Z^N(X^*))$
- Recursively: choices in t: $p_t \in P_t = Z^N(X^* \times P_{t+1})$

$\rightarrow \mathsf{back}$

The actual choice space (generalized temporal lotteries):

Assume a finite time horizon

• Last period: choices $p_T \in P_T = Z^N(X^*)$

- ▶ Period before: choices $p_{T-1} \in P_{T-1} = Z^N(X^* \times Z^N(X^*))$
- Recursively: choices in t: $p_t \in P_t = Z^N(X^* \times P_{t+1})$

Interpretation P_t :

- At beginning of a period uncertainty over
 - outcome in that period
 - Iottery describing the future at the end of that period
- uncertainty composed of different risks with differing degrees of subjectivity

$\rightarrow \mathsf{back}$

Definitions (preferences, subjectivity of lottery, reduction)

▶ Preferences \succeq_t on P_t

$\rightarrow \mathsf{back}$

Definitions (preferences, subjectivity of lottery, reduction)

▶ Preferences
$$\succeq_t$$
 on P_t

- ► $P_t^s \equiv \Delta_s(P_t) \cap P_t$ (root lottery has subjectivity s)
- ▶ $\hat{s}(p_t) = s$ iff $p_t \in P_t^s$ (degree of subjectivity of root lottery)

$\rightarrow \mathsf{back}$

Definitions (preferences, subjectivity of lottery, reduction)

- ▶ Preferences \succeq_t on P_t
- ► $P_t^s \equiv \Delta_s(P_t) \cap P_t$ (root lottery has subjectivity s)
- ▶ $\hat{s}(p_t) = s$ iff $p_t \in P_t^s$ (degree of subjectivity of root lottery)

$$\blacktriangleright P_t^{ss} \equiv \Delta_s(\Delta_s(P_t)) \cap P_t$$

For $p_t \in P_t^{ss}$ define the reduced lottery p_t^r by $p_t^r(A) = \int \tilde{p}(A) dp_t(\tilde{p})$ for all A in Borel algebra

$\rightarrow \mathsf{back}$

Definitions (preferences, subjectivity of lottery, reduction)

- ▶ Preferences \succeq_t on P_t
- ► $P_t^s \equiv \Delta_s(P_t) \cap P_t$ (root lottery has subjectivity s)
- ▶ $\hat{s}(p_t) = s$ iff $p_t \in P_t^s$ (degree of subjectivity of root lottery)

$$\blacktriangleright P_t^{ss} \equiv \Delta_s(\Delta_s(P_t)) \cap P_t$$

For $p_t \in P_t^{ss}$ define the reduced lottery p_t^r by $p_t^r(A) = \int \tilde{p}(A) dp_t(\tilde{p})$ for all A in Borel algebra

What's the point?

- (Only) lotteries of same subjectivity can be pulled together
- Only then the independence axioms will have power

Relation to Epstein Zin (1989)

Relation to Arrow Pratt risk aversion:

For the one-commodity setting (with utility str. increasing)

• u_t characterize aversion to intertemporal substitution

Relation to Epstein Zin (1989)

Relation to Arrow Pratt risk aversion:

For the one-commodity setting (with utility str. increasing)

 \blacktriangleright u_t characterize aversion to intertemporal substitution

Define:

 g_t^{obj} ≡ f_t^{obj} ∘ u_t⁻¹: measures Arrow Pratt risk aversion with respect to objective risk

 g_t^{subj} ≡ f_t^{subj} ∘ u_t⁻¹: measures Arrow Pratt risk aversion with respect to subjective risk

• Then
$$f_t^{amb} = g_t^{subj} \circ (g_t^{obj})^{-1}$$

Relation to Epstein Zin (1989)

Relation to Arrow Pratt risk aversion:

For the one-commodity setting (with utility str. increasing)

 \blacktriangleright u_t characterize aversion to intertemporal substitution

Define:

g_t^{obj} ≡ f_t^{obj} ∘ u_t⁻¹: measures Arrow Pratt risk aversion with respect to objective risk
 g_t^{subj} ≡ f_t^{subj} ∘ u_t⁻¹: measures Arrow Pratt risk aversion with respect to subjective risk
 Then f_t^{amb} = g_t^{subj} ∘ (g_t^{obj})⁻¹

Here, my suggested refinement of smooth ambiguity aversion is equivalent to being

 more Arrrow Pratt risk averse to subjective than to objective risk.