# Competitive Fair Redistricting 

Felix Bierbrauer<br>U of Cologne<br>Mattias Polborn<br>Vanderbilt and U of Cologne

August 2022

## Problems with Gerrymandering in the US

- Redistricting after new census in the US, every ten years. New district map proposed by the ruling party.
- Frequent discrepancy between party winning the popular vote and the party winning the election/ a majority of districts.
- Difficulty to define a legal standard for acceptable vs. abusive redistricting.


## Incentives in partisan gerrymandering: Cracking and Packing

HOW TO STEAL AN ELECTION


50 PRECINCTS
60\% BLUE 40\% RED


5 DISTRICTS 5 BLUE 0 RED BLUE WINS


## This paper

Mechanism/ Market Design Approach: Is there a game of redistricting that gives rise to a desirable outcome: an implementation of the popular vote.

- Let both parties keep each other in check.
- Hope: Eliminate need for a standard of acceptability.
- Market design element: Work with given institutional constraints
- There have to be many districts
- Districts boundaries are adjusted every now and then
$\Rightarrow$ "Trivial solution" of simply having one district not available


## The main result

## Theorem

There is a dynamic game of redistricting in which each party has a strategy that "guarantees" winning a majority of districts conditional on winning the popular vote.

- When a party plays this strategy, the "victory in the election cannot be stolen".
- Result follows from the analysis of a fictitious zero sum game in which both parties maximizing the probability of winning a majority of seats.
- We are not predicting that parties will actually follow this strategy. They may have objectives different from maximizing the probability of winning a majority.
- By the Maximin-property for zero sum games, if one parties deviates from equilibrium, the outcome for the other party can only get better.


## Related Literatures

(1) Normative Approaches

Vickrey (1961), Ely (2019)
2 Colonel Blotto / Divide-the-dollar-games
Myerson (1993), Lizzeri and Persico (2001, 2005), Laslier and Picard (2002), Konrad (2009), Kovenock and Roberson (2020)
(3) Partisan Gerrymandering

Owen and Grofman (1988) ... Kolotilin and Wolitzky (2020).

## Outlook

(1) Introduction

2 Model and Main result
(3) Simple example

4 Concluding remarks

## Model I

- $2 N$ local districts, indexed by $k \in\{1,2, \ldots, 2 N\}$, and one at-large district.
- Two parties, labeled $R$ and $D$.
- Two types of voters/ precincts $t \in\left\{t_{1}, t_{2}\right\}$
- Possible states of the world $\omega \in \Omega$
- $v(t, \omega)$ the prob type $t$ votes for $R$ in state $\omega ; v$ is increasing in both arguments.
- The mass of type $t_{j}$ voters is given by

$$
b_{j}=2 N \beta_{j}, \quad \text { where } \quad \beta_{1}+\beta_{2}=1 \quad \text { and } \quad \beta_{1} \leq \frac{1}{2}
$$

## Model II

The popular vote:

- State $\hat{\omega} \in \Omega$ defined by $\beta_{1} v\left(t_{1}, \hat{\omega}\right)+\beta_{2} v\left(t_{2}, \hat{\omega}\right)=\frac{1}{2}$.
- Party $R / D$ wins the popular vote if $\omega>\hat{\omega} / \omega<\hat{\omega}$.
- Assumptions:
i) $v\left(t_{1}, \hat{\omega}\right)<\frac{1}{2}<v\left(t_{2}, \hat{\omega}\right)$.
ii) $1-v\left(t_{1}, \hat{\omega}\right) \geq v\left(t_{2}, \hat{\omega}\right)$.


## Model III

## District Outcomes:

- Voter assignment to districts over several rounds.
- In this process, each party assigns every voter to one of the districts. Thus, any one voter is assigned twice, once by $D$ and once by $R$.
- A voter assignment by party $P \in\{D, R\}$ is a collection $\sigma_{P}=\left(\sigma_{P k}\right)_{k=1}^{2 N}$, where

$$
\sigma_{P k}=\left(\sigma_{P k}^{1}, \sigma_{P k}^{2}\right) \quad \text { with } \quad \sigma_{P k}^{1}+\sigma_{P k}^{2}=1
$$

is the assignment of voters to district $k$ by party $P$. Party $R$ wins district $k$ in state $\omega$ if

$$
\begin{equation*}
\left(\sigma_{D k}^{1}+\sigma_{R k}^{1}\right) v\left(t_{1}, \omega\right)+\left(\sigma_{D k}^{2}+\sigma_{R k}^{2}\right) v\left(t_{2}, \omega\right) \quad>\quad \frac{1}{2} \tag{1}
\end{equation*}
$$

## Model IV

The sequence of moves/ the game form:

- $L$ rounds. In any round $l$, Party $P$ assigns a mass of $\frac{1}{L}$ voters to every district. Formally, party $P$ specifies $\sigma_{P l}=\left(\sigma_{k P l}^{1}, \sigma_{k P l}^{2}\right)_{k=1}^{2 N}$ so that

$$
\sigma_{k P l}^{1}+\sigma_{k P l}^{2}=\frac{1}{L}
$$

- For concreteness, we assume that, for $l$ odd, $R$ moves first and $D$ second.
- Denote the total mass of type $t_{1}$ partisans assigned by party $P$ to district $k$ over the $L$ rounds by $\sigma_{k P}^{1}:=\sum_{l=1}^{L} \sigma_{k P l}^{1}$. Analogously, let $\sigma_{k P}^{2}:=\sum_{l=1}^{L} \sigma_{k P l}^{2}$.
- To be consistent with the overall distribution of voters, $\left(\sigma_{k P}\right)_{k=1}^{2 N}$ must satisfy

$$
\frac{1}{2 N} \sum_{k=1}^{2 N} \sigma_{k P}^{1}=\beta_{1} \quad \text { and } \quad \frac{1}{2 N} \sum_{k=1}^{2 N} \sigma_{k P}^{2}=\beta_{2}
$$

## Model V

## Winning a majority of seats:

- Recall that there are $2 N$ districts and an at-large-district. Thus, the party that wins at least $N+1$ seats wins a majority in the legislature.
- Given a pair of voter assignments $\left(\sigma_{D}, \sigma_{R}\right)$, we denote the probability that party $R$ wins a majority of seats, conditional on it winning the popular vote, by $\Pi_{R}\left(\sigma_{D}, \sigma_{R} \mid \omega>\hat{\omega}\right)$.
- We define $\Pi_{D}\left(\sigma_{D}, \sigma_{R} \mid \omega<\hat{\omega}\right)$ analogously.


## The main result

## Theorem

Let $N \geq 3$. For every $\varepsilon>0$, there is $\hat{L}$, so that, for $L \geq \hat{L}$ : There is a strategy $\sigma_{R}$ so that

$$
\Pi_{R}\left(\sigma_{D}, \sigma_{R} \mid \omega>\hat{\omega}\right)=1, \quad \text { for every } \quad \sigma_{D}
$$

and there is a strategy $\sigma_{D}$ so that

$$
\Pi_{D}\left(\sigma_{D}, \sigma_{R} \mid \omega<\hat{\omega}\right)=1, \quad \text { for every } \quad \sigma_{R}
$$

## Illustrative example I

- Type 1 and type 2 with equal population shares, $\beta_{1}=\beta_{2}$.
- $v\left(t_{1}, \omega\right)=0.3+0.1 \omega, v\left(t_{2}, \omega\right)=0.6+0.1 \omega$, for $\omega \in[0,1]$.
- Let $L=1$.
- $R$ moves second. $R$ can undue deviations from the popular vote by $D$.
E.g. if $D$ assigned 60 percent $t_{1}$ and 40 percent $t_{2}$ precincts to district $k$, $R$ can respond by assigning 40 percent $t_{1}$ and 60 percent $t_{2}$ precincts.
- $D$ moves first. Suppose that $D$ assigns only type $t_{1}$ precincts to districts 1 to $N$ districts, and only type $t_{2}$ precincts to districts $N+1$ to $2 N$.

Whatever the response of $R$, the first $N$ districts will have at least a 50 percent share of Democratic-leaning precincts, so will be won by $D$ whenever $\omega<0.5$.

## Illustrative example II

Why is the general case more complicated than this?

- Let $\beta_{1}=2 / 3$ and $\beta_{2}=1 / 3$.
- $v\left(t_{1}, \omega\right)=0.3+0.2 \omega, v\left(t_{2}, \omega\right)=0.6+0.2 \omega$, for $\omega \in[0,1]$.
- As before, $D / R$ wins the the popular vote whenever $\omega<0.5 / \omega>0.5$.
- With $\beta_{1}=2 / 3$, not possible for $D$ to block all $t_{1}$ precincts together in one-half of the districts: the type of move that guaranteed Democrats a victory in the previous example is no longer feasible.
- Blocking them in $2 / 3$ of districts is feasible, but this strategy does not work in the sense of ensuring a majority whenever $\omega>0.5$.


## Concluding remarks

- We show that it is possible to neutralize the distortions due to partisan gerrymandering by having both parties participate in the redistricting process.
- Possibility result based on a particular sequential game
- The protocol does not have be taken literally as a specific proposal for how redistricting should be done in practice.
- It is of theoretical value in that it provides an upper bound for what is achievable when the rules governing the redistricting process are well designed.
- Presumably, there are other protocols that also implement the popular vote.


## Ethymology I

From Wikipedia:

- The word gerrymander (...) was created in reaction to a redrawing of Massachusetts state senate election districts under Governor Elbridge Gerry, later Vice President of the United States.
- When mapped, one of the contorted districts in the Boston area was said to resemble a mythological salamander.
- Appearing with the term, and helping spread and sustain its popularity, was a political cartoon, printed in March 1812.


## Ethymology II



## A recent gerrymander: Goofy kicking Donald Duck



Pennsylvania's 7th congressional district

