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Introduction



Testing problem

• Does a randomly assigned treatment X have a

diminishing/increasing effect on the outcome Y ?

• Examples:

• Is demand for loans convex in the interest rate?

• Does a subsidy have a diminishing effect on production?
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Transformation model approach

T (Y ) = X ′β + ε

where:

• Y - a scalar dependent variable

• X - a vector of non-degenerate explanatory variables with

continuously distributed first component

• T (·) - an increasing function

• ε - an unobserved error term, independent of X

Location and scale normalizations:

• T (y0) = 0

• β1 = 1
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Motivation for testing T ′′ ≶ 0

Y = T−1(X ′β + ε) implies:

∂2E (Y |X )

∂X 2
k

= −β2
kE

[
T ′′(T−1(X ′β + ε))

T ′(T−1(X ′β + ε))3

∣∣∣∣X] (mean regression)

and

∂2Q(Y |X )

∂X 2
k

= −β2
k

T ′′(T−1(X ′β))

T ′(T−1(X ′β))3
(quantile regression)

As T ′(·) > 0 the curvature of the mean/quantile effect depends on T ′′(·).

4



This paper...

• Proposes a procedures for testing if T (·) is globally or locally

concave/convex/linear.

• The test does not require estimation of T (·).

• Shows that the critical values can be approximated by bootstrap.

• Test requires only one-dimensional kernel smoothing under weak

conditions on the bandwidth rate.

• Application to loan demand shows that loan size is (mostly) convex

in interest rate.

• Other applications of the test: specification search, testing

monotonicity of hazard in duration models.
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Literature review

• Testing monotonicity and curvature in the nonparametric regression

model Y = g(X ) + ε:

Ghosal et al. (2000), Abrevaya, Jiang (2005), Gutknecht (2016),

Chetvertikov (2019), Komarova, Hidalgo (2022)

• Testing for causal effects in a generalised regression model:

Abrevaya et al. (2010)

• Specification testing in transformation models:

Neumeyer et al. (2016), Szyd lowski (2020)

• Specification testing in duration models: Hall, van Keilegom (2005)
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Test statistic and critical value



Main idea

• Take Yi < Yj < Yk such that T (Yk)− T (Yj) = T (Yj)− T (Yi ):

Y

T (Y )

T (Yi ) = X ′i β + εi

Yi

T (Yj) = X ′j β + εj

Yj

T (Yk) = X ′kβ + εk

Yk

• Concavity of T implies: Yk − Yj > Yj − Yi .
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Test statistic: “global” test

• Test statistic Sn:

Sn =

√
n

n(n − 1)(n − 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi )Kh

(
(Xkj − Xji )

′β̂
)

• Null and alternative hypotheses:

H0 :


T (·) is concave

T (·) is linear

T (·) is convex

vs HA :


T (·) is non-concave

T (·) is non-linear

T (·) is non-convex
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Rejection rule

Proposition 1

Assume that the distribution of ε is symmetric. Then, as n→∞,

n−1/2Sn →p θ where:

(i) θ ≥ 0 if T (·) is globally concave,

(ii) θ = 0 if T (·) is globally linear,

(iii) θ ≤ 0 if T (·) is globally convex.

For example, reject concavity if Sn large negative.
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Bootstrap critical value

• Sn is asymptotically normal.

• Asymptotic variance of Sn difficult to estimate.

• Note that the model is linear under worst-case H0.

• Use parametric wild bootstrap:

• Estimate β by OLS and generate ε̂i = Yi − X ′β̂.

• Sample from {ε̂i}ni=1 using symmetric wild bootstrap, i.e. ε∗i = ε̂ivi

where vi = −1 or 1 w. prob. 1/2.

• Generate Y ∗i from:

Y ∗i = X ′i β̂ + ε∗i

and calculate S∗n on this bootstrap sample.

• Approximate the critical value c∗α by the α quantile of S∗n across

bootstrap samples.
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Critical values

• Assume nh4/ log4 n→∞ and other standard conditions.

• Under H0: Sn approximately distributed N(0, σ2).

• At 5% level we conclude that:

• T non-concave if Sn < c∗0.05
• T non-convex if Sn > c∗0.95
• T non-linear if Sn < c∗0.025 or Sn > c∗0.975
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Global versus local test



Power of “global” test

Sn(y) =

√
n

n(n − 1)(n − 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi )Kh

(
(Xkj − Xji )

′β̂
)

• Current test will only have power against global deviations from H0.

• No power if transformation both concave and convex.

• Need a test that will have power against local deviations.
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Local test

• Define the local statistic at point y by:

Sn(y) =

√
n

n(n − 1)(n − 2)

∑
i 6=j 6=k

1{Yi < Yj < Yk}sgn(Yk − 2Yj + Yi )×

Kh

(
(Xkj − Xji )

′β̂
)
Kh(Yi − y)Kh(Yj − y)Kh(Yk − y)

• Test for concavity with power against local deviations from the null:

Sconc
n = inf

y∈Y
Sn(y)

• For convexity replace inf with sup.

• Critical value: percentile bootstrap as the one for the “global”

statistic.
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Monte Carlo simulations



Monte Carlo design

• X ∼ N(0, 1), ε ∼ N(0, 1)

• 500 bootstrap replications

• 1000 MC repetitions

• 5% level

• Rule-of-thumb bandwidths

• Testing concavity
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Figure 1: Monte Carlo design
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T(y) = log(2.12)-log(2.12-y)

T(y) - linear spline
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Monte Carlo simulations

Table 1: Rejection probabilities, 5% level

Global test Local test

n = 100 n = 250 n = 500 n = 100 n = 250 n = 500

H0 true D0 0.072 0.057 0.050 0.038 0.048 0.051

H0 true D1 0.000 0.000 0.000 0.000 0.000 0.000

H0 false D2 0.093 0.090 0.093 0.896 0.994 1.000

H0 false D3 1.000 1.000 1.000 1.000 1.000 1.000

H0 false D4 0.132 0.259 0.418 0.410 0.816 0.926
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Application: Shape of loan

demand in developing countries



Experimental data from South Africa

• Data from Karlan, Zinman, AER 2008.

• Randomised trials conducted by a consumer lender in South Africa.

• High-risk consumer loan market.

• Three mailer waves.

• Interest rate randomisation stratified by three risk categories.

• Controls: risk, wave.

• 2325 observations.
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Figure 2: Estimated transformation
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Curvature test

Table 2: Testing curvature of loan demand, 5% level

H0 Global test Local test Local test, loan ≥ 1000

Statistic Reject H0? Statistic Reject H0? Statistic Reject H0?

convexity 14.11 No -4.42 Yes -2.64 No

linearity 14.11 Yes

concavity 14.11 Yes
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Conclusion

• Easy-to-apply test for transformation curvature in linear models.

• Similar idea can be applied to a single-index model:

Y = T (X ′β) + ε

e.g. test of non-linearity.
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Thank you for your attention!
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