Smoke without fire? Reassessing empirical evidence of fire sales Milan - EEA/ESEM, 2022

R. M. Bidder W. J. Coen C. Lepore L. Silvestri *KBS LSE IMF BoE*

August 25, 2022

Disclaimer:

Any opinions expressed, errors or omissions should be regarded as those of the authors and not necessarily those of KCL, KBS, QCGBF, QCB, LSE, IMF or BoE. These slides should therefore not be reported as representing the views of the Bank of England or members of the Monetary Policy Committee, Financial Policy Committee or Prudential Regulation Committee.

Outline

Introduction

Identifying fire sales

Data

Econometric approach

Results

Introduction

Motivation

Fire sales are forced sales of assets by distressed investors

- Unrelated to asset fundamentals
- Drives price below counterfactual in absence of distress
- Key mechanism by which shocks are amplified and transmitted
- Phenomenon of both theoretical and policy interest

Settled consensus (until recently):

- Fire sales exist and can be substantial
- Coval & Stafford (2007) → mutual fund (MF) outflows used to identify and assess effects
- Derivative literatures and policies built upon these findings
- But literature now in a state of flux

This paper

What we **do**:

- Create a measure of selling pressure, unrelated to asset fundamentals
 - Use granular FCA MiFID II bond transaction data
 - Trades by various investor types (not just MF)
 - 'Unrelated' is conditional on issuer-time FE
- Assess price impact of sales instrumented with this measure
- ▶ See which factors are associated with greater/lesser impact

What we **find**:

- Significant (econ and stat) impact of sales on bond prices
- Greater in times of *stress* and in *corporate* bonds
- MF selling does not depress prices on average (preliminary)

Identifying fire sales

Identifying fire sales

Let us assume...

$$r_{i,t}^{\tau} = \beta s_{i,t} + \gamma' X_{i,t} + \epsilon_{i,t}$$

- $r_{i,t}^{\tau}$ return on bond *i* from *t* to $t + \tau$
- $s_{i,t}$ net sales by non-dealers
- $X_{i,t}$ vector of controls
- $\epsilon_{i,t}$ disturbance

 $OLS\ 'OK'$ if all sales motivated by reasons unrelated to price-relevant 'fundamentals' of bond

- Implausible
- Likely $cov(\epsilon_{i,t}, s_{i,t}) \neq 0$ even with sensible controls
- Example: news about credit risk of issuer

Identifying fire sales

Relevant literature:

- Coval & Stafford (2007) use net selling by funds with extreme in/outflows
 - Might include discretionary sales capturing knowledge of fundamentals (problem)
- Edmans et al (2012) refine C&S approach to strip out discretionary sales
 - Still find significant price effect
- Choi et al (2020) contrast bonds from same issuer (within issuer-time variation)
 - Find little evidence of a substantial price effect (see also Czech *et al* (2021))
- Wardlaw (2020) shows Edmans et al (2012)'s measure is mechanically correlated with realised returns
 - Adjusting for this issue leaves little evidence of a price effect

- Bond transactions: Transactions of government and corporate bonds by FCA-regulated entities reported under MiFID II
- Bond metadata: Additional information on bond characteristics from Eikon
- Fund performance: Mutual funds' total net assets and estimated net flows
- Fund holdings: Quarterly data on portfolio holdings from Morningstar
- Time period: 1 January 2019 to 1 July 2020 (smaller subsample for fund analysis), weekly aggregation

Most of our main work relates to the data on transactions and bond characteristics

Intuition:

- Suppose we can identify 'unrelated' bonds and there are no 'systemic' events in a period
- If an investor trading bond *i* is selling many other unrelated bonds, then trades in *i* are likely driven, to a large degree, by the investor's condition, rather than any idiosyncratic properties of bond *i*
- Conversely, if an investor is trading bond *i* for purely idiosyncratic (to the bond) reasons then, on average, her sales of other unrelated bonds should be zero

Calculate net sales of bonds other than i by all traders j among non-dealers transacting in bond i (normalizing by transactions)

$$z_{it} \equiv \frac{\sum_{j} \mathbb{1}_{s_{ijt} \neq 0} z_{ijt}^{NS}}{\sum_{j} \mathbb{1}_{s_{ijt} \neq 0} z_{ijt}^{T}}$$

where

$$egin{array}{rcl} z_{ijt}^{NS} &\equiv& \displaystyle\sum_{k
eq i} s_{kjt} \ z_{ijt}^{T} &\equiv& \displaystyle\sum_{k
eq i} |s_{kjt}| \end{array}$$

Note that net sales *including* dealers would identically be 0 for all securities at all times

Also, focusing on participants without a market-making role

We call this measure 'outside selling pressure'

$$z_{it} \equiv \frac{\sum_{j} \mathbb{1}_{s_{ijt} \neq 0} z_{ijt}^{NS}}{\sum_{j} \mathbb{1}_{s_{ijt} \neq 0} z_{ijt}^{T}}$$

▶
$$z_{i,t} \in [-1,1]$$

- Close to zero if no tendency for traders transacting in bond i to be sellers or buyers of other bonds
- Close to 1 (-1) if generally sellers (buyers)

We will instrument $s_{i,t}$ with $z_{i,t}$ (2SLS)

$$\begin{aligned} r_{i,t+\tau} &= \beta s_{i,t} + \gamma' X_{i,t} + \epsilon_{i,t} \\ s_{i,t} &= \alpha z_{i,t} + \delta' X_{i,t} + \nu_{i,t}. \end{aligned}$$

But. . .

- While z_{it} should be highly correlated with s_{it}, it is implausible that the 'other bonds' are 'unrelated'
- They may reflect shared time varying factors that both induce sales of *i* and are tied to price-relevant fundamentals for *i*

We therefore include in $X_{i,t}$

Bond FE

- Time to maturity
- ▶ Issuer-time FE (as in Choi *et al* (2020))

And thus can assert $cov(z_{i,t}, \epsilon_{i,t}|X_{i,t}) = 0$

Intuition for importance of an issuer-time FE:

- No longer use variation from sales of Acer bonds by those selling Dell bonds
 - Pervasive problem of shared fundamentals
- Now exploit sales of Dell bond i_1 vs. Dell bond i_2 (in t)
 - Any time varying Dell fundamentals (shared or otherwise) are diffed out
 - Also, bond FE deals with collateral etc. and a time to maturity control deals with bond specific, within Dell-time variation
 - Definition of $z_{i,t}$ and inclusion of FEs \Rightarrow we're *effectively* considering sales of 'unrelated' bonds
- Importance of trading patterns
 - Lots of bonds traded each week, often traded by multiple traders and at the same time as other bonds are being traded
 - Even with the issuer-time FE we have ample variation **Detail**

Is remaining non-fundamental variation 'fire selling' or just noise?

Does it matter?

Suggestive evidence that it is connected to distressed selling...

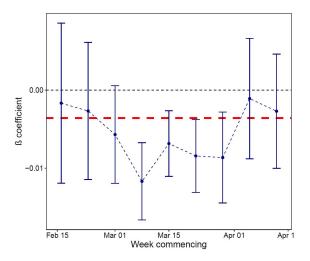
- Violent tail moves during March 2020 'dash for cash' (though perhaps mechanical)
- Comoves with Coval & Stafford's 'mutual fund flow'
- Comoves with Wardlaw's 'flow-to-stock' component of 'mutual fund flow'

Distress

Results

Results: Average effect

	OLS	2SLS 2 nd stage	2SLS 1 st stage
	Return r_{it} (%) (1)	Return r_{it} (%) (2)	Sales (% turnover) (3)
Sales (% turnover)	-0.0004^{***} (4.1×10^{-5})	-0.004*** (0.0006)	
Pressure z_{it} (%)			0.26*** (0.006)
\mathbb{R}^2	0.33	0.33	0.25
F-test (IV only)		61.3	7,476.5
Observations	$1,\!629,\!220$	1,622,762	1,622,762
Issuer-Week fixed effects	Yes	Yes	Yes
Instrument fixed effects	Yes	Yes	Yes


- Instrumenting makes a clear difference (and strength of instrument is reassuring)
- ► 2SLS estimates ⇒ moving from 5th to 95th percentile of selling causes a 64*bps* decline in returns
- Only refer to 2SLS henceforth

Results: Dependence on 'stress'

	Return r_{it} (%)		
	Full sample	March 2020	
	(1)	(2)	
Sales (% turnover)	-0.004***	-0.01***	
	(0.0006)	(0.003)	
\mathbb{R}^2	0.33	0.66	
Observations	$1,\!622,\!762$	87,647	
Issuer-Week fixed effects	Yes	Yes	
Instrument fixed effects	Yes	Yes	

Impact more than doubles in 'dash for cash' period of stress

Results: Dependence on 'stress'

Price impact of selling rises during stressed period before returning to 'normal'

Results: Dependence on bond type

	Return r_{it} (%)		
	Corporate	Government	
	(1)	(2)	
Sales (% turnover)	-0.004***	-0.002	
	(0.0007)	(0.002)	
\mathbb{R}^2	0.36	0.18	
Observations	1,290,583	332,179	
Issuer-Week fixed effects	Yes	Yes	
Instrument fixed effects	Yes	Yes	

- Greater impact in case of corporate bonds
- Aligns with various liquidity- or complexity-based fire sale theories

Results: Interaction of bond type with stress

	Return r_{it} (%)		
	Corporate	Government	
	(1)	(2)	
Sales (% turnover)	-0.02***	-0.004	
	(0.004)	(0.004)	
Standard-Errors	Issuer-Week	Instrument	
\mathbb{R}^2	0.67	0.57	
Observations	69,133	18,561	
Issuer-Week fixed effects	Yes	Yes	
Instrument fixed effects	Yes	Yes	

 Distinction between corporate and sovereign bonds exaggerated in stressed periods

Results: Distinct asset manager behavior

	Return r_{it} (%)		
	All traders (1)	Asset Managers (2)	
Sales (% turnover)	-0.004***	0.003***	
	(0.0006)	(0.001)	
\mathbb{R}^2	0.33	0.42	
F-test (1st stage), Sales (% turnover)	7,476.5	3,039.2	
Observations	$1,\!622,\!762$	994,560	
Issuer-Week fixed effects	Yes	Yes	
Instrument fixed effects	Yes	Yes	

- Preliminary results but suggestion of 'smaller' effects for asset managers
- Don't have data precision to distinguish MF, but possible reconciliation of (recent) literature's results on limited impact of MF selling, with a role for fire sales more broadly

Next steps

Ongoing work considering whether noise vs. fire sale interpretation 'matters'...

- Nonlinearities, asymmetries and spillovers
- Bounding the noise component
- Tighter connection to distress
- Can models help refine the measure
- Tightening up regressions
 - Especially roles of MF and dealers

Appendix

Key aspects of the data
Detail

- Both corporate and sovereign
 - Corporate pprox 85% (but 56% trades are of sovereign)
- Broad variety of participants
 - Dealers: 3% of participants but involved in > 50% of trades
 - Non-dealers: Asset managers, banks, hedge funds,...
- Average trading patterns
 - > 24k bonds traded per week and > 27k traders
 - Non-dealers trade 8 bonds per week and dealers trade >700
 - Each instrument traded in a week is traded by 4 dealers and 10 non-dealers
 - Trading patterns key to identification approach

	Share	Trade Share
Panel A: Bonds		
Type		
Corporate	85	44
Government	15	56
Currency		
GBP	7	11
EUR	26	44
USD	47	39
Other	20	6
Maturity		
0-5 years	45	21
6-10 years	37	44
11-20 years	7	12
21+ years	11	24
Panel B: Traders		
Sector		
Asset Manager	44	15
Bank	11	14
Dealer	3	51
Hedge Fund	6	2
Non-Financial	2	0
Other Financial	4	8
PFLDI	28	2
State	2	1
Trading Services	1	8

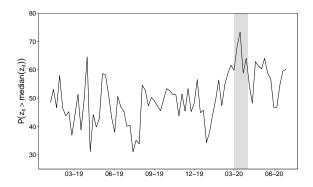
Note: Table summarizes the instruments traded and the types of traders in the dataset. The first column counts each bond (or trader) once. The second counts each trade once.

	Number		
Instruments traded	24,378		
Traders	27,859		
Instruments per trader			
Dealers	733		
Customers	8		
Traders per instrument			
Dealers	4		
Customers	10		

Note: Table summarizes the number of traders and instruments traded per week. 'Customers' are defined as all traders except dealers.

▶ Back

We have purged sales of the variation that would be problematic for fire sale studies but...**did we throw the baby out with the bathwater**?


- Do we retain enough non-absorbed variation to allow us to assess the effect of non-fundamental sales?
- Remaining variation is derived from reasons unrelated to the issuer or to bond-specific (fixed or time-varying) fundamentals
- What if investors were fire selling all bonds from a given issuer to the same degree (which is eliminated in our method)?

It turns out that *ample* non-fundamental variation remains.

Fixed Effects	R-squared		
	Returns r_{it}	Sales s_{it}	
Instrument	0.02	0.07	
Issuer	0.01	0.01	
Week	0.04	0.00	
Issuer & Week	0.05	0.02	
Issuer-Week	0.31	0.20	
Issuer-Week & Instrument	0.32	0.25	

Note: Table shows the variation in returns ri;t and sales si;t that can be explained by various combinations of fixed effects. The first column shows the R-squared from a regression of returns on the relevant fixed effects, while the second shows the R-squared from a regression of sales on the relevant fixed effects.

Note: Figure shows the fraction of bonds in a given month that have outside selling pressure greater than the median in the sample. Grey shaded area denotes March 2020.

	Asset Manager Pressure z_{it}^{AM}		
	(1)	(2)	(3)
Coval-Stafford (pctile)	0.39**		
	(0.19)		
Wardlaw F2S (pctile)	100 D.	0.33***	
		(0.12)	
Wardlaw F2V (pctile)			0.07
91-5-10-5-100-5-100-5-10-5-100 - 1-5-101-11-2			(0.48)
\mathbb{R}^2	0.49	0.45	0.45
Observations	257,743	491,863	$46,\!636$
Issuer-Week fixed effects	Yes	Yes	Yes
Instrument fixed effects	Yes	Yes	Yes

Note: Table shows the positive correlation between our measure of outside selling pressure (but computed solely for asset managers) and various measures of selling pressure induced by mutual fund flows defined in the literature, after including issuer-week and instrument fixed effects.

