Testing monotonicity of treatment effects: a transformation model approach

Arek Szydłowski

University of Leicester

Introduction

- Does a randomly assigned treatment X have a diminishing/increasing effect on the outcome Y?
- Examples:
 - Is demand for loans convex in the interest rate?
 - Does a subsidy have a diminishing effect on production?

$$T(Y) = X'\beta + \varepsilon$$

where:

- Y a scalar dependent variable
- X a vector of non-degenerate explanatory variables with continuously distributed first component
- $T(\cdot)$ an increasing function
- ε an unobserved error term, independent of X

Location and scale normalizations:

- $T(y_0) = 0$
- $\beta_1 = 1$

$$Y = T^{-1}(X'\beta + \varepsilon) \text{ implies:}$$

$$\frac{\partial^2 E(Y|X)}{\partial X_k^2} = -\beta_k^2 E\left[\frac{T''(T^{-1}(X'\beta + \varepsilon))}{T'(T^{-1}(X'\beta + \varepsilon))^3}\Big|X\right] \qquad (\text{mean regression})$$

 and

$$\frac{\partial^2 Q(Y|X)}{\partial X_k^2} = -\beta_k^2 \frac{T''(T^{-1}(X'\beta))}{T'(T^{-1}(X'\beta))^3} \qquad (\text{quantile regression})$$

As $T'(\cdot) > 0$ the curvature of the mean/quantile effect depends on $T''(\cdot)$.

• Proposes a procedures for testing if $T(\cdot)$ is globally or locally concave/convex/linear.

- Proposes a procedures for testing if T(·) is globally or locally concave/convex/linear.
- The test does not require estimation of $T(\cdot)$.

- Proposes a procedures for testing if T(·) is globally or locally concave/convex/linear.
- The test does not require estimation of $T(\cdot)$.
- Shows that the critical values can be approximated by bootstrap.

- Proposes a procedures for testing if T(·) is globally or locally concave/convex/linear.
- The test does not require estimation of $T(\cdot)$.
- Shows that the critical values can be approximated by bootstrap.
- Test requires only one-dimensional kernel smoothing under weak conditions on the bandwidth rate.

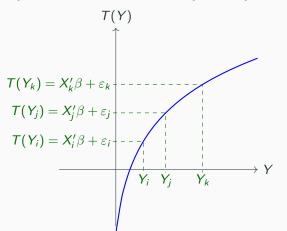
- Proposes a procedures for testing if T(·) is globally or locally concave/convex/linear.
- The test does not require estimation of $T(\cdot)$.
- Shows that the critical values can be approximated by bootstrap.
- Test requires only one-dimensional kernel smoothing under weak conditions on the bandwidth rate.
- Application to loan demand shows that loan size is (mostly) convex in interest rate.

- Proposes a procedures for testing if T(·) is globally or locally concave/convex/linear.
- The test does not require estimation of $T(\cdot)$.
- Shows that the critical values can be approximated by bootstrap.
- Test requires only one-dimensional kernel smoothing under weak conditions on the bandwidth rate.
- Application to loan demand shows that loan size is (mostly) convex in interest rate.
- Other applications of the test: specification search, testing monotonicity of hazard in duration models.

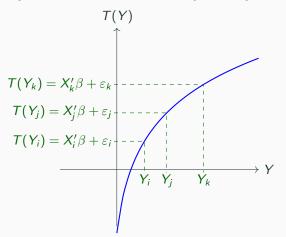
- Testing monotonicity and curvature in the nonparametric regression model Y = g(X) + ε: Ghosal et al. (2000), Abrevaya, Jiang (2005), Gutknecht (2016), Chetvertikov (2019), Komarova, Hidalgo (2022)
- Testing for causal effects in a generalised regression model: Abrevaya et al. (2010)
- Specification testing in transformation models: Neumeyer et al. (2016), Szydłowski (2020)
- Specification testing in duration models: Hall, van Keilegom (2005)

Test statistic and critical value

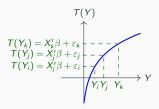
• Take $Y_i < Y_j < Y_k$ such that $T(Y_k) - T(Y_j) = T(Y_j) - T(Y_i)$:



• Take $Y_i < Y_j < Y_k$ such that $T(Y_k) - T(Y_j) = T(Y_j) - T(Y_i)$:

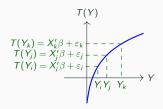


• Concavity of T implies: $Y_k - Y_j > Y_j - Y_i$.



- Concavity of T implies: $Y_k Y_j > Y_j Y_i$.
- $T(Y_k) T(Y_j) = T(Y_j) T(Y_i)$ is equivalent to:

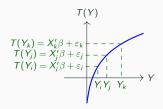
$$(X_k - X_j)'\beta + \varepsilon_k - \varepsilon_j = (X_j - X_i)'\beta + \varepsilon_j - \varepsilon_i$$



- Concavity of T implies: $Y_k Y_j > Y_j Y_i$.
- $T(Y_k) T(Y_j) = T(Y_j) T(Y_i)$ is equivalent to:

$$(X_k - X_j)'\beta + \varepsilon_k - \varepsilon_j = (X_j - X_i)'\beta + \varepsilon_j - \varepsilon_i$$

 Hence, "on average" equally spaced T(Y)'s means equally spaced index values X'β.



- Concavity of T implies: $Y_k Y_j > Y_j Y_i$.
- $T(Y_k) T(Y_j) = T(Y_j) T(Y_i)$ is equivalent to:

$$(X_k - X_j)'\beta + \varepsilon_k - \varepsilon_j = (X_j - X_i)'\beta + \varepsilon_j - \varepsilon_i$$

- Hence, "on average" equally spaced T(Y)'s means equally spaced index values X'β.
- We can detect deviations from concavity by:

$$-\sum_{i\neq j\neq k} \mathbb{1}\{Y_i < Y_j < Y_k\}\mathbb{1}\{Y_k - Y_j < Y_j - Y_i\}\mathbb{1}\{(X_k - X_j)'\beta = (X_j - X_i)'\beta\}$$

• We can detect deviations from **concavity** by:

$$-\sum_{i \neq j \neq k} \mathbb{1}\{Y_i < Y_j < Y_k\}\mathbb{1}\{Y_k - Y_j < Y_j - Y_i\}\mathbb{1}\{(X_k - X_j)'\beta = (X_j - X_i)'\beta\}$$

• We can detect deviations from **concavity** by:

$$-\sum_{i \neq j \neq k} \mathbb{1}\{Y_i < Y_j < Y_k\}\mathbb{1}\{Y_k - Y_j < Y_j - Y_i\}\mathbb{1}\{(X_k - X_j)'\beta = (X_j - X_i)'\beta\}$$

• With continuous $X'\beta$ and unknown β we need to use:

$$-\sum_{i\neq j\neq k} \mathbb{1}\{Y_i < Y_j < Y_k\}\mathbb{1}\{Y_k - Y_j < Y_j - Y_i\}K_h\left((X_k - X_j)'\hat{\beta} - (X_j - X_i)'\hat{\beta}\right)$$

where $K_h(\cdot) = h^{-1}K(\cdot/h)$ is a smooth kernel and $\hat{\beta}$ is a consistent estimator of β .

• We can detect deviations from **concavity** by:

$$-\sum_{i \neq j \neq k} \mathbb{1}\{Y_i < Y_j < Y_k\} \mathbb{1}\{Y_k - Y_j < Y_j - Y_i\} \mathbb{1}\{(X_k - X_j)'\beta = (X_j - X_i)'\beta\}$$

• With continuous $X'\beta$ and unknown β we need to use:

$$-\sum_{i\neq j\neq k} \mathbb{1}\{Y_i < Y_j < Y_k\}\mathbb{1}\{Y_k - Y_j < Y_j - Y_i\}K_h\left((X_k - X_j)'\hat{\beta} - (X_j - X_i)'\hat{\beta}\right)$$

where $K_h(\cdot) = h^{-1}K(\cdot/h)$ is a smooth kernel and $\hat{\beta}$ is a consistent estimator of β .

• Similarly, deviations from convexity can be detected by using:

$$\sum_{i \neq j \neq k} \mathbb{1}\{Y_i < Y_j < Y_k\} \mathbb{1}\{Y_k - Y_j > Y_j - Y_i\} \mathcal{K}_h\left((X_k - X_j)'\hat{\beta} - (X_j - X_i)'\hat{\beta}\right)$$

• Test statistic *S_n*:

$$S_n = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1}\left\{Y_i < Y_j < Y_k\right\} \operatorname{sgn}(Y_k - 2Y_j + Y_i) K_h\left((X_{kj} - X_{ji})'\hat{\beta}\right)$$

• Test statistic S_n:

$$S_n = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1}\left\{Y_i < Y_j < Y_k\right\} \operatorname{sgn}(Y_k - 2Y_j + Y_i) K_h\left((X_{kj} - X_{ji})'\hat{\beta}\right)$$

• Null and alternative hypotheses:

$$H_0: \begin{cases} T(\cdot) \text{ is concave} \\ T(\cdot) \text{ is linear} \\ T(\cdot) \text{ is convex} \end{cases} \qquad H_A: \begin{cases} T(\cdot) \text{ is non-concave} \\ T(\cdot) \text{ is non-linear} \\ T(\cdot) \text{ is non-convex} \end{cases}$$

Proposition 1

Assume that the distribution of ε is symmetric. Then, as $n \to \infty$, $n^{-1/2}S_n \to^p \theta$ where:

(i) $\theta \ge 0$ if $T(\cdot)$ is globally concave,

(ii)
$$\theta = 0$$
 if $T(\cdot)$ is globally linear,

(iii) $\theta \leq 0$ if $T(\cdot)$ is globally convex.

For example, reject concavity if S_n large negative.

• S_n is asymptotically normal.

- S_n is asymptotically normal.
- Asymptotic variance of S_n difficult to estimate.

- *S_n* is asymptotically normal.
- Asymptotic variance of S_n difficult to estimate.
- Note that the model is linear under worst-case H_0 .

- S_n is asymptotically normal.
- Asymptotic variance of S_n difficult to estimate.
- Note that the model is linear under worst-case H_0 .
- Use parametric wild bootstrap:

- S_n is asymptotically normal.
- Asymptotic variance of S_n difficult to estimate.
- Note that the model is linear under worst-case H_0 .
- Use parametric wild bootstrap:
 - Estimate β by OLS and generate $\hat{\varepsilon}_i = Y_i X'\hat{\beta}$.

- *S_n* is asymptotically normal.
- Asymptotic variance of S_n difficult to estimate.
- Note that the model is linear under worst-case H_0 .
- Use parametric wild bootstrap:
 - Estimate β by OLS and generate $\hat{\varepsilon}_i = Y_i X'\hat{\beta}$.
 - Sample from {*ĉ_i*}ⁿ_{i=1} using symmetric wild bootstrap, i.e. *ε_i^{*} = ĉ_iv_i* where *v_i = −*1 or 1 w. prob. 1/2.

- *S_n* is asymptotically normal.
- Asymptotic variance of S_n difficult to estimate.
- Note that the model is linear under worst-case H_0 .
- Use parametric wild bootstrap:
 - Estimate β by OLS and generate $\hat{\varepsilon}_i = Y_i X'\hat{\beta}$.
 - Sample from {ĉ_i}ⁿ_{i=1} using symmetric wild bootstrap, i.e. ε^{*}_i = ĉ_iv_i where v_i = −1 or 1 w. prob. 1/2.
 - Generate Y_i^* from:

$$Y_i^* = X_i'\hat{\beta} + \varepsilon_i^*$$

and calculate S_n^* on this bootstrap sample.

- *S_n* is asymptotically normal.
- Asymptotic variance of S_n difficult to estimate.
- Note that the model is linear under worst-case H_0 .
- Use parametric wild bootstrap:
 - Estimate β by OLS and generate $\hat{\varepsilon}_i = Y_i X'\hat{\beta}$.
 - Sample from {ĉ_i}ⁿ_{i=1} using symmetric wild bootstrap, i.e. ε^{*}_i = ĉ_iv_i where v_i = −1 or 1 w. prob. 1/2.
 - Generate Y_i^* from:

$$Y_i^* = X_i'\hat{\beta} + \varepsilon_i^*$$

and calculate S_n^* on this bootstrap sample.

 Approximate the critical value c^{*}_α by the α quantile of S^{*}_n across bootstrap samples.

- Assume $nh^4/\log^4 n
 ightarrow \infty$ and other standard conditions.
- Under H_0 : S_n approximately distributed $N(0, \sigma^2)$.
- $\bullet\,$ At 5% level we conclude that:
 - T non-concave if $S_n < c^*_{0.05}$
 - T non-convex if $S_n > c_{0.95}^*$
 - T non-linear if $S_n < c^*_{0.025}$ or $S_n > c^*_{0.975}$

Global versus local test

$$S_n(y) = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1}\left\{Y_i < Y_j < Y_k\right\} \operatorname{sgn}(Y_k - 2Y_j + Y_i) \mathcal{K}_h\left((X_{kj} - X_{ji})'\hat{\beta}\right)$$

• Current test will only have power against global deviations from H_0 .

$$S_n(y) = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1}\{Y_i < Y_j < Y_k\} \operatorname{sgn}(Y_k - 2Y_j + Y_i) K_h\left((X_{kj} - X_{ji})'\hat{\beta}\right)$$

- Current test will only have power against global deviations from H_0 .
- No power if transformation both concave and convex.

$$S_n(y) = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1} \{Y_i < Y_j < Y_k\} \operatorname{sgn}(Y_k - 2Y_j + Y_i) K_h\left((X_{kj} - X_{ji})'\hat{\beta}\right)$$

- Current test will only have power against global deviations from H_0 .
- No power if transformation both concave and convex.
- Need a test that will have power against local deviations.

Local test

• Define the local statistic at point *y* by:

$$S_n(y) = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1}\{Y_i < Y_j < Y_k\} sgn(Y_k - 2Y_j + Y_i) \times K_h\left((X_{kj} - X_{ji})'\hat{\beta}\right) K_h(Y_i - y) K_h(Y_j - y) K_h(Y_k - y)$$

Local test

• Define the local statistic at point y by:

$$S_n(y) = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1} \{ Y_i < Y_j < Y_k \} sgn(Y_k - 2Y_j + Y_i) \times K_h \left((X_{kj} - X_{ji})'\hat{\beta} \right) K_h(Y_i - y) K_h(Y_j - y) K_h(Y_k - y)$$

• Test for **concavity** with power against local deviations from the null:

$$S_n^{conc} = \inf_{y \in \mathcal{Y}} S_n(y)$$

• Define the local statistic at point y by:

$$S_n(y) = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{1}\{Y_i < Y_j < Y_k\} sgn(Y_k - 2Y_j + Y_i) \times K_h\left((X_{kj} - X_{ji})'\hat{\beta}\right) K_h(Y_i - y) K_h(Y_j - y) K_h(Y_k - y)$$

• Test for **concavity** with power against local deviations from the null:

$$S_n^{conc} = \inf_{y \in \mathcal{Y}} S_n(y)$$

• For **convexity** replace inf with sup.

• Define the local statistic at point y by:

$$S_n(y) = \frac{\sqrt{n}}{n(n-1)(n-2)} \sum_{i \neq j \neq k} \mathbb{I}\{Y_i < Y_j < Y_k\} sgn(Y_k - 2Y_j + Y_i) \times K_h\left((X_{kj} - X_{ji})'\hat{\beta}\right) K_h(Y_i - y) K_h(Y_j - y) K_h(Y_k - y)$$

• Test for concavity with power against local deviations from the null:

$$S_n^{conc} = \inf_{y \in \mathcal{Y}} S_n(y)$$

- For **convexity** replace inf with sup.
- Critical value: percentile bootstrap as the one for the "global" statistic.

Monte Carlo simulations

- $X \sim N(0,1)$, $arepsilon \sim N(0,1)$
- 500 bootstrap replications
- 1000 MC repetitions
- 5% level
- Rule-of-thumb bandwidths
- Testing concavity

Figure 1: Monte Carlo design

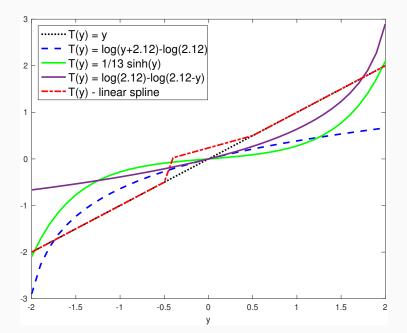


Table 1: Rejection probabilities, 5% level

		Global test			Local test		
		n = 100	n = 250	n = 500	<i>n</i> = 100	n = 250	n = 500
H0 true	D0	0.072	0.057	0.050	0.038	0.048	0.051
H0 true	D1	0.000	0.000	0.000	0.000	0.000	0.000
H0 false	D2	0.093	0.090	0.093	0.896	0.994	1.000
H0 false	D3	1.000	1.000	1.000	1.000	1.000	1.000
H0 false	D4	0.132	0.259	0.418	0.410	0.816	0.926

Table 1: Rejection probabilities, 5% level

		Global test			Local test		
		n = 100	n = 250	n = 500	<i>n</i> = 100	n = 250	n = 500
H0 true	D0	0.072	0.057	0.050	0.038	0.048	0.051
H0 true	D1	0.000	0.000	0.000	0.000	0.000	0.000
H0 false	D2	0.093	0.090	0.093	0.896	0.994	1.000
H0 false	D3	1.000	1.000	1.000	1.000	1.000	1.000
H0 false	D4	0.132	0.259	0.418	0.410	0.816	0.926

Application: Shape of loan demand in developing countries

- Data from Karlan, Zinman, AER 2008.
- Randomised trials conducted by a consumer lender in South Africa.
- High-risk consumer loan market.
- Three mailer waves.
- Interest rate randomisation stratified by three risk categories.
- Controls: risk, wave.
- 2325 observations.

Figure 2: Estimated transformation

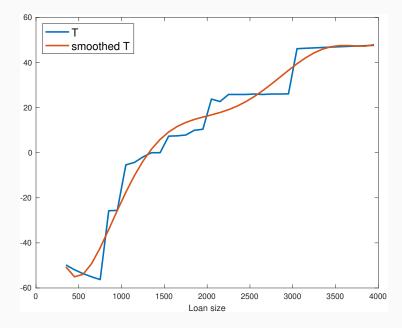


Table 2: Testing curvature of loan demand, 5% level

H_0	Glob	pal test	Loc	al test	Local test, $\mathit{loan} \geq 1000$	
	Statistic	Reject H ₀ ?	Statistic	Reject H ₀ ?	Statistic	Reject H_0 ?
convexity	14.11	No	-4.42	Yes	-2.64	No
linearity	14.11	Yes				
concavity	14.11	Yes				

- Easy-to-apply test for transformation curvature in linear models.
- Similar idea can be applied to a single-index model:

$$Y = T(X'\beta) + \varepsilon$$

e.g. test of non-linearity.

Thank you for your attention!