Competitive effects of vertical integration in auctions

Andrey Tkachenko

Nazarbayev University and Bocconi University

August 24, 2022 EEA-ESEM

Andrey Tkachenko (Nazarbayev University and Bocconi 🖡 Competitive effects of vertical integration in auctions

August 24, 2022 EEA-ESEM 1 / 25

Vertical markets: upstream producers distribute via downstream intermediaries.

What is the effect of vertical integration on prices for buyers?

Vertical integration trade-off:

- efficiency gain: synergy effect and elimination of double marginalization \Rightarrow reduce prices;
- raising rivals' costs (RRC) and exclusion of downstream rivals \Rightarrow increase prices;

Policy debate in antitrust regarding vertical mergers in the US and EU.

Pharmaceutical industry features

Supply side is vertically structured:

- producers: active ingredient defines similarity of brands;
- distributors (wholesalers): spread out drugs of different producers;
- ② Demand from public buyers has a large share:
 - regulation fosters competition at two levels;
 - brand substitution and price regulation.
 - price competition in auctions;
 - marketplace: public procurement auctions.

 \Rightarrow Producers and distributors have incentives for merger.

What is the effect of vertical integration on procurement prices?

Approach

- I. Motivating reduced-form evidence.
- II. Theoretical model to rationalize this evidence.
- III. Structural estimation of costs and simulations of vertical mergers.

I. Reduced-form evidence using Russian date:

- 1. Soft upstream competition: prices *increase* by 12%.
- 2. Tough upstream competition: prices decrease by 1.7%.

II. Theory explains:

- Point 1. via the restriction of downstream competition and raising rivals costs.
- Point 2. via the synergy of integration (reduction of transaction costs).

III. Structural estimation: producer and distributor costs with 2 producers.

IV. Simulation of vertical integration (VI)

- VI with synergy below 4% of total cost harms the buyer.
- Average synergy is around 1% of total cost.
- Structural remedy: mandatory sharing of the production technology by VI producer.

Advantages of Russian evidence:

- Public procurement of drugs is 1/3 of the overall pharmaceutical demand.
- Detailed information about bidders and purchased drugs.

External validity: countries with public healthcare systems:

- many EU countries: France, Italy, Spain;
- large developing countries: China, India, Brazil.

Effect of vertical integration: Literature

- Literature: ordinary markets with product differentiation (Hastings & Gilbert 2005; Hortaçsu & Syverson 07; Lee 13; Asker 16; Crawford et al. 18; Nocke & Rey 18; Luco & Marshall 19).
- This paper: auction setting without product differentiation.

Structural estimation of auctions:

- Literature: no intermediation cost, but information asymmetry (Hortaçsu et al 12,18).
- This paper: intermediaries and input suppliers costs identification.

Studies of the Pharma industry:

- vertical vs. horizontal mergers (Bjornerstedt & Verboven 16; Bonaime & Wang 19).
- supply vs. demand side of procurement (Duggan et al. 10, Jascisens 17, Dubois et al. 21).
- public procurement vs. retail market markups (Dubois & Lasio 18, Dubois & Sæthre 20).

1 Reduced-form evidence

2 Model

Public procurement:

- Period: July 2014 September 2019.
- Population of procurement auctions: anti-neoplastic, antimicrobial, treating diabetes and diseases of the circulatory system market
- 814K auctions descriptive
- Bidding protocol includes:
 - IDs and bids of all bidders;
 - winner's price-per-unit and quantity for each drug;
 - brands of supplied drugs and their producers.

VI events: 2 partial mergers, 3 full mergers, 4 divestitures details

- Treatment group: drugs of VI producers.
- **Control group**: drugs of Non-VI producers, but in the same ATC 3 level and different ATC 4 level as drugs in the Treatment group (ATC), (desc.stat):

Specification: details

- Dependent variable: log of price-per-unit
- FE: drugs, year-quarter, drug.class-year
- Controls: quantity of drugs, auction's and buyer's characteristics

Sample: auctions with VI distributors

	Dependent	variable: Log of price-per-unit
	OLS	OLS
	(1)	(2)
ATT	-0.017*** (0.006)	
ATT (1 producer)		0.114* (0.065)
ATT (2-4 producers)		0.135** (0.055)
ATT (at least 5 producers)		-0.018*** (0.006)
Drug spec. FE Region FE	850 YES	850 YES
Year-quarter FE	YES	YES
ATC3-year FE	YES	YES
Observations R ²	123,074 0.955	123,074 0.955

*p<0.1; **p<0.05; ***p<0.01

- Control for downstream competition Basic Alternative No bundling
- Staggered DID: stack regression (Cengiz et al. 19) Results.
- Only vertical mergers: exclude divestitures and all mergers have intensity 1 (Results).
- Geographical markets: Drug specification-West/East Results.
- Favouritism: Procurer-Distributor FE Results.
- Impact of VI on competition Num.Applicants No bundling.

Reduced-form evidence

2 Model

3 Structural estimation

Players, timing and costs structure

Inelastic demand:

- procurer buys a fixed number of drug units via a descending auction
- public reserve price r.

Players: *N* upstream producers $\{P_i\}_{i=1}^N$ and *M* downstream distributors $\{D_j\}_{j=1}^M$. Timing:

Stage 1:

- Upstream producers observe independent private production costs $(c_i)_{i=1}^N, c_i \in [\underline{c}, \overline{c}]$.
- All distributors simultaneously negotiate input (wholesale) prices with all producers.
- Negotiation protocol:
 - if N = 1 then P_1 is price setter;
 - if N > 1 then each distributor runs an internal descending auction among all producers.
 - input price p_j of D_j cannot exceed \overline{p} . \overline{p} is common knowledge and $\overline{p} \ll r$. details
 - no trade at this stage, but commitment about the price level.

Stage 2:

- Distributors observe independent private distribution costs $(d_j)_{i=1}^M$, $(tc_j = p_j + d_j)_{i=1}^M$.
- Distributors participate in the *descending auction* of the buyer.
- The winner trades with producer at the committed price and supplies the drug.

Players, timing and costs structure

Inelastic demand:

- procurer buys a fixed number of drug units via a descending auction
- public reserve price r.

Players: *N* upstream producers $\{P_i\}_{i=1}^N$ and *M* downstream distributors $\{D_j\}_{j=1}^M$. **Timing:**

Stage 1:

- Upstream producers observe independent private production costs $(c_i)_{i=1}^N$, $c_i \in [\underline{c}, \overline{c}]$.
- All distributors simultaneously negotiate input (wholesale) prices with all producers.
- Negotiation protocol:
 - if N = 1 then P_1 is price setter;
 - if N > 1 then each distributor runs an internal descending auction among all producers.
 - input price p_j of D_j cannot exceed \overline{p} . \overline{p} is common knowledge and $\overline{p} \ll r$. details
 - no trade at this stage, but commitment about the price level.
- Stage 2:
 - Distributors observe independent private distribution costs $(d_j)_{i=1}^M$, $(tc_j = p_j + d_j)_{i=1}^M$.
 - Distributors participate in the *descending auction* of the buyer.
 - The winner trades with producer at the committed price and supplies the drug.

Players, timing and costs structure

Inelastic demand:

- procurer buys a fixed number of drug units via a descending auction
- public reserve price r.

Players: *N* upstream producers $\{P_i\}_{i=1}^N$ and *M* downstream distributors $\{D_j\}_{j=1}^M$. **Timing:**

Stage 1:

- Upstream producers observe independent private production costs $(c_i)_{i=1}^N$, $c_i \in [\underline{c}, \overline{c}]$.
- All distributors simultaneously negotiate input (wholesale) prices with all producers.
- Negotiation protocol:
 - if N = 1 then P_1 is price setter;
 - if N > 1 then each distributor runs an internal descending auction among all producers.
 - input price p_j of D_j cannot exceed \overline{p} . \overline{p} is common knowledge and $\overline{p} \ll r$. details
 - no trade at this stage, but commitment about the price level.

Stage 2:

- Distributors observe independent private distribution costs $(d_j)_{i=1}^M$, $(tc_j = p_j + d_j)_{i=1}^M$.
- Distributors participate in the *descending auction* of the buyer.
- The winner trades with producer at the committed price and supplies the drug.

Vertical separation (VS): Distributors and producers are independent firms.

Vertical integration (VI): P_1 is vertically integrated with D_1 , other firms are independent.

• Synergy effect δ : D_1 can get the drug at its cost $p_1 = c_1 - \delta$ from P_1 . δ is exogenous.

Goal: compare ex-ante expected buyer payment (Ep^{vs} vs. Ep^{vi})

Proposition 1. Assume that P_1 cannot exclude rival distributors under VI scenario.

• No synergy
$$(\delta = 0) \Rightarrow \mathsf{E} p^{vi} = \mathsf{E} p^{vs}.$$

• Positive synergy
$$(\delta > 0) \Rightarrow {\sf E} {\sf p}^{{\it v}i} < {\sf E} {\sf p}^{{\it v}s}.$$

 \Rightarrow under behavioral remedy, VI does not increase the buyer payment ${}^{\tiny{(details)}}$

Remark 1. Exclusion of rival distributors is optimal when regulated price is low Graph

Several producers details

Proposition 2. (i) No synergy $(\delta = 0) \Rightarrow \lim_{N \to \infty} E(p^{vi}) - E(p^{vs}) = 0.$ (ii) Positive synergy $(\delta > 0) \Rightarrow \lim_{N \to \infty} E(p^{vi}) - E(p^{vs}) < 0.$

If the number of producers is large, RRC effect is negligible, synergy effect creates asymmetry.

Remark 2. Vertical integration can increase the buyer payment if number of producers is low.

Reduced-form evidence

2 Model

VS scenario: structure of total cost for D_j $(j \in \{\overline{1, M}\})$ multiplicative unobserved het. :

Observed data: bids from descending auctions with public reserve price.

Identification: extension for English auctions with unobserved heterogeneity details

- Bids are order statistics of total costs.
- Unobserved heterogeneity is the equilibrium negotiation price.

(1)

Estimation

Sample:

- 1. Two vertically separated producers.
- 2. Producers are not bidders.
- 3. Number of applicants = Number of bidders.
- 4. No bundling.
- 5. Reserve price in [2M, 30M] RUB ([31K, 465K] USD).
- 6. \geq 500 observations for a drug specification.
- ⇒ Antineoplastic drugs: Sunitinib, Sorafenib, Nilotinib.

Binding reserve price \Rightarrow ML estimation (ikelihood)

Parametric assumptions: $c_i \sim N(\mu_c, \sigma_c^2)$, $d_i \sim N(\mu_d, \sigma_d^2)$ (Estimates Semi-parametric

VS scenario

} Estimation accuracy

Simulation: synergy for pro-competitive merger No synergy

Andrey Tkachenko (Nazarbayev University and Bocconi | Competitive effects of vertical integration in auctions

Simulation: synergy which matches the reduced-form effect

Simulation of structural remedy: 1% synergy and exogenous entry ${}^{ extstyle ex$

Andrey Tkachenko (Nazarbayev University and Bocconi 🖡 Competitive effects of vertical integration in auctions

- VI is not anti-competitive in procurement markets if upstream competition is tough.
- VI requires special attention if upstream competition is soft:
 - proof of substantial synergy effect;
 - mandatory sharing of production technology.

Appendix

- Public procurement (PP) is 35% of the demand (8.6 billion USD in 2019).
- Public buyers
 - Federal and regional healthcare authorities.
 - Hospitals, polyclinics.
- Bidders are mostly distributors.
 Producers rarely participate.

- Buyer describes for each drug in a bundle:
 - Drug specification:
 - active ingredient (Insulin glargine), but not brand (Lantus SoloStar of Sanofi) (ATC);
 - Al dosage (100 un/ml, 3 ml).
 - Quantity: number of units in pack and number of packs (5 units/pack, 2 packs).
 - Reserve price is determined by the regulated prices for drugs (53 USD/pack):
 - prices of producers are regulated at the national level;
 - markups of distributors are regulated at the regional level.
- Ø Buyer announces a procedure: electronic descending auctions.
- Otential bidders negotiate input prices with producers.
- O Bidders participate by placing their bids for the bundle. Minimal bid wins.
- Winner supplies the bundle.

Market definition main

Each drug specification (active ingredient-dosage) is a market.

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Bundle reserve price (M RUB)	814,684	2.73	26.55	0.001	0.20	1.56	8,332.50
Number of distinct drug spec.	814,684	2.69	4.84	1	1	2	135
Drug spec. HHI	814,684	0.67	0.38	0	0.3	1	1
Bundle has drug spec. of VI prod.	814,684	0.53	0.50	0	0	1	1
Share of drug spec. of VI prod.(%)	814,684	38.88	45.06	0	0	100	100
Number of applicants	813,523	2.73	2.16	1	1	4	23
Rebate for bundle (%)	803,983	11.63	18.25	0	0	18.3	80
VI distrib. applies (%)	814,684	7.3	26	0	0	0	100
VI distrib. wins (%)	814,684	2.5	15.5	0	0	0	100

Bundle level Drug level Interactions

Distributor	Producer	Share change	Event type	Completion date	
Biocad	Pharmstandart	20% ightarrow 70%	Partial merger	31.12.2015	
Eskom	Medpolymer	100% ightarrow 0%	Divestiture	04.03.2016	
Biotek	Biosintez	100% ightarrow 0%	Divestiture	20.12.2016	
SIA	Biokom	0% ightarrow 100%	Full merger	01.02.2017	
SIA	Sintez	17% ightarrow 51%	Partial merger	01.02.2017	
Eskom	Medpolymer	0% ightarrow 100%	Full merger	08.02.2017	
Protek	Rapharma	0% ightarrow 100%	Full merger	17.04.2017	
SIA	Sintez	100% ightarrow 0%	Divestiture	29.11.2018	
SIA	Biokom	100% ightarrow 0%	Divestiture	29.11.2018	

Distributor	Producer	Obs.	Drug spec.	Mean z-price	Median z-price	St.d. z-price
Non-VI distrib.	Non-VI prod.	968598	1614	0.002	-0.063	0.999
Non-VI distrib.	VI prod.	1490452	399	0.000	-0.212	1.001
VI distrib.	Non-VI prod.	38178	1218	-0.016	-0.166	0.987
VI distrib.	VI prod.	18184	227	-0.077	-0.276	0.963

Drug level main

Identification of VI effect on prices main

Difference-in-differences with multiple treatment events of different intensities

$$In(price_{i,d,t,q,s,b}) = \alpha I(d \in D, t \in T) \cdot Intensity + [\beta Num.Applicants_i] + (2)$$
$$\mu_d + \lambda_t + \nu_{ATC3-year} + \delta_q + \eta_b + X_i\theta + \varepsilon_{i,d,t,q,s,b},$$

- T is the period of integration between VI producer and VI distributor.
- *D* is the treatment group.
- Intensity: 1 for full mergers, 0.5 for partial mergers, -1 for divestitures.
- **DID FE**: drug specification (μ_d) , year-quarter (λ_t) .
- Mergers are not random: $\nu_{ATC3-year}$ controls for dynamic changes of demand \bigvee markets.
- Num.Applicants controls for downstream competition.
- Scale and distance controls: quantity quantile (δ_q) , buyer region (η_b) .
- Auction characteristics X_i: number of drug specifications, duration, centralization.

Endogeneity of Number of applicants and Bundling

- Merger induced instruments: share of treated drugs and its interaction with post-VI event.
- Relevance: higher share of treated drugs \Rightarrow
 - VI distributor has higher cost advantage due to efficiency gain.
 - RRC effect of VI producer is stronger.
- Validity:
 - Buyers set bundle.
 - Buyers do not deliberately give an advantage to VI distributors via the higher share of treated drugs treated share.
 - Orice equation controls for:
 - number of drug specifications in the bundle.
 - drug specifications FE.
VI effect pre-trends placebo effect main

With control for downstream competition

	Panel	A: Log of p	rice-per-unit o	f drug
	OLS	OLS	2SLS	2SLS
	(1)	(2)	(3)	(4)
ATT	-0.017^{***}		-0.015^{**}	
	(0.006)		(0.006)	
ATT (1 producer)		0.114*		0.056
		(0.065)		(0.075)
ATT (2-4 producers)		0.135**		0.128**
		(0.055)		(0.055)
ATT (\geq 5 producers)		-0.018***		-0.016***
,		(0.006)		(0.006)
Number of applicants			-0.092***	-0.092***
			(0.009)	(0.009)
Drug spec. FE	850	850	850	850
Observations	123,074	123,074	122,971	122,971
R ²	0.955	0.955	0.953	0.953
	Panel B	First stage.	Number of a	pplicants
	(1)	(2)	(3)	(4)
Treat. PD share			0.009***	0.009***
			(0.001)	(0.001)
Treat. PD share*post VI			-0.003***	-0.003***
			(0.001)	(0.001)
F statistics			144.78	144.89

*p<0.1; **p<0.05; ***p<0.01

Andrey Tkachenko (Nazarbayev University and Bocconi 🖡 Competitive effects of vertical integration in auctions

Placebo effect: VI distributor does not participate pre-trends main

	Panel A: Log of price-per-unit of drug			
	OLS	OLS	2SLS	2SLS
	(1)	(2)	(3)	(4)
ATT	-0.033**		-0.032*	
	(0.017)		(0.017)	
ATT (1 producer)		-0.065		-0.070
		(0.047)		(0.048)
ATT (2-4 producers)		0.028		0.025
		(0.026)		(0.025)
ATT (> 5 producers)		-0.034**		-0.033*
		(0.017)		(0.017)
Number of applicants			-0.043**	-0.043**
			(0.020)	(0.020)
Drug spec. FE	1242	1242	1242	1242
Observations	1,909,394	1,909,394	1,905,849	1,905,849
R ²	0.962	0.962	0.963	0.963
	Panel B:	First stage.	Number of a	pplicants
			(1)	(2)
Share of treated drugs			0.008***	0.008***
-			(0.001)	(0.001)
Share of treated drugs * Post VI			-0.0002	-0.0002
			(0.001)	(0.001)
F statistics			64	64

*p<0.1; **p<0.05; ***p<0.01

Andrey Tkachenko (Nazarbayev University and Bocconi 🖡 Competitive effects of vertical integration in auctions

- Let G(t) be the log-concave cdf of $(d_j)_{j=1}^m$.
- Let $G_m(t) = 1 (1 G(t))^m$ be the distribution of minimum of $(d_j)_{j=1}^m$.
- Let p^* be the solution of $p = c + \frac{G_m(r-p)}{G'_m(r-p)}$.
- The assumption means $\overline{p} \leq p^*$.

main

Costs are common knowledge

- Chicago school: VI should be authorized as they cannot do worse for consumers.
 - i) powerful contracts mimic the VI effect \Rightarrow monopoly profit is feasible even without VI;
 - (ii) VI eliminates double marginalization.
- post-Chicago literature: VI can do worse for consumers
 - i) Problem of commitment (Hart and Tirole 1990) \Rightarrow no monopoly power without VI.
 - (ii) If upstream market is not monopolized, but concentrated, foreclosure (RRC) appears. Overall effect of VI is ambiguous (Salinger 1988,1991; Ordover et al. 1990)
 - (iii) VI effect may be harmful for consumers if the downstream market is competitive enough (Riordan 1998; Loertscher, Resinger 2014).
 - (iv) Drawbacks:
 - foreclosure is not necessary justified by the game;
 - often either RRC or efficiency gain are introduced, but not together;
 - conclusions are driven by the choice of modeling competition.

Costs are private values

- Upstream firm signals its type (White 2007) or capacity (Baake et al. 2004). It solves commitment problem, but induces inefficient output, alleviated by VI.
- Downstream firms are considered to have buyer power in the negotiation (Thomas 2011; Loertscher, Marx 2019,2020; Loertscher, Riordan 2019; Waehrer 2019)
 - auction is introduced as negotiation mechanism.
 - foreclosure is a consequence of strategic behavior, but not the assumption.
 - efficiency gain can be easily incorporated together with RRC.
 - demand is inelastic, so not concern about type of contracts.

Foreclosure by single producer Zoom Main

Single producer: VS scenario

Stage 2:

- distributor j stays in the auction until the current price reaches the total cost $tc_j = p_j + d_j$
- The buyer payment is $tc_2^{(m)}$, i.e. the second lowest total cost.

Stage 1:

- Distributors are symmetric \Rightarrow producer sets the same input price to distributors $p_j = p$.
- Producer maximizes profit

$$\arg \max_{p \leq \overline{p}} (p - c_1) \cdot \mathsf{P}\left(d_1^{(m)} \leq r - p\right) = \overline{p}$$
 (3)

 \Rightarrow Expected buyer payment (conditional on trade):

$$\mathsf{E}p^{\mathsf{vs}} = \mathsf{E}\left(\min(\overline{p} + d_2^{(m)}, r) \middle| \, \overline{p} + d_1^{(m)} \le r\right) \tag{4}$$

Single producer: VI scenario

Stage 2:

• Total cost structure:

$$egin{cases} tc_1=c_1-\delta+d_1;\ tc_j=\underbrace{c_1+\mu}_p+d_j\ (j\geq 2). \end{cases}$$

- D_1 knows μ and participates in a descending auction
- For D_1 it is optimal to stay until price reaches

$$c_1 - \delta + \mu + d_1, \tag{6}$$

but not $tc_1 = c_1 - \delta + d_1$, because if D_1 looses then $P_1 \& D_1$ gets profit μ .

Stage 1: Producer sets the price to
$$D_j$$
 with maximal level $p_j = \overline{p}$.

(5)

Foreclosure

Stage 2:

- distributor j stays in the auction until the current price reaches the total cost $\widetilde{tc}_j = p_j + d_j$
- The winner gets $t \widetilde{c}_2^{(m)}$.

Stage 1:

- Negotiation protocol is a descending auction \Rightarrow input price $p_j = c_2^{(n)}$.
- \Rightarrow Expected buyer payment:

$$\mathsf{E}\rho_{nvi} = \mathsf{E}\left(c_2^{(n)} + d_2^{(m)}\right) \tag{7}$$

Several producers: VI scenario

Stage 2: Possible cases:

•
$$A = \left\{ c_1 + \mu \leq c_1^{(n-1)}
ight\} - P_1$$
 is the input supplier of all distributors \Rightarrow

$$\begin{cases} tc_1 = c_1 - \delta + d_1; \\ tc_j = c_1^{(n-1)} + d_j & (j = \overline{2, m}). \end{cases}$$
(8)

 D_1 stays in the auction until price is $c_1^{(n-1)}-\delta+d_1$, but not $c_1-\delta+d_1$.

• $ar{A} \Rightarrow$ all distributors stay in the auction until their total cost

$$\begin{cases} tc_1 = \min\left(c_2^{(n-1)}, c_1 - \delta\right) + d_1; \\ tc_j = c_2^{(n)}(\mu) - \rho + d_j \quad (j = \overline{2, m}). \end{cases}$$
(9)

where ρ is **rebate** and $c_2^{(n)}(\mu)$ is the second smallest of $\{c_1 + \mu, c_2, \dots, c_n\}$

Several producers: VI scenario

Stage 2: Possible cases:

•
$$A = \left\{ c_1 + \mu \leq c_1^{(n-1)}
ight\} - P_1$$
 is the input supplier of all distributors \Rightarrow

$$\begin{cases} tc_1 = c_1 - \delta + d_1; \\ tc_j = c_1^{(n-1)} + d_j \quad (j = \overline{2, m}). \end{cases}$$
(8)

 D_1 stays in the auction until price is $c_1^{(n-1)} - \delta + d_1$, but not $c_1 - \delta + d_1$.

• $ar{A} \Rightarrow$ all distributors stay in the auction until their total cost

$$\begin{cases} tc_1 = \min\left(c_2^{(n-1)}, c_1 - \delta\right) + d_1; \\ tc_j = c_2^{(n)}(\mu) - \rho + d_j \quad (j = \overline{2, m}). \end{cases}$$
(9)

where ρ is **rebate** and $c_2^{(n)}(\mu)$ is the second smallest of $\{c_1 + \mu, c_2, \dots, c_n\}$.

Several producers: VI scenario 📼

Stage 1: Equilibrium foreclosure
$$\mu(c_{1})$$
 and rebate $\rho\left(c_{1}^{(n-1)}, c_{2}^{(n)}(\mu)\right)$:

$$argmax_{\mu} E\left(c_{1}^{(n-1)} + d_{1}^{(m-1)} - c_{1} - d_{1} + \delta \middle| c_{1}, \rho, A \cap \underbrace{\{d_{1} - \delta \leq d_{1}^{(m-1)}\}}_{D}\right) P(A \cap D | c_{1}, \rho) + E\left(c_{1}^{(n-1)} - c_{1} \middle| c_{1}, \rho, A \cap \overline{D}\right) P(A \cap \overline{D} | c_{1}, \rho) + E\left(tc_{1}^{(m-1)} - tc_{1} \middle| c_{1}, \rho, \overline{A} \cap \underbrace{\{tc_{1} \leq tc_{1}^{(m-1)}\}}_{E}\right) P(\overline{A} \cap E | c_{1}, \rho); \\
argmax_{\rho} \left(c_{2}^{(n)}(\mu) - \rho - c_{1}^{(n-1)}\right) P\left(\overline{E} \middle| c_{2}^{(n)}(\mu), c_{1}^{(n-1)}, \underbrace{\{c_{1} + \mu > c_{1}^{(n-1)}\}}_{\overline{A}} \geq c_{1} - \delta\}, \mu\right).$$
(11)

Within cluster 'active ingredient—buyer region' (auctions above 1 M RUB, median):

- distributors work with
 - 3.1 producers (on average), median is 2.
 - these are 40% of all national producers of an AI.
- 2 producers work with
 - 3.4 distributors (on average), median is 3.
 - these are 3% of all national distributors of an AI.

main

Supplier	Producer	Obs.	Drug spec.	Mean z-price	Median z-price	St.d. z-price
biocad	Control	59	2	-0.624	-0.944	1.069
biocad	Treatment	378	16	-1.231	-1.266	0.701
biotek	Control	4229	218	-0.069	-0.195	0.924
biotek	Treatment	10526	100	-0.160	-0.296	0.890
eskom	Control	364	22	0.382	0.127	1.177
eskom	Treatment	3871	67	0.369	0.264	1.102
protek	Control	146	43	-0.190	-0.374	1.008
protek	Treatment	248	22	-0.166	-0.342	0.810
sia	Control	1370	159	-0.043	-0.101	0.928
sia	Treatment	3161	117	-0.192	-0.413	0.813
unmerged	Control	525362	843	0.001	-0.079	1.000
unmerged	Treatment	1490452	399	0.001	-0.212	1.000

ATC structure auction treatment

Andrey Tkachenko (Nazarbayev University and Bocconi | Competitive effects of vertical integration in auctions

	Dependent variable: Share of treated drugs					
	Share(total)	Share(1 prod.)	Share(2-4 prod.)	Share(\geq 5 prod.)		
	(1)	(2)	(3)	(4)		
ATT=(Treat.Share> 1%)*post VI	22.362***	0.167***	0.540***	21.655***		
· , ·	(0.664)	(0.018)	(0.039)	(0.638)		
ATT*VI distr. part.	-3.562***	-0.079^{*}	0.079	-3.562***		
	(0.841)	(0.048)	(0.147)	(0.841)		
Procurer FE	8055	8055	8055	8055		
Year-quarter FE	YES	YES	YES	YES		
Observations	849,468	849,468	849,468	849,468		
R ²	0.267	0.019	0.015	0.264		

Test for pre-trends of prices: VI distr. participates (main OLS) (main IV)

Panel A: No control for number of applicants

Panel B: With control for number of applicants

	Dependent variable: Log of price-per-unit of drug					
	VI dist. wins	VI dist. wins	VI dist. loses	VI dist. loses		
	(1)	(2)	(3)	(4)		
ATT	0.008 (0.015)		-0.013** (0.006)			
ATT (1 producer)		0.486*** (0.140)		0.062 (0.065)		
ATT (2-4 producers)		0.142 (0.140)		0.216*** (0.054)		
ATT (at least 5 producers)		0.007 (0.015)		-0.014** (0.006)		
Drug spec. FE	519	519	786	786		
Region FE	YES	YES	YES	YES		
Year-quarter FE	YES	YES	YES	YES		
ATC3-year FE	YES	YES	YES	YES		
Observations	24,149	24,149	98,925	98,925		
R ²	0.964	0.964	0.954	0.954		

Test for pre-trends of prices: VI distr. does not participate main

Panel A: No control for number of applicants

Panel B: With control for number of applicants

	Log of price-per-unit					
	OLS	OLS	2SLS	2SLS		
	(1)	(2)	(3)	(4)		
ATT	0.004		-0.026**			
	(0.010)		(0.012)			
ATT (1 producer)		0.110		0.087		
		(0.163)		(0.152)		
ATT (2-4 producers)		0.112**		0.079*		
		(0.048)		(0.048)		
ATT (> 5 producers)		0.004		-0.026**		
(= • • • • • • • • • • • • • • • • • • •		(0.010)		(0.012)		
Num, of applicants			-0.083***	-0.083***		
			(0.007)	(0.007)		
F stat. (1st stage)			109.03	108.99		
Drug spec. FE	592	592	591	591		
Region FE	YES	YES	YES	YES		
Stack-year-quarter FE	YES	YES	YES	YES		
R ²	0.954	0.954	0.954	0.954		
Note:		*p<0.1; **p<0.05; ***p<0.01				

VI effect on prices (alternative instrument)

	Depende	nt variable: Lo	Dependent variable: Log of price per unit of drug			
	Orig. instr.	Orig. instr.	Altern. instr.	Altern. instr.		
	(1)	(2)	(3)	(4)		
ATET	-0.015** (0.006)		-0.016*** (0.005)			
ATET (1 producer)		0.056 (0.075)		0.084 (0.068)		
ATET (2-4 producers)		0.128** (0.055)		0.133** (0.054)		
ATET (at least 5 producers)		-0.016*** (0.006)		-0.017*** (0.005)		
Num. of applicants	-0.092*** (0.009)	-0.092*** (0.009)	-0.048*** (0.004)	-0.048*** (0.004)		

	Dependent variable: Number of applicants				
	Orig. instr.	Orig. instr.	Altern. instr.	Altern. instr.	
Treat. PD share	0.009*** (0.001)	0.009*** (0.001)			
Treat. PD share*post VI	-0.003*** (0.001)	-0.003*** (0.001)			
Max. num. of applicants			0.213*** (0.006)	0.213*** (0.006)	
F statistics R ²	144.78 0.525	144.89 0.525	1085.96 0.548	1086.46 0.548	

Andrey Tkachenko (Nazarbayev University and Bocconi 🖡 Competitive effects of vertical integration in auctions

Auctions with one active ingredient (alternative instrument)

	Depende	nt variable	: Log of price	-per-unit of drug
	OLS	OLS	2SLS	2SLS
	(1)	(2)	(3)	(4)
ATT	0.007 (0.008)		0.010 (0.008)	
ATT (1 producer)		0.158 (0.223)		-0.040 (0.228)
ATT (2-4 producers)		0.409*** (0.076)		0.354*** (0.074)
ATT (at least 5 producers)		0.005 (0.008)		0.009 (0.008)
Num. of applicants			-0.043*** (0.003)	-0.043*** (0.003)
Drug spec. FE	707	707	707	707
Observations R ²	64,150 0.966	64,150 0.966	64,116 0.967	64,116 0.967
	Panel	B: First st	age. Number	r of applicants
	(1)	(2)	(3)	(4)
Max. num. of applicants	. ,	. ,	0.437*** (0.008)	0.437*** (0.008)
F statistics R ²			2804.69 0.670	2802.34 0.670

*p<0.1; **p<0.05; ***p<0.01

Andrey Tkachenko (Nazarbayev University and Bocconi I Competitive effects of vertical integration in auctions

VI effect on prices (favouritism)

	Dependent variable: Log of price-per-unit of drug				
	OLS	OLS	2SLS	2SLS	
	(1)	(2)	(3)	(4)	
ATT	-0.025***		-0.013^{**}		
	(0.006)		(0.006)		
ATT (1 producer)		0.103*		0.055	
(· · ·)		(0.063)		(0.071)	
ATT (2-4 producers)		0.135**		0.139**	
		(0.057)		(0.058)	
ATT (at least 5 producers)		-0.026***		-0.014**	
(,		(0.006)		(0.006)	
Num of applicants			-0.086***	-0.085***	
			(0.012)	(0.012)	
# drug spec. FE	850	850	850	850	
Buyer-Supplier FE	21853	21853	21842	21842	
Observations	123,074	123,074	122,971	122,971	
R ²	0.968	0.968	0.968	0.968	
*p<0.1: **p<0.05: ***p<0.01					

VI effect on prices (only VI mergers with equal weights)

	Dependent variable: Log of price-per-unit of drug				
	OLS	OLS	2SLS	2SLS	
	(1)	(2)	(3)	(4)	
ATT	-0.022*** (0.007)		-0.019** (0.007)		
ATT (1 producer)		0.080** (0.032)		0.035 (0.040)	
ATT (2-4 producers)		0.139*** (0.030)		0.112*** (0.031)	
ATT (at least 5 producers)		-0.027*** (0.007)		-0.022*** (0.007)	
Num. of applicants			-0.088*** (0.009)	-0.088*** (0.009)	
# of drug spec. FE	850	850	850	850	
Observations	123,074	123,074	122,971	122,971	
R ²	0.955	0.955	0.954	0.954	

VI effect on prices (geographical markets)

	Dependent variable: Log of price-per-unit of drug				
	OLS	OLS	2SLS	2SLS	
	(1)	(2)	(3)	(4)	
ATT	-0.017*** (0.006)		-0.015** (0.006)		
ATT (1 producer)		0.124** (0.062)		0.050 (0.072)	
ATT (2-4 producers)		0.099** (0.041)		0.091** (0.042)	
ATT (at least 5 producers)		-0.018*** (0.006)		-0.016*** (0.006)	
Num. of applicants			-0.092*** (0.009)	-0.092*** (0.009)	
# drug spec. FE	850	850	850	850	
Observations	123,074	123,074	122,971	122,971	
R ²	0.955	0.955	0.953	0.953	

VI effect on competition (one active ingredient) main

	Dependent variable: Number of applicants		
	(1)	(2)	
ATT	0.164***		
	(0.040)		
ATT (1 producer)		-3.232***	
		(0.701)	
ATT (2-4 producers)		-1.164^{***}	
		(0.341)	
ATT (at least 5 producers)		0.170***	
		(0.040)	
Max. num. of applicants	0.437***	0.437***	
	(0.008)	(0.008)	
F statistics	2804.69	2802.34	
Observations	64,116	64,116	
R ²	0.670	0.670	

 $\textit{Num.Applicants}_{i,t,b} = \alpha \textit{Share}_i \cdot \textit{I}(t \in \textit{T}) \cdot \textit{Intensity} + \beta \textit{Share}_i + \lambda_t + \eta_b + \mathsf{X}_{i}\theta + \varepsilon_{i,m,d,t}$

- *Share_i*: share of treated drugs in the bundle;
- T is the period of integration between VI producer and VI distributor;
- Intensity: 1 for full mergers, 0.5 for partial mergers, -1 for divestitures.
- Fixed Effects: year-quarter, buyer ID.
- X_i: number of drug spec., duration, ln(reserve price), centralisation;
- Clustering of errors: buyer ID.
- Samples:

,

- auctions, where VI distributors participate.
- 2 auctions, where VI distributors do not participate.

	Dependent variable: Number of applicants			
Sample	VI dist. part.	VI dist. part.	Indir. rival wins	Indir. rival wins
Model	(1)	(2)	(3)	(4)
Num. of drugs	-0.098***	-0.097***	-0.036***	-0.036***
	(0.007)	(0.007)	(0.003)	(0.003)
Treat PD share	0.018***		0.013***	
freat. TO share	(0.001)		(0.0003)	
Treat DD along to at 1/4	0.002***		0.000***	
Treat. PD share post VI	(0.001)		(0.002)	
	(0.001)		(0.0003)	
Treat. PD share (1 producer)		0.008***		0.010***
		(0.002)		(0.001)
Treat. PD share (2-4 producers)		0.004**		0.001
		(0.002)		(0.0005)
Treat. PD share (≥ 5 producers)		0.018***		0.013***
reat: 1 b share (_ b producers)		(0.001)		(0.0003)
Treat. PD share (1 producer)*post VI		-0.008**		-0.001
		(0.003)		(0.001)
Treat PD share (2-4 producers)*post VI		0.0003		0.001**
freder i D share (2 i producets) post i i		(0.002)		(0.0004)
		0.002***		0.002***
Treat. PD share (\geq 5 producers) post VI		(0.003		(0.002)
		(0.001)		(0.0003)
Procurer FE	3697	3697	7927	7927
Year-quarter FE	YES	YES	YES	YES
Observations	61,259	61,259	784,463	784,463
R ²	0.460	0.462	0.266	0.269

Andrey Tkachenko (Nazarbayev University and Bocconi 🖡 Competitive effects of vertical integration in auctions

Parallel pre-trends of the number of applicants main

Panel A: VI distributor is participant

Multiplicative form

winning bid:
$$b_{1,a}^{(m)} = TC_{2,a}^{(M)}$$
 (13)
other bids: $b_{k,a}^{(m)} = TC_{k+1,a}^{(M)}$

Back to the additive form:

t

$$c_{j,a} = ln(TC_{j,a}), \ c_{2,a}^{(N)} = ln\left(C_{2,a}^{(N)}\right), \ d_{j,a} = ln\left(D_{j,a}\right)$$
(14)
$$tc_{j,a} = \underbrace{c_{2,a}^{(N)}}_{common \ term} + \underbrace{d_{j,a}}_{private \ value} + \underbrace{\beta X_{a}}_{observed \ heterogen.}$$
(15)

main

Unobserved heterogeneity

Total cost structure:

Reserve price structure

$$r_a = \tilde{r_a} + \beta X_a + u_a \tag{17}$$

Additional assumptions:

- Independence: $c_{i,a} \perp d_{j,a} \perp X_a \perp u_a$
- Solution: $E(u_a) = 0$

main

Extension for English auctions with unobserved heterogeneity (Freyberger, Larsen 2017)

Descending auctions with public reserve price

- D_j enters if $tc_{j,a} \leq r_a \Rightarrow$ endogenous entry because of binding reserve price.
- Bids are order statistics of total costs: $ln(b_{k,a}^{(m)}) = tc_{k+1,a}^{(M)}$
- Assumptions:
 - Independence: c_{i,a} ± d_{j,a} ± X_a;
 Normalization: E (c^(N)_{2,a}) = 0.
- **Step 1.** Homogenization of auctions: subtract observed heterogeneity βX_a
- **Step 2.** Two bids identify CDF of $c_{2,a}^{(N)}$ and $d_{2,a}^{(M)}$
- **Step 3.** Inversion of the order statistics' CDF \Rightarrow CDF of $c_{i,a}$ and $d_{j,a}$.

(18)

Details on identification main

Step 1. Homogenization: subtract observed heterogeneity from bids and reserve price.

$$ln(b_{k,a}^{(m)}) = \beta X_{a} + u_{k,a}^{(m)}$$
(19)

Step 2. $c_{2,a}^{(N)}$ is unobserved heterogeneity \Rightarrow two bids with three bidders identify CDF

$$c_{2,a}^{(N)}: E\left(c_{2,a}^{(N)}\right) = 0, \quad Var\left(c_{2,a}^{(N)}\right) = cov\left(u_{1,a}^{(m)}, u_{2,a}^{(m)}\right)$$
(20)

$$d_{k,a}^{(M)}: E\left(d_{k,a}^{(M)}\right) = E\left(u_{k,a}^{(m)}\right), \quad Var\left(d_{k,a}^{(M)}\right) = Var\left(u_{k,a}^{(m)}\right) - Var\left(c_{2,a}^{(N)}\right)$$
(21)

Step 3. Inversion of the order statistics.

$$c_i: F(x) = F_{Beta(2,N-1)}^{-1} \left(F_{c_2^{(N)}}(x) \right)$$
(22)

$$d_j: G(x) = F_{Beta(k,M+1-k)}^{-1} \left(G_{d_k^{(M)}}(x) \right)$$
(23)

Approximate any pdf by the Hermite polinomials

$$f(y) \approx \left(\sum_{k=0}^{K} \theta_k H_k\left(\frac{y-\mu}{\sigma}\right)\right)^2 \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)},$$

$$H_1(x) = 1, \ H_2(x) = x, \ H_k(x) = \frac{1}{\sqrt{k}} \left[xH_{k-1}(x) - \sqrt{k-1}H_{k-2}(x)\right],$$

$$\sum_{k=0}^{K} \theta_k^2 = 1$$
(26)

main

$$p_0 = \mathsf{P}(m=0) = \mathsf{P}(tc_j > r \;\forall\; j) = \int_{-\infty}^{\infty} \left[1 - G(r-z)\right]^M dF_{c_2^{(N)}}(z) \tag{27}$$

$$p_1 = \mathsf{P}(m=1) = \int_{-\infty}^{\infty} MG(r-z) \left[1 - G(r-z)\right]^{M-1} dF_{c_2^{(N)}}(z)$$
(28)

$$p_{2}(x) = \mathsf{P}(tc_{2}^{(M)} = x, m = 2) = \mathsf{P}(tc_{1}^{(M)} < x, tc_{2}^{(M)} = x, tc_{3}^{(M)} > r) =$$

$$\int_{-\infty}^{\infty} MG(x - z)g(x - z) \left[1 - G(r - z)\right]^{M-2} dF_{c_{2}^{(N)}}(z) \text{ for } x \le r$$
(29)
Likelihood function

$$p_{k}(x,y) = P(tc_{2}^{(M)} = x, tc_{3}^{(M)} = y, m = k) =$$

$$P(tc_{1}^{(M)} < x, tc_{2}^{(M)} = x, tc_{3}^{(M)} = y, tc_{j}^{(M)} \in (y, r] (j = \overline{4, k}), tc_{k+1}^{(M)} > r) =$$

$$\int_{-\infty}^{\infty} \frac{M!}{(k-3)!(M-k)!} G(x-z)g(x-z)g(y-z) [G(r-z) - G(y-z)]^{k-3} \cdot$$

$$[1 - G(r-z)]^{M-k} dF_{c_{2}^{(M)}}(z) \text{ for } x \le y \le r \text{ and } k \ge 3$$

$$(30)$$

Log-likelihood

$$I = \sum_{s:m=0} \ln(p_0) + \sum_{s:m=1} \ln(p_1) + \sum_{s:m=2} \ln(p_2(x_s)) + \sum_{s:m=k\geq 3} \ln(p_k(x_s, y_s))$$
(31)

Constraint:

$$\mathsf{E}\left(c_{2}^{(N)}\right) = \int_{-\infty}^{\infty} zn(n-1)F(z)\left[1-F(z)\right]^{n-2}dz = 0$$
(32)

main

Two vertical integrated distributors

Simulation: two VI distributors, 1% synergy (min)

-2.3

Sorafenib

Drug

Andrey Tkachenko (Nazarbayev University and Bocconi I Competitive effects of vertical integration in auctions

-4

Sunitinib

-2

-3 ⋝

∕a_4

-4.3

Nilotinib

VS scenario with collusion

VI scenario without collusion

		Sunitinib	Sorafenib	Nilotinib
Producer	μ_{c}	-0.0749	-0.0846	-0.0775
cost		(0.0456)	(0.0241)	(0.0543)
parameters	σ_c	0.1329	0.1501	0.1374
		(0.0815)	(0.1332)	(0.1009)
Distributor	μ_d	9.1466	7.4769	7.7138
cost		(0.0137)	(0.1386)	(0.0577)
parameters	σ_d	0.1730	0.1959	0.1420
		(0.0935)	(0.0711)	(0.0935)
Observed	ln(quantity)	-0.0512	-0.042	-0.061
heterogeneity		(0.007)	(0.007)	(0.009)
	Regional FE	Ý	Y	Y
	Year FE	Y	Y	Y
	Observations	789	730	569
Total cost in log	$\mu_{c} + \mu_{d}$	9.0717	7.3923	7.6363
Total cost in RUB	$e^{\mu_c + \mu_d}$	8705	1623	2072

Simulation: VI without synergy Main

Panel A: Expected profits

Andrey Tkachenko (Nazarbayev University and Bocconi | Competitive effects of vertical integration in auctions

- Two integrated distributors (details).
- Collusion of distributors (details).

Interactions in vertical markets:

- Identification in auctions with bargaining power.
- Evaluation of mergers in the Pharma and Movie industry.
- Matching and network formation between producers and distributors.
- Preferences for domestic producers in the Pharma industry:
 - Effect of preferences.
 - Effect of localization.
- O Public procurement:
 - Changes in perception of corruption due to COVID.
 - Regional protectionism, regional development, and governance.