Perfect Altruism Breeds Time Consistency

Antoine Billot and Xiangyu Qu

EEA-ESEM

August 22, 2022

The roots of most social economic decisions are linked to a choice of social lifetime utility and associated social parameters.

- Household choices (Chiappori and Mazzocco 2017)
- Fiscal policy (Barro 1974)
- Climate policy (Nordhaus 2007)

Paternalism?

Classic Treatment:

Exponential discounted utility: Ramsey (1928) and Samuelson (1937) Near-one discounting factor: Ramsey's ethical critique Utilitarian value: Bergerson-Samuelson welfare function

Classic Concerns:

Exponential discounted utility: Difficult to derive (Marglin, 1963 and Feldstein, 1964) Near-one discounting factor: Violate 'everyone has a say' principle (Arrow, 1997)

Classic Assumption: Homogeneity

Heterogeity Challenge

Constant discount rate selection: Opinions about discount factor vary among experts (Weitzman 2001, Drupp et al 2018)

Discount rate (Rounded to nearest whole percentage)	Number of responses
-3	1
-2	1
-1	1
0	40
	236
2	454
3	427
4	202
5	126
7	71
8	44
9	28
10	44
11	15
12	25
13	12
14	5
15	8
16	3
17	2
18	3
19	1
20	4
25	2
26	1
27	1
	Total responses $= 2.16$

Descriptive Challenge

Time Inconsistency: Widely observed

- UK and France adopt time-dependent discounting schemes
- Paris Agreement: US enter and exit and re-enter...
- Commitment device:
 - ► Too costly (Laibson 2015)
 - Political power rotation (Harstad 2020)

considers: non-Paternalism way to derive social lifetime utility

proposes: separate aggregation rule

Utilitarian social utility: Weighted average of individual instantaneous utilities Social discounting function: Weighted average of individual ones

more importantly identifies: principles that characterize the above rules compares: various degree of inconsistency

Methodology

Preference Aggregation

- Respect individualism
- Identifiable and testable
- Adopted by Zuber 2011, Jackson and Yariv 2014, and many others

Other methodology

- Weitzman 2001: gamma discounting
- Adams et al 2014: revealed preference
- Galperti and Strulovici 2017: Axiomtization

Why we care?

- Provide foundations for constant social discounting and utilitarian social utility
 - > Zuber and Jackson-Yariv confirm the difficulty of Marglin and Feldstein
 - Feng and Ke (2018) and Chambers and Echenique (2018) suggest different rules without social utility concern
- Provide foundations for quasi-hyperbolic social discounting and utilitarian social utility
 - Amador (2003) and Chatterjee and Eyigungor (2016) found that quasi-hyperbolic social discounting explains promise to invest and reverse it once in power
- Provide foundations for various degree of time inconsistency
 - ▶ Halac and Yared (2018) show that government bias relates to coordinated fiscal rules

The Model

- a society of finite individuals: $i \in \mathcal{I} = \{1, \dots, n\}$
- discrete time horizon: $t \in \mathbb{N} = \{1, 2, \ldots\}$
- consumption space $\mathcal{L} = \Delta(X)$: a simplex on finite set X
- $\bullet\,$ a stream of consumption: $\mathbf{z}\in\mathcal{L}^\infty$
- individual lifetime utility $U_i: \mathcal{L}^\infty \to \mathbb{R}$
- social lifetime utility $U \colon \mathcal{L}^{\infty} \to \mathbb{R}$

Time-separable Utility

Assumption 1: Time-separable utility for both individuals and society

Definition

 $U: \mathcal{L}^{\infty} \to \mathbb{R}$ is *time-separable* if there exist a *discount function* $\eta : \mathbb{N} \to (0, 1)$ and a nonconstant and continuous utility function $u: \mathcal{L} \to \mathbb{R}$ such that a consumption stream $\mathbf{z} = (z_1, z_2, \ldots) \in \mathcal{L}^{\infty}$ is evaluated as

$$U(\mathbf{z}) = \sum_{t=1}^{\infty} \eta_t u(z_t), \tag{1}$$

Exponential discounted utility (EDU): $\eta_t = \delta^{t-1}$ Hyperbolic discounting utility : $\eta_t = (1 + \gamma t)^{-\frac{\alpha}{\gamma}}$ Quasi-hyperbolic discounting utility : $\eta_t = \beta \delta^{t-1}$

Minimum Agreement

Assumption 2: minimum agreement over consumption; i.e. there are $z^*, z_* \in \mathcal{L}$ such that for $z \in \mathcal{L}$, $u_i(z^*) \ge u_i(z) \ge u_i(z_*)$, for all $i \in \mathcal{I}$.

Impossibility

Classic Pareto Condition: For any $\mathbf{z}, \hat{\mathbf{z}} \in \mathcal{L}^{\infty}$, if, $U_i(\mathbf{z}) \geq U_i(\hat{\mathbf{z}})$ for all $i \in \mathcal{I}$, then $U(\mathbf{z}) \geq U(\hat{\mathbf{z}})$.

Proposition

Classic Pareto condition is satisfied if and only if U is dictatorial.

Example

A household with two individuals, Ana with (u_a, η_{at}) and Bob with (u_b, η_{bt}) . If no dictator, then there is $0 < \lambda < 1$ such that $u = \lambda u_a + (1 - \lambda) u_b$.

\mathcal{L}	x	y	z	
u_a	0	$\frac{0.98}{\lambda}$	$-\frac{1}{\lambda}$	
u_b	0	$-rac{0.95}{1-\lambda}$	$\frac{9}{1-\lambda}$	
u	0	0.03	8	

t	1	2	3
η_a	1	0.99	0.99^{2}
η_b	1	0.1	0.1^{2}
η	1	η_2	η_3

•
$$U_a(y, z, x, x, \cdots) = \frac{0.98}{\lambda} - \frac{1}{\lambda} \times 0.99 < 0 = U_a(x, x, \cdots)$$

• $U_b(y, z, x, x, \dots) = -\frac{0.95}{1-\lambda} + \frac{9}{1-\lambda} \times 0.1 < 0 = U_b(x, x, \dots)$

For all η ,

$$U(y, z, x, x, \cdots) = 0.03 + 8\eta_2 > 0 = U(x, x, \cdots)$$

Intuition

- With kid (y, z) or Without kid (x, x)
- Neither Ana nor Bob wants a kid, but for different reasons
- Ana likes baby and is patient, but worries much about the future of baby
- Bob hates taking care of baby and is impatient, but enjoys the future family happiness
- Non-dictatorial household utility prefers a kid
- Classic Pareto condition, which leads to spurious unanimity, is not plausible to follow

Impartiality

- Ana and Bob should give sympathetic consideration to each other
- Change positions by switching discount factors
- Unanimity is impartial if changing positions does not change unanimity

\mathcal{L}	x	y	z
u_a	0	$\frac{0.98}{\lambda}$	$-\frac{1}{\lambda}$
u_b	0	$-rac{0.95}{1-\lambda}$	$\frac{9}{1-\lambda}$
u	0	0.03	8

t	1	2	3
η_a	1	0.99	0.99^{2}
η_b	1	0.1	0.1^{2}
η	1	η_2	η_3

(y, z) is preferred to (x, x) is NOT impartially unanimous

$$u_a(y) + \eta_{b2} \cdot u_a(z) = \frac{0.98}{\lambda} - \frac{0.1}{\lambda} > 0.$$

Impartial Pareto Condition

- A impartial society is a product set $\mathcal{I}\times\mathcal{I}$
- A virtual individual, $ij \in \mathcal{I} \times \mathcal{I}$ has utility: $U_{ij}(\mathbf{z}) = \sum_{t=1}^{\infty} \eta_{it} u_j(z_t)$

Impartial Pareto Condition (IPC): For any $\mathbf{z}, \hat{\mathbf{z}} \in \mathcal{L}^{\infty}$, if, $U_{ij}(\mathbf{z}) \geq U_{ij}(\hat{\mathbf{z}})$ for all $ij \in \mathcal{I} \times \mathcal{I}$, then $U(\mathbf{z}) \geq U(\hat{\mathbf{z}})$.

Theorem

A social lifetime utility U satisfies IPC if and only if there exist nonnegative $\{\alpha_i\}_{i \in \mathcal{I}}$ and $\{\gamma_i\}_{i \in \mathcal{I}}$ with $\sum_i \alpha_i = \sum_i \gamma_i = 1$ such that

$$u = \sum_{i} \alpha_{i} u_{i}$$
 and $\eta_{t} = \sum_{i} \gamma_{i} \eta_{it}$ (2)

for all $t \in \mathbb{N}$.

Impatience

Definition

A lifetime utility $V: \mathcal{L} \to \mathbb{R}$ satisfies decreasing impatience if for any t > s and $k \ge 1$, $V(x, \bar{z}_{*-t}) = V(y, \bar{z}_{*-s})$ implies $V(x, \bar{z}_{*-(t+k)}) \ge V(y, \bar{z}_{*-(s+k)})$ (constant impatience if $V(x, \bar{z}_{*-(t+k)}) = V(y, \bar{z}_{*-(s+k)})$).

Proposition

Suppose that a social lifetime utility U admits a separate aggregation as in eq (3). If each individual satisfies either constant or decreasing impatience, then a non-dictatorial social utility U exhibits decreasing impatience.

'Ought' or 'Is' Proposition

For two consumption streams $\mathbf{z}, \mathbf{z}' \in \mathcal{L}^{\infty}$, if, (i) \mathbf{z} and \mathbf{z}' are constant streams; or (ii) $u_i(z) = u_j(z)$ for all $z \in \operatorname{conv}(\{z_t : t \in \mathbb{N}\} \cup \{z'_t : t \in \mathbb{N}\})$ and all $i, j \in \mathcal{I}$, then \mathbf{z} and \mathbf{z}' are common-value streams.

Common-value Pareto Condition (CV-PC). For any pair of common-value streams $\mathbf{z}, \hat{\mathbf{z}} \in \mathcal{L}^{\infty}$, if $U_i(\mathbf{z}) \geq U_i(\hat{\mathbf{z}})$, for all $i \in \mathcal{I}$, then $U(\mathbf{z}) \geq U(\hat{\mathbf{z}})$.

Theorem

A social lifetime utility U satisfies the CV-PC if and only if there exist nonnegative $\{\alpha_i\}_{i\in\mathcal{I}}$ and $\{\gamma_i\}_{i\in\mathcal{I}}$ with $\sum_i \alpha_i = \sum_i \gamma_i = 1$ such that

$$u = \sum_{i} \alpha_{i} u_{i}$$
 and $\eta_{t} = \sum_{i} \gamma_{i} \eta_{it}$ (3)

for all $t \in \mathbb{N}$.

Constant Social Discounting

Assumption: All individuals are EDU

IPC: Decreasingly impatient social planner

Question: What principle would lead to constant impatient social planner?

Koopman Condition

Stationarity: A lifetime utility function U is stationary if, for all $x \in \mathcal{L}$ and all $\mathbf{z}, \mathbf{z}' \in \mathcal{L}^{\infty}$,

 $U(\mathbf{z}) \ge U(\mathbf{z}')$ if and only if $U(x, \mathbf{z}) \ge U(x, \mathbf{z}')$.

Necessary, but not sufficient

Pareto Condition is not Stationary

t	1	2	3	4
η_a	1	0.4	0.4^2	0.4^{3}
η_b	1	0.6	0.6^{2}	0.6^{3}
η	1	0.5	$\frac{0.4^2 + 0.6^2}{2}$	$\frac{0.4^3 + 0.6^3}{2}$

But, restriction to first 2-period consumption is compatible with stationarity Altruism should not spill over beyond next generation (Barro, 1974; Phelps and Pollak, 1964)

Perfectly Altruistism

Example

\mathcal{L}	x	y	<i>x</i> ′	y'	z
u_a	2	1	1	3	0
u_b	4	-3	-1	8	0

t	1	2	3
η_a	1	0.99	0.99^{2}
η_b	1	0.1	0.1^2

 $(x, y, z, z \cdots)$ and $(x', y', z, z \cdots)$ only differ in first two periods and coincide for the rest

Time Consistent Planner

We say two consumption streams \mathbf{z} and \mathbf{z}' are *diperiodic* if $z_t = z'_t$ for t > 2. Perfectly Altruistic Impartial Pareto Condition (PAI-PC). For any diperiodic consumption streams \mathbf{z} and \mathbf{z}' , if $U_{ij}(\mathbf{z}) \ge U_{ij}(\mathbf{z}')$, for all $ij \in \mathcal{I} \times \mathcal{I}$, then $U(\mathbf{z}) \ge U(\mathbf{z})$.

Theorem

A society satisfies PAI-PC and Stationarity if and only if social lifetime utility is EDU, in which u is a convex combination of $\{u_i\}_{i \in \mathcal{I}}$ and δ is a convex combination of $\{\delta_i\}_{i \in \mathcal{I}}$.

Is the skipped generation altruism also *perfect* in the sense of time consistence? Example

\mathcal{L}	x	y	<i>x</i> ′	y'	z
u_a	2	1	1	3	0
u_b	4	-3	-1	8	0

t	1	2	3
η_a	1	0.99	0.99^{2}
η_b	1	0.1	0.1^{2}

 $(x, z, y, z \cdots)$ and $(x', z, y', z \cdots)$ only differ in two identical periods

k-PAI-PC

Let $k \ge 2$, we say two consumption streams \mathbf{z}, \mathbf{z}' are *k*-diperiodic if $z_t = z'_t$ for $t \in \mathbb{N} \setminus \{1, k\}$.

k-PAI-PC Let $k \in \mathbb{N}$. For any *k*-diperiodic streams \mathbf{z}, \mathbf{z}' , if $U_{ij}(\mathbf{z}) \geq U_{ij}(\mathbf{z}')$ for all $ij \in \mathcal{I} \times \mathcal{I}$, then $U(\mathbf{z}) \geq U(\mathbf{z}')$.

Proposition

The k-PAI-PC and stationarity are satisfied if and only if social lifetime utility is a EDU, in which u is a convex combination of $\{u_i\}_{i \in \mathcal{I}}$ and $\eta_t = \delta^{t-1}$ for all $t \in \mathbb{N}$, with δ being a convex combination of $\{\delta_i\}_{i \in \mathcal{I}}$.

Quasi-hyperbolic Social Discounting

Definition

A lifetime utility $V: \mathcal{L}^{\infty} \to \mathbb{R}$ admits a quasi-hyperbolic discounting form if there exists a continuous function u on \mathcal{L} and parameters $\beta \in (0,1]$ and $\delta \in (0,1)$ such that for $z \in \mathcal{L}^{\infty}$,

$$V(\mathbf{z}) = u(x_1) + \beta \sum_{t=2}^{\infty} \delta^{t-1} u(z_t).$$
(4)

Quasi-Stationarity: A lifetime utility function U is *stationary* if, for all $x, y \in \mathcal{L}$ and all $\mathbf{z}, \mathbf{z}' \in \mathcal{L}^{\infty}$,

 $U(x, \mathbf{z}) \ge U(x, \mathbf{z}')$ if and only if $U(x, y, \mathbf{z}) \ge U(x, y, \mathbf{z}')$.

We say that two consumption streams \mathbf{z}, \mathbf{z}' are triperiodic if $z_t = z'_t$ for t > 3.

Quasi-Altruism Impartial Pareto Condition (QAI-PC). For any pair of triperiodic consumption streams \mathbf{z}, \mathbf{z}' , if $U_{ij}(\mathbf{z}) \geq U_{ij}(\mathbf{z}')$, for all $ij \in \mathcal{I} \times \mathcal{I}$, then $U(\mathbf{z}) \geq U(\mathbf{z})$.

Theorem

A society satisfies QAI-PC and quasi-stationarity if and only if there exists positive $\{\alpha_i\}_{i\in\mathcal{I}}$ and $\{\lambda_i\}_{i\in\mathcal{I}}$ with $\sum_i \alpha_i = \sum_i \gamma_i = 1$ such that society has a quasi-hyperbolic discounting form as in eq (4), in which

$$u = \sum_{i \in \mathcal{I}} \alpha_i u_i \quad \text{ and } \quad \delta = \frac{\sum_{i \in \mathcal{I}} \lambda_i \delta_i^2}{\sum_{i \in \mathcal{I}} \lambda_i \delta_i} \quad \text{ and } \quad \beta = \frac{(\sum_{i \in \mathcal{I}} \lambda_i \delta_i)^2}{\sum_{i \in \mathcal{I}} \lambda_i \delta_i^2}.$$

Furthermore, $\delta \in (\min_{i \in \mathcal{I}} \delta_i, \max_{i \in \mathcal{I}} \delta_i)$ and $\beta \in (\frac{\min_i \delta_i}{\max_i \delta_i}, 1)$.

Generalization

We say that two consumption streams \mathbf{z} and \mathbf{z}' are *k*-periodic if $z_t = z'_t$ for t > k. *k*-Imperfect Altruism Impartial Pareto Condition (*k*-IAI-PC): Let $k \in \mathbb{N}$. For any pair of *k*-periodic consumption streams \mathbf{z}, \mathbf{z}' , if $U_{ij}(\mathbf{z}) \geq U_{ij}(\mathbf{z}')$ for all $ij \in \mathcal{I} \times \mathcal{I}$, then $U(\mathbf{z}) \geq U(\mathbf{z}')$.

Generalization

Definition

A lifetime utility $V: \mathcal{L}^{\infty} \to \mathbb{R}$ admits a *level* k hyperbolic form if there exists $0 < \beta_1 \leq \ldots \leq \beta_k \leq 1$ and $\delta \in (0, 1)$ such that for $\mathbf{z} \in \mathcal{L}^{\infty}$,

$$V(\mathbf{z}) = u(z_1) + \beta_1 \delta u(z_2) + \beta_1 \beta_2 \delta^2 u(z_3) + \dots + \prod_{\ell=1}^k \beta_s \sum_{t=S+1}^\infty \delta^{t-1} u(z_t).$$
(5)

Definition

A lifetime utility U is k-delayed stationary if, for all $x \in \mathcal{L}$ and all $\mathbf{z}, \mathbf{c}, \hat{\mathbf{c}} \in \mathcal{L}^{\infty}$,

 $U(\mathbf{z}_k \mathbf{c}) \ge U(\mathbf{z}_k \hat{\mathbf{c}})$ if and only if $U(x, \mathbf{z}_k \mathbf{c}) \ge U(x, \mathbf{z}_k \hat{\mathbf{c}})$.

Theorem

A social TSU function U is k-delayed stationary and satisfies k-IAI-PC if and only if there exists nonnegative numbers α_i and γ_j such that U has the form as in eq (5), in which

$$u = \sum_{i} \alpha_{i} u_{i}$$

$$\delta = \frac{\sum_{j} \gamma_{j} \delta_{j}^{k+1}}{\sum_{j} \gamma_{j} \delta_{j}^{k}}$$

$$\beta_{\ell} = \frac{\sum_{j} \gamma_{j} \delta_{j}^{\ell}}{\sum_{j} \gamma_{j} \delta_{j}^{\ell-1}} \cdot \frac{\sum_{j} \gamma_{j} \delta_{j}^{k}}{\sum_{j} \gamma_{j} \delta_{j}^{k+1}}$$
for all $1 \le \ell \le k$.
(8)

Comparative Analysis

Definition

A utility U exhibits more decreasing impatience than utility V if, for any t, s in \mathbb{N} and $x, y, x', y' \in \mathcal{L}$, $U(x, \bar{z}_*) = U(y_t, \bar{z}_{*-t})$, $V(x', \bar{z}_*) = V(y'_t, \bar{z}_{*-t})$, and $V(x'_s, \bar{z}_{*-s}) \leq V(y'_{t+s}, \bar{z}_{*-\{t+s\}})$ implies $U(x_s, \bar{z}_*) \leq U(y_{t+s}, \bar{z}_{*-\{t+s\}})$.

Example

	V	1	2	• • •	U	1	2	• • •	
		100	0			100	0		
	\sim	0	105		\sim	0	110		
V	• • •	61	62	• • •	U	• • •	61	62	•••
	• • •	100	0			•••	100	0	
人		0	105				0	110	
~		0	105		X	•••	0	110	

Proposition

Fix nonnegative numbers α_i and γ_j such that $\sum_{i \in \mathcal{I}} \alpha_i = \sum_{j \in \mathcal{I}} \gamma_j = 1$. If $k \ge \hat{k}$, then a society characterized by $(\hat{u}, \hat{\delta}, \{\hat{\beta}_\ell\}_{\ell=1}^{\hat{k}})$, defined as in eqs (6,7,8), is more decreasing impatience than a society characterized by $(u, \delta, \{\beta_\ell\}_{\ell=1}^{k})$, defined as in eqs (6,7,8).

Perfect or Imperfect Altruism?

Consider a society has to choose between two consumption streams

$$\mathbf{z} = (\underbrace{1, 0, \dots, 0, -100}_{11 \text{ periods}}, 0, \dots) \text{ and } \mathbf{z}' = (1.1, -0.4, 0, \dots).$$

Let $\delta = 0.5$. A society prefers \mathbf{z} to \mathbf{z}' :

$$1 - 100 \times 0.5^{10} = 0.9032 > 0.9 = 1.1 - 0.4 \times 0.5.$$

Let $\beta = 0.8$. A society would prefer \mathbf{z}' to \mathbf{z} :

 $1 + 0.8 \times 0.5^{10} \times (-100) = 0.9219 < 0.94 = 1.1 + 0.8 \times 0.5 \times (-0.4)$

Conclusion

- Social decisions rely on the selection of social parameters.
- We suggest various way to determine those parameters.
- The very principles are identified to characterize those methods.
- Our methods provide a solid foundation to apply various utility forms in either time consistent or inconsistent fashion.